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Abstract—Multicell coordinated beamforming (MCBF) has
been recognized as a promising approach to enhancing the system
throughput and spectrum efficiency of wireless cellular systems.
In contrast to the conventional single-cell beamforming (SBF)
design, MCBF jointly optimizes the beamforming vectors of
cooperative base stations (BSs) (via a central processing unit
(CPU)) in order to mitigate the intercell interference. While most
of the existing designs assume that the CPU has the perfect
knowledge of the channel state information (CSI) of mobile
stations (MSs), this paper takes into account the inevitable CSI
errors at the CPU, and study the robust MCBF design problem.
Specifically, we consider the worst-case robust design formula-
tion that minimizes the weighted sum transmission power of
BSs subject to worst-case signal-to-interference-plus-noise ratio
(SINR) constraints on MSs. The associated optimization problem
is challenging because it involves infinitely many nonconvex SINR
constraints. In this paper, we show that the worst-case SINR
constraints can be reformulated as linear matrix inequalities,
and the approximation method known as semidefinite relation
can be used to efficiently handle the worst-case robust MCBF
problem. Simulation results show that the proposed robust MCBF
design can provide guaranteed SINR performance for the MSs
and outperforms the robust SBF design.

I. I NTRODUCTION

Recently, multicell cooperative signal processing has drawn
considerable attention since it, when compared with the
conventional single-cell processing, can provide significant
system throughput gains by exploiting the degrees of freedom
provided by multiple multi-antenna base stations (BSs). In
contrast to the single-cell transmission design which treats the
interference from neighboring cells as noise, in the multicell
cooperative system, BSs collaborate with each other to jointly
design their transmissions in order to mitigate the intercell
interference [1]–[5]. This paper considers the multicell coor-
dinated beamforming (MCBF) design [2], [3] where a set of
multiple-antenna BSs jointly design their beamforming vectors
aiming at providing desired quality-of-service (QoS) for the
mobile stations (MSs). To this end, it is assumed that the BSs
are connected with a central processing unit (CPU) (which
can be a dedicated control center or a preselected BS), which
knows all the channel state information (CSI) of MSs. With the
perfect CSI, it has been shown that the MCBF design problem
can be efficiently solved via convex optimization theory [2].

In practical systems, however, the CSI available to the CPU
may not be perfect. In particular, the CSI may be subject

to channel estimation errors due to finite-length training,and
quantization errors owing to limited feedback bandwidth (of
the channels from the MSs to BSs). The imperfect CSI may
result in performance outage and the QoS requirements of
MSs can no longer be guaranteed. In view of this, transmit
beamforming designs that take the CSI errors into considera-
tion, also known as robust transmit beamforming, are of great
importance to maintain the QoS of MSs.

In this paper, we assume elliptically bounded CSI errors, and
study the robust MCBF design problem. Specifically, we con-
sider the worst-case robust design formulation that minimizes
the weighted sum transmission powers of the BSs subject
to worst-case signal-to-interference-plus-noise ratio (SINR)
constraints on the MSs. This robust formulation guarantees
the MSs to achieve the desired SINR performance for all
possible CSI errors. The worst-case robust design formulation
has been studied in the context of single-cell robust transmit
beamforming; see [6]–[10]. However, the robust formulation
for MCBF is more challenging since the associated SINR
constraints involve CSI errors not only in the desired signal
and intra-cell interference terms, but also in the intercell
interference. In this paper, we show that the worst-case robust
MCBF problem can be efficiently handled by semidefinite
relaxation (SDR), a convex optimization based approximation
method [11]. Specifically, it can be shown that the worst-
case SINR constraints can be recast as a finite number of
linear matrix inequalities (LMIs), and SDR can be applied
to approximate the original nonconvex problem by a convex
semidefinite program (SDP), which, thereby, can be efficiently
solved [12]. The presented simulation results show that the
proposed worst-case robust MCBF design can provide guar-
anteed SINR performance for the MSs, and is more power
efficient and more feasible than the conventional single-cell
robust beamforming design.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a multicell wireless system withNc cells. Each
cell consists of a BS, which is equipped withNt antennas, and
K single-antenna MSs; see Fig. 1 for an example ofNc =
3 andK = 4. TheNc BSs will collaborate to enhance the
strength of the signal of interest for each MS while mitigating
the intercell interference. Letsik(t) be the information signal
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for MS k in the ith cell with E{|sik(t)|
2}=1; and letwik ∈

CNt be the associated beamforming vector,{wik} be the set
of all beamforming vectors, i.e.,{wik} , {w11, . . . ,wNcK}.
The transmit signal by theith BS is given by

∑K

k=1
wiksik(t)

for i = 1, . . . , Nc. Denote byhjik ∈ CNt the channel vector
from the jth BS to thekth MS in theith cell and denote by
{hjik}

Nc

j=1
the set of channel vectors from all BSs to thekth

MS in cell i. The received signal of MSk in the ith cell can
be expressed as

yik(t) =

Nc
∑

j=1

h
H
jik

(

K
∑

ℓ=1

wjℓsjℓ(t)

)

+ zik(t) (1a)

=h
H
iikwiksik(t) +

K
∑

ℓ 6=k

h
H
iikwiℓsiℓ(t)

+

Nc
∑

j 6=i

h
H
jik

K
∑

ℓ=1

wjℓsjℓ(t) + zik(t), (1b)

where the first term in (1b) is the signal of interest, the second
and third terms are the intra-cell and intercell interference,
respectively, andzik(t) is the additive noise with zero mean
and varianceσ2

ik > 0. From (1), the SINR of thekth MS in
the ith cell can be shown to be

SINRik

(

{wjℓ}, {hjik}
Nc

j=1

)

=

∣

∣h
H
iikwik

∣

∣

2

K
∑

ℓ 6=k

∣

∣hH
iikwiℓ

∣

∣

2

+
Nc
∑

j 6=i

K
∑

ℓ=1

∣

∣

∣h
H
jikwjℓ

∣

∣

∣

2

+ σ2

ik

. (2)

Using the SINR in (2) as the MSs’ QoS measure and under
the assumption that the CPU has the perfect knowledge of all
the channels{hjik}, the following design formulation

min
{wik}

Nc
∑

i=1

αi

(

K
∑

k=1

‖wik‖
2

)

(3a)

s.t. SINRik

(

{wjℓ}, {hjik}
Nc

j=1

)

≥γik,

k = 1, . . . ,K, i = 1, . . . , Nc, (3b)

has been considered in [2], whereαi > 0 is the power weight
for BS i, and γik > 0 is the target SINR for MSk in cell
i. One can see from (3) that theNc BSs jointly design their
beamforming vectors such that the weighted sum power of BSs
is minimized while each of the MSs can achieve the desired
SINR specificationγik. It has been shown that problem (3)
can be reformulated as a convex second-order cone program
(SOCP) and can be efficiently solved via standard solvers, e.g.,
CVX [13].

In addition to problem (3), we also consider the con-
ventional single-cell beamforming (SBF) design that avoids
interfering neighboring cells by per-cell interference control
[4], i.e., BS i designs the beamforming vectors{wik}Kk=1

Fig. 1: An example of wireless cellular system with 3 BSs and
4 MSs in each cell.

independently by solving the following problem:

min
{wik}

K
k=1

K
∑

k=1

‖wik‖
2 (4)

s.t.

∣

∣h
H
iikwik

∣

∣

2

K
∑

ℓ 6=k

∣

∣hH
iikwiℓ

∣

∣

2

+
Nc
∑

j 6=i

ξjik + σ2

ik

≥γik, k = 1, . . . ,K,

K
∑

k=1

∣

∣h
H
ijℓwik

∣

∣

2

≤ ξijℓ, ℓ = 1, . . . ,K, j ∈ Nc\{i},

for i = 1, . . . , Nc, whereNc = {1, . . . , Nc}, and ξijℓ > 0
stands for the preset, maximum tolerable interference from
BS i to the ℓth user in cellj. As seen from (4), the SBF
design conservatively treats the intercell interference upper
boundξjik as fixed noise powers, in contrast to the MCBF
design in (3) where theNc BSs collaborate to dynamically
control the intercell interference. It has been shown that the
SBF design is less power efficient than the MCBF design in (3)
[2]; however the SBF design can inherently be implemented
at each BS in a decentralized fashion.

III. PROPOSEDROBUST COORDINATED BEAMFORMING

A. Robust MCBF

The above formulations in (3) and (4) assume that the CPU
knows the exact CSI{hjik}. In the case that the CPU has
CSI with errors, the standard formulations in (3) and (4)
can no longer guarantee the desired SINR requirements. To
resolve this problem, we consider the worst-case robust design
formulation [6], [7].

Specifically, we model the true channel vectorhjik as

hjik = h̄jik + ejik, (5)

for k = 1, . . . ,K, i, j ∈ Nc, whereejik ∈C
Nt represents the

channel error vector. Moreover, let us consider the elliptically
bounded CSI errors, that is, eachejik satisfies

e
H
jikCjikejik ≤ 1, (6)



whereCjik ≻ 0 (a positive definite matrix) determines the
size and the shape of the error ellipsoid. With (5) and (6), we
consider the following worst-case SINR constraint on MSk
in cell i:

SINRik

(

{wjℓ}, {h̄jik + ejik}
Nc

j=1

)

≥γik

∀ e
H
jikCjikejik ≤ 1, j = 1, . . . , Nc. (7)

Note from (7) that the SINR specificationγik is satisfied for all
possible CSI errors. Taking the worst-case SINR constraints
in (7) into consideration, we obtain the following design
formulation

min
{wik}

Nc
∑

i=1

αi

(

K
∑

k=1

‖wik‖
2

)

(8a)

s.t. SINRik

(

{wjℓ}, {h̄jik + ejik}
Nc

j=1

)

≥γik

∀ e
H
jikCjikejik ≤ 1, j = 1, . . . , Nc, (8b)

i = 1, . . . , Nc, k = 1, . . . ,K,

as a worst-case robust counterpart of problem (3). Solving the
optimization problem (8) is challenging due to the infinitely
many nonconvex SINR constraints in (8b). To handle this
problem, let us present a suboptimal method via SDR and
S-procedure [12] in the next subsection.

B. Solving (8) by SDR and S-Procedure

Let us express the objective function of problem (8) as
∑Nc

i=1
αi

∑K

k=1
Tr(wikw

H
ik), whereTr(·) denotes the trace of

a matrix, and express the worst-case SINR constraint of the
kth MS in theith cell [in (7)] as

(

h̄
H
iik + e

H
iik

)





1

γik
wikw

H
ik −

K
∑

ℓ 6=k

wiℓw
H
iℓ





(

h̄iik + eiik

)

≥
Nc
∑

j 6=i

(

h̄
H
jik + e

H
jik

)

(

K
∑

ℓ=1

wjℓw
H
jℓ

)

(

h̄jik + ejik

)

+ σ2

ik

∀ e
H
jikCjikejik ≤ 1, j = 1, . . . , Nc. (9)

The idea of SDR is to replace each rank-one matrixwikw
H
ik

by a general-rank positive semidefinite matrixWik, i.e.,
Wik � 0 [11]. By applying SDR to (8), we obtain the
following problem

min
{Wik�0}

Nc
∑

i=1

αi

(

K
∑

k=1

Tr(Wik)

)

(10a)

s.t.
(

h̄
H
iik + e

H
iik

)





1

γik
Wik−

K
∑

ℓ 6=k

Wiℓ





(

h̄iik + eiik

)

≥
Nc
∑

j 6=i

(

h̄
H
jik + e

H
jik

)

(

K
∑

ℓ=1

Wjℓ

)

(

h̄jik + ejik

)

+σ2

ik,

∀ e
H
jikCjikejik ≤ 1, j = 1, . . . , Nc, (10b)

i = 1, . . . , Nc, k = 1, . . . ,K.

While the SDR problem (10) is convex, it is still difficult
to handle owing to an infinite number of linear inequality
constraints. To resolve this, we observe that the left-handside
and right-hand side of the first inequality in (10b) involve
independent CSI errors. Hence, the constraint (10b) can be
equivalently decoupled into the followingNc constraints:

(

h̄
H
iik + e

H
iik

)





1

γik
Wik −

K
∑

ℓ 6=k

Wiℓ





(

h̄iik + eiik

)

≥
Nc
∑

j 6=i

tjik + σ2

ik ∀ e
H
iikCiikeiik ≤ 1, (11)

(

h̄
H
jik + e

H
jik

)

(

K
∑

ℓ=1

Wjℓ

)

(

h̄jik + ejik

)

≤ tjik

∀ e
H
jikCjikejik ≤ 1, j ∈ Nc\{i}, (12)

where{tjik}j 6=i are slack variables. Note that equation (11)
involves only the CSI erroreiik and each of the constraints
in (12) involves only one CSI errorejik. Furthermore, (11)
and (12) can be reformulated as finite LMIs, by applying the
following S-procedure:

Lemma 1 [12, S-procedure] Let A,C ∈ CNt×Nt be complex
Hermitian matrices, e ∈ CNt and c ∈ R. The following
condition

e
H
Ae+ b

H
e+ e

H
b+ c ≥ 0 ∀ e

H
Ce ≤ 1

holds true if and only if there exists a λ ≥ 0 such that

[

A+ λC b

b
H c− λ

]

� 0.

By applying Lemma 1, one can recast (11) as

Φik

(

{Wiℓ}
K
ℓ=1

, {tjik}j 6=i, λiik
)

,

[

I

h̄
H
iik

]





1

γik
Wik −

K
∑

ℓ 6=k

Wiℓ





[

I

h̄
H
iik

]H

+





λiikCiik 0

0 −
Nc
∑

j 6=i

tjik−σ2

ik−λiik



 � 0, (13)

whereI is theNt × Nt identity matrix, and recast (12), for
eachj ∈ Nc\{i}, as

Ψjik

(

{Wjℓ}
K
ℓ=1

, tjik, λjik
)

,

[

I

h̄
H
jik

]

(

−
K
∑

ℓ=1

Wjℓ

)

[

I

h̄
H
jik

]H

+

[

λjikCjik 0

0 tjik − λjik

]

� 0, (14)

whereλjik ≥ 0 for all i, j = 1, . . . , Nc, andk = 1, . . . ,K.



Replacing (10b) with (13) and (14) leads to the following
SDR problem

min
{Wik},{λjik},

{tjik ,j 6=i}

Nc
∑

i=1

αi

(

K
∑

k=1

Tr(Wik)

)

(15)

s.t. Φik

(

{Wiℓ}
K
ℓ=1

, {tjik}j 6=i, λiik
)

� 0,

Ψjik

(

{Wjℓ}
K
ℓ=1

, tjik, λjik
)

� 0, j ∈ Nc\{i},

tjik ≥ 0, j ∈ Nc\{i},

Wik � 0, λjik ≥ 0, j ∈ Nc,

i = 1, . . . , Nc, k = 1, . . . ,K.

Problem (15) is a convex semidefinite program (SDP); hence
it can be efficiently solved [13].

Similarly, one can also consider a worst-case robust design
for the SBF design in (4), which is given by

min
{wik}

K
k=1

K
∑

k=1

‖wik‖
2 (16)

s.t.

∣

∣(h̄iik + eiik)
H
wik

∣

∣

2

K
∑

ℓ 6=k

∣

∣(h̄iik + eiik)Hwiℓ

∣

∣

2

+
Nc
∑

j 6=i

ξjik + σ2

ik

≥γik

∀ e
H
iikCiikeiik ≤ 1, k = 1, . . . ,K,

K
∑

k=1

∣

∣(h̄ijℓ + eijℓ)
H
wik

∣

∣

2

≤ ξijℓ ∀ e
H
ijℓCijℓeijℓ ≤ 1,

ℓ = 1, . . . ,K, j ∈ Nc\{i},

for i = 1, . . . , Nc. By using similar techniques of S-procedure
and SDR, one can obtain an SDR problem for (16) which can
also be efficiently handled.

Since the SDR problem (15) is obtained by rank relaxation
of problem (3), the obtained optimal{Wik} of (15) may not
be of rank one. If the obtained optimal{Wik} happens to be
of rank one, i.e.,Wik = wikw

H
ik for all i, k, then{wik} is an

optimal solution of the original problem (8); otherwise addi-
tional solution approximation procedure is needed; see [11] for
the details. Interestingly, it is observed in our simulations that
problem (15) always yields rank-one optimal{Wik}, which
implies that an optimal solution of problem (8) can always
be obtained for the problem instances in our simulations. The
same rank-one optimality results are also observed for the SDR
problem of problem (16).

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, some simulation results are presented to
demonstrate the performance of the proposed robust MCBF
design. We consider a multicell system with three cells (Nc =
3) and two MSs (K = 2) in each cell. Assume that each BS
has five antennas (Nt = 5) and the inter-BS distance is 500
meters. In the simulations, we incorporate both large-scale and
small-scale channel fadings. Specifically, we define the true
channel{hjik} with parameters taken from the 3GPP Long

Term Evolution (LTE) channel model [14], as follows:

hjik = 10
34.6+35log10(djik)

−20 · ψjik · ϕjik · (h̄jik + ejik), (17)

where the exponential term is due to the path loss depending
on the distance between thejth BS and thekth MS in cell i
(denoted bydjik in meters),ψjik reflects the shadowing effect,
ϕjik represents the transmit-receive antenna gain, and the term
inside the parenthesis denotes the small-scale fading which is
composed of the channel estimateh̄jik and the CSI errorejik.
As seen from (17), it is assumed that the CPU can accurately
track the large-scale fading with CSI errors only in the small-
scale fading. In the simulations, the locations of the two MSs
in each cell are randomly determined (with distance to the
associated BS at least 35 meters, i.e.,diik ≥ 35 for all i, k),
and thereby the distances to neighboring BSs, i.e.,{djik}j 6=i,
can be determined. The shadowing coefficientψjik follows the
log-normal distribution with zero mean and standard deviation
equal to 8. The elements of the channel estimate{h̄jik}
are independent and identically distributed complex Gaussian
random variables with zero mean and unit variance. For
simplicity, we assume the spherically bounded CSI errors, i.e.,
Cjik = 1/ǫ2I, with the uncertainty radiusǫ set to 0.1. We also
assume that all the MSs have the same noise power equal to
σ2

jik , σ2 = −106.27 dBm [2], the same target SINRs, i.e.,
γjik , γ, and the same antenna gains, i.e.,ϕjik = 5 dBi for
all j, i andk. We consider the total sum power minimization
problem for formulations in (3), (4), (8) and (16) by setting
αi = 1 for all i = 1, . . . , Nc. For problems (4) and (16), we
set all the intercell interference constraints{ξjik}j 6=i equal to
the noise powerσ2 [4]. The robust formulations in (8) and
(16) are handled by the proposed SDR method described in
Sec. III-B, andCVX [13] is used to solve the associated SDPs.

In the first example, we investigate the minimal achievable
SINRs of the four formulations, namely, the non-robust SBF
design in (4), the non-robust MCBF design in (3) and their
robust counterparts in (16) and (8), in the presence of CSI
errors. We generated5, 000 sets of channel estimates{h̄jik},
and, for each set of{h̄jik}, 100 sets of CSI errors{ejik}
satisfying‖ejik‖2 ≤ ǫ2 were uniformly generated to evaluate
the achievable SINRs [in (2)] by the four formulations. Figure
2 shows the simulation results of the minimal achievable SINR
among all the MSs, by averaging over the channel estimates
for which the four formulations under test are all feasible.It
can be observed from this figure that both the robust designs
in (16) and (8) can guarantee the minimal SINR of MSs no
less than the target SINRγ; whereas the non-robust designs
can have SINR far belowγ due to the CSI errors. In particular,
one can see from Fig. 2 that, forγ = 9 dB, the minimal SINR
achieved by non-robust MCBF is more than 10 dB lower than
that achieved by robust MCBF.

To show the power efficiency of MCBF, we present in Fig.
3 the corresponding average transmission powers of the four
methods under test. As a price for worst-case performance
guarantee, one can observe from this figure that the robust
designs in (16) and (8) require more transmission powers
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than their non-robust counterparts in (4) and (3), respectively.
However, the robust MCBF design (+) has an average sum
power which is around4 dBm less than that of the robust
SBF design (�). Comparing Fig. 3 with Fig. 2, one can see
that the robust MCBF is more power efficient than the robust
SBF in achieving the same SINR performance. Finally, we
show the feasibility rates of the four formulations under test
in Fig. 4. As seen, the robust designs have lower feasibility
rates compared to their non-robust counterparts; whereas,the
proposed robust MCBF design (+) exhibits a significantly
higher feasibility rate than the robust SBF design (�) since
the former design makes use of the full degrees of freedom
of the multicell system in intercell interference suppression.

ACKNOWLEDGMENTS

This work is supported partly by National Science Council
(NSC), R.O.C., under grants NSC 98-2219-E-007-005 and

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

 γ (dB)

F
e
a
s
ib

ili
ty

 R
a
te

 (
%

)

 

 

Non−robust MCBF in (3)

Robust MCBF in (8)

Non−robust SBF in (4)

Robust SBF in (16)

Fig. 4: Feasibility rate (%) versus target SINRγ.

NSC 99-2221-E-007-052-MY3. The first author Chao Shen
is supported by the Nufront Fellowship.

REFERENCES

[1] L. Venturino, N. Prasad, and X. Wang, “Coordinated linear beamform-
ing in downlink multi-cell wireless networks,”IEEE Trans. Wireless
Commun., vol. 9, no. 4, pp. 1451–1461, Apr. 2010.

[2] H. Dahrouj and W. Yu, “Coordinated beamforming for the multicell
multi-antenna wireless system,”IEEE Trans. Wireless Commun., vol. 9,
no. 5, pp. 1748–1759, May 2010.

[3] K.-H. Kim, J.-H. Lee, C.-H. Lee, N.-R. Jeon, and S.-C. Kim, “Coordi-
nated beamforming with limited BS cooperation for multicell multiuser
MIMO broadcast channel,” inProc. IEEE VTC-Spring, Barcelona,
Spain, Apr. 26-29, 2009, pp. 1–5.

[4] H. Huh, H. C. Papadopoulos, and G. Caire, “Multiuser MISOtransmitter
optimization for intercell interference mitigation,”IEEE Trans. Signal
Process., vol. 58, no. 8, pp. 4272 –4285, Aug. 2010.

[5] R. Zhang, “Cooperative multi-cell block diagonalization with per-base-
station power constraints,” inProc. IEEE WCNC, Sydney, NSW, Apr.
18-21, 2010, pp. 1–6.

[6] M. Shenouda and T. Davidson, “Convex conic formulationsof robust
downlink precoder designs with quality of service constraints,” IEEE J.
Sel. Topics Signal Process., vol. 1, no. 4, pp. 714–724, Dec. 2007.

[7] ——, “On the design of linear transceivers for multiuser systems with
channel uncertainty,”IEEE J. Select. Areas Commun., vol. 26, no. 6, pp.
1015–1024, Aug. 2008.

[8] ——, “Probabilistically-constrained approaches to thedesign of the
multiple antenna downlink,” inProc. of IEEE Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, CA, USA, Oct. 26-29,
2008, pp. 1120–1124.

[9] N. Vucic, H. Boche, and S. Shi, “Robust transceiver optimization in
downlink multiuser MIMO systems,”IEEE Trans. Signal Process.,
vol. 57, no. 9, pp. 3576 –3587, Sep. 2009.

[10] K.-Y. Wang, T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “A semidefinite
relaxation based conservative approach to robust transmitbeamforming
with probabilistic SINR constraints,” inProc. EUSIPCO, Aalborg,
Denmark, Aug. 23-27, 2010, pp. 407–411.

[11] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite
relaxation of quadratic optimization problems,”IEEE Signal Process.
Mag., pp. 20–34, May 2010.

[12] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge, UK:
Cambridge University Press, 2004.

[13] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 1.21,” http://cvxr.com/cvx, July 2010.

[14] “Spatial channel model for multiple input multiple output (MIMO)
simulations,” 3GPP TR 25.996, V9.0.0, http://www.3gpp.org/ftp/Specs/
html-info/25996.htm, Dec. 2009.


