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Abstract— The performance of a novel fountain coding scheme
based on maximum distance separable (MDS) codes constructed
over Galois fields of orderq ≥ 2 is investigated. Upper and lower
bounds on the decoding failure probability under maximum
likelihood decoding are developed. Differently from Raptor codes
(which are based on a serial concatenation of a high-rate outer
block code, and an inner Luby-transform code), the proposed
coding scheme can be seen as a parallel concatenation of an
outer MDS code and an inner random linear fountain code, both
operating on the same Galois field. A performance assessment
is performed on the gain provided by MDS based fountain
coding over linear random fountain coding in terms of decoding
failure probability vs. overhead. It is shown how, for example,
the concatenation of a(15, 10) Reed-Solomon code and a linear
random fountain code over F16 brings to a decoding failure
probability 4 orders of magnitude lower than the linear random
fountain code for the same overhead in a channel with a packet
loss probability of � = 5 ⋅ 10−2. Moreover, it is illustrated how
the performance of the concatenated fountain code approaches
that of an idealized fountain code for higher-order Galois fields
and moderate packet loss probabilities. The scheme introduced
is of special interest for the distribution of data using small block
sizes.

I. I NTRODUCTION

Fountain codes were introduced in [1] as an efficient alter-
native to automatic retransmission query (ARQ) protocols in
multicast/broadcast transmission systems. Consider the case
where a sender (or source) needs to deliver a file to a set
of Nu users. Consider furthermore the case where users are
affected by packet losses. In this scenario, the usage of an
ARQ protocol can result in large inefficiencies, since users
may loose different packets, and hence a large number of
retransmissions would crowd the downlink channel. Among
the efficient (coded) alternatives to ARQ protocols [2]–[5],
we shall focus on fountain codes only. When a fountain code
is used, the source file is split in a set ofk source packets. The
sender, or fountain encoder, computes linear combinationsof
the k source packets and broadcasts them through the com-
munication medium. After receivingk fountain coded packets,
receivers can try to recover the source packets. If they failto
recover the source packets they will try again to decode when

they receive additional packets. The efficiency of a fountain
code deals with the amount of packets (source+redundancy)
that a user needs to collect for recovering the source file. An
idealized fountain code would allow the file recovery with a
probability of successPs = 1 from any set ofk received
packets. Real fountain decoders need in general to receive a
larger amount of packets,m = k + �, for achieving a certain
success probability. Commonly,� is referred to asoverhead
of the fountain code, and is used to measure its efficiency.
More generally auniversal fountain code is a code which can
recover thek original source symbols out ofk+� symbols for
any erasure channel and� small. The first class of universal
fountain codes are Luby-transform (LT) codes [6]. One sub-
class of LT codes are random LT codes or linear random
fountain codes (LRFCs) [7]. When a binary LRFC is used
[8], [9] the success probability can be accurately modeled as
Ps = 1− 2−� for � > 2 (it can be proved thatPs is actually
always lower bounded by1 − 2−�, [9]). In [9] it was shown
that this expression is still accurate for fountain codes based on
sparse matrices (e.g., Raptor codes [7]). Moreover, in [9],the
performance achievable by performing linear combinationsof
packets on Galois fields of order greater than2 was analyzed.
For a LRFC performing the linear combinations overFq, the
decoding failure probabilityPe = 1− Ps is bounded by [9]

q−�−1 ≤ Pe(�, q) <
1

q − 1
q−� (1)

where both bounds are tight for increasingq. Furthermore, in
[9] it was also shown that non-binary Raptor codes can in fact
tightly approach the bounds (1) down to moderate error rates.

The result is remarkable, considering that for a Raptor
code the encoding and decoding costs (defined as the number
of arithmetic operations divided by the number of source
symbols,k) areO(log(1/�)) andO(k log(1/�)) respectively,
beingk(1+�) the number of output symbols needed to recover
the source symbols with a high probability. For a LRFC the
encoding cost isO(k) and the decoding cost isO(k2), and
thus it does not scale favorably with the input block size.



However, if the block size is kept small, the decoding cost
is still affordable.

The motivation of this paper is the analysis of a further
improvement of the approach proposed in [9] for designing
fountain codes with good performance for short block sizes.
As in [9], in order to achieve the objective non-binary fountain
codes are considered. Moreover, maximum distance separable
(MDS) codes are introduced in parallel concatenation with the
fountain encoder to enhance the performance of the scheme.
By doing that, the firstn output symbols of the encoder are
the n output symbols of the MDS code.12

In this paper, we illustrate how the performance of LRFCs
in terms of probability of decoding failure can be further
improved by such a concatenation. An analytical expression
for the decoding failure probability vs. overhead will be
derived under the assumption of maximum-likelihood (ML)
decoding. We show how, when the packet loss rates are
moderate-low, the probability of failure can be reduced by
several orders of magnitude, approaching the performance
of idealized fountain codes. The simulated performance of
schemes based on Reed Solomon (RS) codes are compared
with the proposed expressions, confirming the accuracy of the
proposed approach. The analysis is developed for the case of
LRFCs. We conjecture that similar gains shall be expected also
in the case where (non-binary) LT codes are employed in the
concatenation.

The paper is organized as follows. In Section II the pro-
posed concatenated scheme is introduced. In Section III the
performance analysis is provided, while numerical resultsare
presented in Section IV. Conclusions follow in Section V.

II. CONCATENATION OF BLOCK CODES WITH RANDOM

L INEAR FOUNTAIN CODES

Without loosing in generality, we define the source block
u = (u1, u2, . . . , uk) as a sequence of symbols belonging to a
Galois field of orderq, i.e.u ∈ F

k
q . In the proposed approach,

the source block is first encoded via a(n, k) systematic linear
block codeC′ over Fq with generator matrixG′ = (I∣P′),
where I is the k × k identity matrix andP′ is a k × (n −
k) matrix with elements inFq. The encoded block is hence
given by c′ = uG′ = (c′1, c

′

2, . . . , c
′

n), wherec′1 = u1, c
′

2 =
u2, . . . , c

′

k = uk and the remainingn − k symbols ofc′ are
the redundancy symbols given by(c′k+1, c

′

k+2, . . . , c
′

n) = uP′.
Additional redundancy symbols can be obtained by computing
random linear combinations of thek source symbols as

ci = c′′i−n =

k∑

j=1

gj,iuj, i = n+ 1, . . . , l

where the coefficientsgj,i are picked fromFq with a uniform
probability (1/q). The encoded sequence is hence given by

1Note that for Raptor codes the output of the precode is further encoded
by a LT Code. Hence the firstn output symbols of the fountain encoder are
not the output of the precode.

2We will assume a MDS linear block code constructed on the samefield
(Fq) of the fountain code.

c = (c′∣c′′). The overall generator matrix has the form

G =

⎛

⎜
⎜
⎜
⎝

g1,1 g1,2 . . . g1,n
g2,1 g2,2 . . . g2,n

...
...

. . .
...

gk,1 gk,2 . . . gk,n

∣
∣
∣
∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

G′

∣
∣
∣
∣
∣
∣
∣
∣
∣

g1,n+1 g1,n+2 . . . g1,l
g2,n+1 g2,n+2 . . . g2,l

...
...

. . .
...

gk,n+1 gk,n+2 . . . gk,l

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸

G′′

(2)

whereG′′ is the generator matrix of the LRFC. (Note that,
being the LRFC rate-less, the numberl of columns ofG can
in principle grow indefinitely.) The encoder can be seen hence
as a parallel concatenation of the linear block codeC′ and of
a LRFC (Fig. 1).

Block Code
(n, k)

LRFC

u1, u2...uk

c1, c2...cn

cn+1, cn+2...

c1, c2...cn, cn+1...

Fig. 1. Fountain coding scheme seen as a parallel concatenation of a (n, k)
linear block code and a linear random fountain code.

III. PERFORMANCEANALYSIS

Based on the bounds derived in [9], tight upper and lower
bounds for the decoding failure probability of the fountain
coding scheme can be derived in case of uncorrelated erasures.
The decoding failure probability (PF = Pr{F}, where F
denotes the decoding failure event) is defined as the probability
that the source blocku cannot be recovered out of a set of
received symbols. In this paper we will focus on the case
where the linear block code used in concatenation with the
LRFC is maximum distance separable (MDS). When binary
codes will be used, we will assume(k + 1, k) single-parity-
check (SPC) codes.3 When operating on higher order Galois
fields, we will consider (shortened) RS codes.

The encoded sequence is given byc = uG =
(c1, c2, . . . , cl), where the firstn symbols (c1, c2, . . . , cn)
represent a codeword ofC′, and the remainingl − n are
produced by the LRFC. At the receiver side, a subset ofm
symbols is received. We denote byJ = {j1, j2, . . . , jm} the
set of the indexes on the symbols ofc that have been received.
The received vectory is hence given by

y = (y1, y2, . . . , ym) = (cj1 , cj2 , . . . , cjm)

and it can be related to the source blocku asy = uG̃. Here,
G̃ denotes thek×m matrix made by the columns ofG with

3Repetition codes are not considered here, since they would lead to a trivial
fountain scheme where the source block is given by1 symbol only.



indexes inJ , i.e.

G̃ =

⎛

⎜
⎜
⎜
⎝

g1,j1 g1,j2 . . . g1,jm
g2,j1 g2,j2 . . . g2,jm

...
...

. . .
...

gk,j1 gk,j2 . . . gk,jm

⎞

⎟
⎟
⎟
⎠

.

The recovery ofu reduces to solving the system ofm = k+�
linear equations ink unknowns

G̃TuT = yT , (3)

e.g., via Gaussian elimination. The solution is possible ifand
only if rank(G̃) = k.

Assuming C′ being MDS, the system is solvable with
probability 1 if, among them received symbols, at leastk
have indexes in{1, 2, . . . , n}, i.e. if at leastm′ ≥ k symbols
produced by the linear block encoder have been received.

Let’s consider the less trivial case wherem′ < k among
the m received symbols have indexes in{1, 2, . . . , n}. We
can partitionG̃T as

G̃T =

(
G̃′T

G̃′′T

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g1,j1 g2,j1 . . . gk,j1
g1,j2 g2,j2 . . . gk,j2

...
...

. . .
...

g1,j
m

′
g2,j

m
′

. . . gk,j
m

′

g1,j
m

′+1
g2,j

m
′+1

. . . gk,j
m

′+1

g1,j
m

′+2
g2,j

m
′+2

. . . gk,j
m

′+2

...
...

. . .
...

g1,jm g2,jm . . . gk,jm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4)

The MDS property ofC′ assures that rank(G̃′) = m′, i.e. the
first m′ rows of G̃T are linearly independent. Note that the
m′′× k matrix G̃′′T (with m′′ = m−m′) is a random matrix
whose entries are picked with uniform probability inFq. It
follows that the system defined by (4) can be put (via column
permutations overG̃T and row permutations/combinations
over G̃′T ) in the form

ĜT =

(
I A

0 B

)

, (5)

whereI is them′ ×m′ identity matrix,0 is am′′ ×m′ all-0
matrix, andA, B have respective sizesm′ × (k − m′) and
m′′×(k−m′). Note that the lower part of̂GT given by(0 B)
is obtained by adding to each row ofG̃′′T a linear combination
of rows fromG̃′T , in a way that them′ leftmost columns of
G̃′′T are zeroed-out. It follows that the statistical propertiesof
G̃′′T are inherited by them′′× (k−m′) sub-matrixB, whose
entries are hence picked with uniform probability inFq. The
system is solvable if and only ifB is full rank, i.e. if and only
if rank(B) = k −m′.

Suppose now that the encoded symbolsc are sent to a
receiver over an erasure channel which erasure probabilityof �.
The probability that at leastk symbols out of then symbols
produced by the linear block code encoder are received is
given by

Q∗(�) =

n∑

i=k

(
n

i

)

(1− �)i�n−i. (6)

Hence, with a probabilityP ∗(�) = 1 − Q∗(�) the receiver
would need to collect symbols encoded by the LRFC encoder
to recover the source block. Assuming that the user collects
m = k + � symbols, out of which onlym′ < k have been
produced by the linear block encoder, the conditional decoding
failure probability can be expressed as

Pr(F ∣m′,m′ < k, �) = Pr(rank(B) < k −m′). (7)

Note thatB is am′′ × (k −m′) = (k + � −m′)× (k −m′)
random matrix, i.e. a random matrix with� equations in excess
w.r.t. the number of unknowns. We can thus replace (1) in (7),
getting the bounds

q−�−1 ≤ Pr(F ∣m′,m′ < k, �)
1

q − 1
q−�. (8)

We remark that, thanks to the independency of the bounds in
(1) from the size of the random matrix (i.e., the bounds depend
only on the overhead), we can remove the conditioning onm′

from (8), leaving

q−�−1 ≤ Pr(F ∣m′ < k, �) <
1

q − 1
q−�.

The final failure probability can be written as

PF (�, �) = Pr(F ∣m′ < k, �)Pr(m′ < k)+
+Pr(F ∣m′ ≥ k, �)Pr(m′ ≥ k),

(9)

where Pr(F ∣m′ ≥ k, �) = 0 and Pr(m′ < k) = P ∗(�). It
results that

P ∗(�)q−�−1 ≤ PF (�, �) < P ∗(�)
1

q − 1
q−�. (10)

From an inspection of (1) and (10), one can note how
the bounds on the failure probability of the concatenated
scheme are scaled down by a factorP ∗(�), whereP ∗(�) =
∑k−1

i=0

(
n
i

)
(1− �)i�n−i is a monotonically increasing function

of �. It follows that, when the channel conditions arebad
(i.e., large�) P ∗(�) → 1, and the bounds in (10) tend to
coincide with the bounds in (1). When the channel conditions
are good (i.e., small �), most of the timem′ ≥ k symbols
produced by the linear block encoder are received, leading to
a decoding success (recall the assumption of MDS code). In
these conditions,P ∗(�) ≪ 1, and according to the bounds in
(10) the failure probability may scale down even of several
orders of magnitude.

Fig. 2 shows the probability of decoding failure as a function
of the number of overhead symbols for a concatenated code
built using a(11, 10) SPC code inF2. It can be observed how,
for lower erasure probabilities, the performance gain in terms
of probability of decoding failure increases. For� = 0.01 the
decoding failure probability is more than2 orders of magni-
tude lower. Fig. 3 shows the probability of decoding failure
vs. the number of overhead symbols for the concatenation of
a (15, 10) RS and a LRFC overF16. The performance of the
concatenated code is compared with that of the LRFC built
on the same field for different erasure probabilities. In this
case the decrease in terms of probability of decoding failure
is bigger than in for the previously presented code inF2. For



a channel with an erasure probability� = 0.05, the probability
of decoding failure of the concatenated scheme is4 orders of
magnitude lower than for the LRFC.

The analysis provided in this section is also valid if the
LRFC is substituted by a LT or Raptor code. In order to
calculate the performance of such a concatenated code one has
to substitute in (9) the term Pr(F ∣m′ < k, �) by the probability
of decoding failure of the LT or Raptor code. Again the failure
probability of the concatenated scheme is scaled down by a
factorP ∗(�), whereP ∗(�) ≤ 1.

IV. N UMERICAL RESULTS

Fig. 4 shows the results of simulations together with the
bounds calculated using (10). In this case a(15, 10) RS was
concatenated with a LRFC inF16, and a channel with an
erasure probability� = 0.1 was used. It can be seen how
the simulation results match the analytical results down to
a probability of decoding failure of10−7. Fig. 5 shows the
simulation results for a concatenated code using a(11, 10)
parity check code inF2, and a channel with an erasure
probability � = 0.1. It can be seen how the simulation results
match the analytical results again. However, inF2 the bounds
are less tight than in higher order Galois fields.

An assessment the performance of the concatenated scheme
in a system with a high number of users has been performed,
assuming a system in which a transmitter sends a source block
to a set ofN receivers. We considered the erasure channels
from the transmitter to the receivers to be independent, with an
identical erasure probability�. Furthermore, we assumed that
the receivers send an acknowledgement to the transmitter when
they have successfully decoded the block. Ideal (error-free)
feedback channels have been considered. When all receivers
have sent an acknowledgement, the transmitter stops encoding
redundant symbols for the source block.

If k+Δ (whereΔ denotes the transmitter overhead) symbols
have been transmitted, the probability that a specific receiver
gathers exactlym symbols is:

PR{k +Δ,m} =

(
k +Δ

m

)

(1− �)m�k+Δ−m (11)

The probability of decoding failure at the receiver given that
the transmitter has sentk +Δ symbols is hence

Pe =

k−1∑

m=0

PR{k +Δ,m}+

+
k+Δ∑

m=k

PR{k +Δ,m}PF {� = m− k, �}.

The probability that at least one user has not decoded success-
fully is thus

PE(N,Δ, �) = 1− (1− Pe)
N (12)

Using the bounds in (10)PE(N,Δ, �) can also be bounded. In
the following we provide an example to asses the performance
of the new scheme in comparison with LRFC codes and also
with an idealized fountain code. We assume a system with

N = 104 users and a channel with an erasure probability
� = 0.01. The performance of LRFC codes overF2 and
F16 is shown as well as that of two concatenated schemes:
a concatenation of a(11, 10) SPC code with a LRFC code in
F2, and a concatenation of a(15, 10) RS code and a LRFC
code overF16. It can be seen how the concatenated scheme
in F2 outperforms the LRFC constructed on the same Galois
field. For example, forPE = 10−4 the concatenated scheme in
F2 needs onlyΔ = 20 overhead symbols whereas the LRFC
needs27 (Fig. 6). In the case of the fountain codes operating
in F16, the concatenated code shows a performance very close
to that of anidealized fountain code.
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Fig. 2. PF (�, �) vs. overhead for a concatenated code built using a(11, 10)
SPC code overF2 for different values of�. Upper bounds are represented by
solid lines and lower bounds are represented by dashed lines.
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V. CONCLUSIONS

A novel fountain coding scheme has been introduced. The
scheme consists of a parallel concatenation of a MDS block
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code with a LRFC code, both constructed over the same
field,Fq. The performance of the concatenated fountain coding
scheme has been analyzed through derivation of tight bounds
on the probability of decoding failure as a function of the
overhead. It has been shown how the concatenated scheme
performs as well as LRFC codes in channels characterized by
high erasure probabilities, whereas they provide failure proba-
bilities lower by several orders of magnitude at moderate/low
erasure probabilities.
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