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Abstract— The performance of a novel fountain coding scheme they receive additional packets. The efficiency of a fountai
based on maximum distance separable (MDS) codes construdte code deals with the amount of packets (source+redundancy)
over Galois fields of orderq > 2 is investigated. Upper and lower ynai 5 yser needs to collect for recovering the source file. An

bounds on the decoding failure probability under maximum . . . . .
likelihood decoding are developed. Differently from Rapte codes idealized fountain code would allow the file recovery with a

(which are based on a serial concatenation of a high-rate oat Probability of success’s = 1 from any set ofk received
block code, and an inner Luby-transform code), the proposed packets. Real fountain decoders need in general to receive a
coding scheme can be seen as a parallel concatenation of ararger amount of packetsy = k + §, for achieving a certain
outer MDS code and an inner random linear fountain code, both success probability. Commonly, is referred to asoverhead
operating on the same Galois field. A performance assessmentOf the fountain code. and is u,sed to measure its efficienc

is performed on the gain provided by MDS based fountain o X . X Y-
coding over linear random fountain coding in terms of decodang More generally auniversal fountain code is a code which can
failure probability vs. overhead. It is shown how, for examgde, recover the: original source symbols out @&f+§ symbols for

the concatenation of a(15,10) Reed-Solomon code and a linear any erasure channel adsmall. The first class of universal
random fountain code over ¢ brings to a decoding failure fountain codes are Luby-transform (LT) codes [6]. One sub-
probability 4 orders of magnitude lower than the linear random .

fountain code for the same overhead in a channel with a packet class _Of LT codes are random LT COd.eS or linear .random
loss probability of ¢ = 5 - 10~2. Moreover, it is illustrated how fountain codes (LRFCs) [7]. When a binary LRFC is used
the performance of the concatenated fountain code approaes [8], [9] the success probability can be accurately modeked a
that of an idealized fountain code for higher-order Galois felds p, — 1 — 279 for § > 2 (it can be proved thaP, is actually

and moderate packet loss probabilities. The scheme introdied always lower bounded by — 9—06 [9]). In [9] it was shown

is of special interest for the distribution of data using smdl block - R .
sizes. that this expression is still accurate for fountain codeselan
sparse matrices (e.g., Raptor codes [7]). Moreover, intf@,
|. INTRODUCTION performance achievable by performing linear combinatiafins
Fountain codes were introduced in [1] as an efficient altgpackets on Galois fields of order greater tl2awas analyzed.
native to automatic retransmission query (ARQ) protocnls For a LRFC performing the linear combinations oy, the
multicast/broadcast transmission systems. Consider éise cdecoding failure probability?, = 1 — P, is bounded by [9]
where a sender (or source) needs to deliver a file to a set 1
of N, users. Consider furthermore the case where users are ¢l < P.(d,q) < ——q° D
affected by packet losses. In this scenario, the usage of an ¢—1
ARQ protocol can result in large inefficiencies, since usevghere both bounds are tight for increasipgFurthermore, in
may loose different packets, and hence a large number[8] it was also shown that non-binary Raptor codes can in fact
retransmissions would crowd the downlink channel. Amortgghtly approach the bounds (1) down to moderate error rates
the efficient (coded) alternatives to ARQ protocols [2]+[5] The result is remarkable, considering that for a Raptor
we shall focus on fountain codes only. When a fountain codede the encoding and decoding costs (defined as the number
is used, the source file is split in a setkofource packets. The of arithmetic operations divided by the number of source
sender, or fountain encoder, computes linear combinatbnssymbols k) areO(log(1/a)) andO(k log(1/a)) respectively,
the k& source packets and broadcasts them through the cdmingk(1+«) the number of output symbols needed to recover
munication medium. After receiving fountain coded packets, the source symbols with a high probability. For a LRFC the
receivers can try to recover the source packets. If theytdail encoding cost ig0(k) and the decoding cost i©(k?), and
recover the source packets they will try again to decode whttus it does not scale favorably with the input block size.



However, if the block size is kept small, the decoding cost= (c¢’|c”). The overall generator matrix has the form
is still affordable.

The motivation of this paper is the analysis of a further
improvement of the approach proposed in [9] for designing ¢ —
fountain codes with good performance for short block sizes. o .o : : Col
As in [9], in order to achieve the objective non-binary faaint Ik1 96,2 - Gk || Gkntl Ghnt2 - - Gkl
codes are considered. Moreover, maximum distance separabl
(MDS) codes are introduced in parallel concatenation with t
fountain encoder to enhance the performance of the scheifgere G” is the generator matrix of the LRFC. (Note that,
By doing that, the first: output symbols of the encoder are?€ing the LRFC rate-less, the numbiesf columns ofG can
the n output symbols of the MDS codé. in principle grow indefinitely.) The encoder can be seen kenc
In this paper, we illustrate how the performance of LRFC&s & parallel concatenation of the linear block c6dand of
in terms of probability of decoding failure can be furthef LRFC (Fig. 1).
improved by such a concatenation. An analytical expression
for the decoding failure probability vs. overhead will be
derived under the assumption of maximum-likelihood (ML) Block Code
decoding. We show how, when the packet loss rates are (n, k)
moderate-low, the probability of failure can be reduced by, v,...u;
several orders of magnitude, approaching the performance
of idealized fountain codes. The simulated performance of |
schemes based on Reed Solomon (RS) codes are compared

911 91,2 -~ 91n || 91n+1 G1n4+2 -+ g1
92,1 92,2 --- 92n || 92,n+1 92n+2 .- g2,
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with the proposed expressions, confirming the accuracyeof th Cntl, Cnt 2.

proposed approach. The analysis is developed for the case of

LRFCs. We conjecture that similar gains shall be expectsal al LRFC —O

in the case where (non-binary) LT codes are employed in the

concatenation. Fig. 1. Fountain coding scheme seen as a parallel concateratta (n, k)

The paper is organized as follows. In Section Il the prdnear block code and a linear random fountain code.
posed concatenated scheme is introduced. In Section Il the
performance analysis is provided, while numerical resaies
presented in Section IV. Conclusions follow in Section V. I1l. PERFORMANCEANALYSIS

Based on the bounds derived in [9], tight upper and lower
bounds for the decoding failure probability of the fountain
coding scheme can be derived in case of uncorrelated egasure

Without loosing in generality, we define the source blockhe decoding failure probabilityRr = Pr{F}, where F
u = (ug,uz,...,u;) as a sequence of symbols belonging to denotes the decoding failure event) is defined as the priityabi
Galois field of ordey, i.e.u € IF’; In the proposed approach,that the source block cannot be recovered out of a set of
the source block is first encoded vigm k) systematic linear received symbols. In this paper we will focus on the case
block codeC’ over F, with generator matrixG’ = (I|P’), where the linear block code used in concatenation with the
wherel is the k& x k identity matrix andP’ is ak x (n — LRFC is maximum distance separable (MDS). When binary
k) matrix with elements irF,. The encoded block is hencecodes will be used, we will assumé + 1, k) single-parity-
given byc’ = uG’ = (¢}, ch,...,cl,), wherecj = ui,chb = check (SPC) codeSsWhen operating on higher order Galois

rn

II. CONCATENATION OF BLOCK CODES WITH RANDOM
LINEAR FOUNTAIN CODES

Ua,...,c, = ug and the remaining — k symbols ofc’ are fields, we will consider (shortened) RS codes.

the redundancy symbols given by, ,, ¢ 5,...,c,) = uP’. The encoded sequence is given hy = uG =
Additional redundancy symbols can be obtained by computifg, c2, ..., ¢), where the firstn symbols (¢1,ca, ..., cp)
random linear combinations of thHesource symbols as represent a codeword af’, and the remaining — n are

A produced by the LRFC. At the receiver side, a subsetnof

= = o, i=n+1,...1 symbols is received. We denote By= {j1,52,...,Jm} the
e ;gj’ ! set of the indexes on the symbolswthat have been received.

The received vectoy is hence given by

where the coefficients; ; are picked fromif', with a uniform

probability (1/¢). The encoded sequence is hence given by Y = (Y1,92, - Ym) = (€1, Cjas - - -5 i)

INote that for Raptor codes the output of the precode is furtimeoded alnd it can be related to t_he source blaclasy = uG. He.re’
by a LT Code. Hence the first output symbols of the fountain encoder areG denotes thé: x m matrix made by the columns @ with
not the output of the precode.

2We will assume a MDS linear block code constructed on the siette 3Repetition codes are not considered here, since they weattltb a trivial
() of the fountain code. fountain scheme where the source block is givenltgymbol only.



indexes inJ, i.e. Hence, with a probabilityP*(¢) = 1 — Q*(¢) the receiver
would need to collect symbols encoded by the LRFC encoder

) :Z;ﬁ z;jz i;jm to recover the source block. Assuming that the user collects
G = ; ! ’_m m = k + § symbols, out of which onlyn’ < k have been
: : Co produced by the linear block encoder, the conditional dexpd
9k,j1 Gkja -+ Gkjm failure probability can be expressed as
'_rhe recovery ofu _reduces to solving the systemaf = £+ 6 P F|m!,m’ < k,8) = Pr(rankB) < k — m/). @)
linear equations irk unknowns
GTul — 7T Note thatB is am” x (k—m/) = (k+ 6 —m') x (k —m/)
u =y, ©)) - R R
random matrix, i.e. a random matrix withequations in excess
e.g., via Gaussian elimination. The solution is possiblend w.r.t. the number of unknowns. We can thus replace (1) in (7),
only if rank(G) = k. getting the bounds
Assuming C’ being MDS, the system is solvable with 1
probability 1 if, among them received symbols, at leagt g 0L <PHF|m!',m' < k,6)——q°. (8)

have indexes i{1,2,...,n}, i.e. if at leastn’ > k symbols ¢—1

produced by the linear block encoder have been received. We remark that, thanks to the independency of the bounds in
Let's consider the less trivial case wher€ < k& among (1) from the size of the random matrix (i.e., the bounds depen

the m received symbols have indexes {1,2,...,n}. We only on the overhead), we can remove the conditioningdn

can partitionG? as from (8), leaving
91,51 92,51 coo o 9k,gy q*‘;*l < Pr(F|T)’L/ < k’(‘)') < 1 q*5'
9152 9252 - Gkijs q—1
: : . : The final failure probability can be written as
&r o (G Z | s i i | Pr(3.c) = PHFlm' < koPiim’ <k}t o
G IVdmrgr 920mrg1 0 kg ga . +Pr(F|m’ > k,0)Pr(m’ > k),
IVimiye 920mry2 =+ Iksdms g where P(F|m’ > k,6) = 0 and Ptm’ < k) = P*(e). It
: o : results that
gLJnL 927J7n gk7.]771/ P*(e)qféfl S PF((S, 6) < P*(€) 1q75 (10)
q—

The MDS property o2’ assures that ra&’) = m/, i.e. the
first m’ rows of GT are linearly independent. Note that thé-rom an inspection of (1) and (10), one can note how
m"” x k matrix G"T (with m” = m —m’) is a random matrix the bounds on the failure probability of the concatenated
whose entries are picked with uniform probability |fy. It scheme are scaled down by a facf@f(c), where P*(¢) =
follows that the system defined by (4) can be put (via columﬁjfz’o1 (1) (1 —€)’e"~" is a monotonically increasing function
permutations ovelG” and row permutations/combinationsf e. It follows that, when the channel conditions aved

over G'T) in the form (i.e., largee) P*(e) — 1, and the bounds in (10) tend to
- IlA coincide with the bounds in (1). When the channel conditions
G = (0 B) ; (5) aregood (i.e., smalle), most of the timem’ > k symbols

_ ) _ . produced by the linear block encoder are received, leaaing t
whereT is them’ x m' identity matrix,0 IS am’ x m,/ all-0 3 decoding success (recall the assumption of MDS code). In
matrix, andA, B have respective size®’ x (k —m') and  these conditionsP*(e) < 1, and according to the bounds in
m" x (k—m’). Note that the lower part &&" given by(0 B) (10 the failure probability may scale down even of several
is obtained by adding to each row&f'”" a linear combination orqers of magnitude.
of rows fromG'”, in a way that then’ leftmost columns of  Fig 2 shows the probability of decoding failure as a furrctio
G are zeroed-out. It follows that the statistical propertis of the number of overhead symbols for a concatenated code
G are inherited by then” x (k—m’) sub-matrixB, whose piit using a(11, 10) SPC code iffs. It can be observed how,
entries are hence picked with uniform probabilitylip. The o |ower erasure probabilities, the performance gain imee
system is solvable if and only B is full rank, i.e. if and only ot propability of decoding failure increases. Foe 0.01 the
if rank(B) =k —m'. decoding failure probability is more thahorders of magni-

Suppose now that the encoded symbol@re sent 10 a y,qe |ower. Fig. 3 shows the probability of decoding failure
receiver over an erasure channel which erasure probailly s the number of overhead symbols for the concatenation of
The probability tha_t at least symbols out of the symbo_ls a(15,10) RS and a LRFC oveF, . The performance of the
produced by the linear block code encoder are receiveddisncatenated code is compared with that of the LRFC built

given by n on the same field for different erasure probabilities. Irs thi
Q*(e) = Z (n) (1—e)len . (6) case the decrease in terms of probability of decoding filur
i—r \! is bigger than in for the previously presented codé&n For



a channel with an erasure probability= 0.05, the probability N = 10* users and a channel with an erasure probability
of decoding failure of the concatenated schemé @ders of ¢ = 0.01. The performance of LRFC codes ovEr and
magnitude lower than for the LRFC. F.¢ is shown as well as that of two concatenated schemes:
The analysis provided in this section is also valid if tha concatenation of 11,10) SPC code with a LRFC code in
LRFC is substituted by a LT or Raptor code. In order t&2, and a concatenation of @5,10) RS code and a LRFC
calculate the performance of such a concatenated code snedmle overlF. It can be seen how the concatenated scheme
to substitute in (9) the term PF|m/ < k, 0) by the probability in Fo outperforms the LRFC constructed on the same Galois
of decoding failure of the LT or Raptor code. Again the faglurfield. For example, foPr = 10~ the concatenated scheme in
probability of the concatenated scheme is scaled down byFa needs onlyA = 20 overhead symbols whereas the LRFC
factor P*(e), where P*(e) < 1. needs27 (Fig. 6). In the case of the fountain codes operating
in F1¢, the concatenated code shows a performance very close

to that of anidealized fountain code.
Fig. 4 shows the results of simulations together with the

bounds calculated using (10). In this cas€la, 10) RS was 10°
concatenated with a LRFC iff;5, and a channel with an N
erasure probabilite = 0.1 was used. It can be seen how  w* - ~_
the simulation results match the analytical results down to RN
a probability of decoding failure of0~7. Fig. 5 shows the w0l ~_
simulation results for a concatenated code usinglh 10) N~
parity check code inF,, and a channel with an erasure @m\\coo‘sli
probability e = 0.1. It can be seen how the simulation results * Tl T BN
match the analytical results again. HoweverFinthe bounds . asenat "
. . . . . 10 ¢
are less tight than in higher order Galois fields.
An assessment the performance of the concatenated schen . - \\
in a system with a high number of users has been performed * ¢
assuming a system in which a transmitter sends a source bloc
to a set of N receivers. We considered the erasure channels ©% 1 5 3 s 7 8 9 10
from the transmitter to the receivers to be independent, arit
identical erasure probability. Furthermore, we assumed thatig. 2. Py (s, €) vs. overhead for a concatenated code built usiriga10)
the receivers send an acknowledgement to the transmittm wi§PC code oveF; for different values ot. Upper bounds are represented by
they have successfully decoded the block. Ideal (errGH}freSO“d lines and lower bounds are represented by dashed lines
feedback channels have been considered. When all receivers
have sent an acknowledgement, the transmitter stops exgodi
redundant symbols for the source block. 10
If k+A (whereA denotes the transmitter overhead) symbols
have been transmitted, the probability that a specific vecei 107 \ 1

gathers exactlyn symbols is:
&LRFC ]
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IV. NUMERICAL RESULTS
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Pr{k+A,m} = <k - >(1 —e)retaTm (11)
m

P.®
5

The probability of decoding failure at the receiver giveatth
the transmitter has seit+ A symbols is hence

k—1

P.=> Pri{k+Am}+ \6

£=0.05

m=0 :.g;.:. ation \ \
k+A

+ Z Pr{k+ A, m}Pp{d =m — k,€}. 0% 1 2 3 4 6 7 8 9 10

5
3

m=k

The probability that at least one user has not decoded sticcé®. 3. Pr(9,¢) vs. overhead for a concatenated code built usitigfa 10)
fully is thus RS overF¢ for different values ok. Upper bounds are represented by solid
y lines and lower bounds are represented by dashed lines.

Pe(N,Ae)=1—(1-P.)N (12)

Using the bounds in (10 (N, A, €) can also be bounded. In

the following we provide an example to asses the performance
of the new scheme in comparison with LRFC codes and alsoA novel fountain coding scheme has been introduced. The
with an idealized fountain code. We assume a system witicheme consists of a parallel concatenation of a MDS block

V. CONCLUSIONS
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Fig. 4. Pr(6,¢) vs. overhead for a the concatenation ofl&, 10) RS and  Fig.
LRFC overFi6 ande = 0.1. Upper bounds are represented by solid linesise

and lower bounds are represented by dashed lines. The poarteed with o,
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Fig. 5. Pr(,¢) vs. overhead symbols for a the concatenation of K]

(11,10)SPC code and a LRFC ovéfy and e = 0.1. Upper bounds are
represented by solid lines and lower bounds are represégteshed lines. [8]
The points marked witho” denote actual simulations. ]

code with a LRFC code, both constructed over the same
field, F,. The performance of the concatenated fountain coding
scheme has been analyzed through derivation of tight bounds
on the probability of decoding failure as a function of the

C GF(2)

16) C-LRFC GF(2)

5| RS-LRFC GF(16;

Idealized FC

10 25 30

15
A, overhead symbols at Tx side

6. Pg vs.overhead at the transmitter in a system with= 10000

rs and = 0.01 . Results are shown for different fountain codes: LRFC in
LRFC inFy4, concatenation of a (11,10) SPC code with a LRFC code in

and a concatenation of @5, 10) RS code and a LRFC code 0VEfs.
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