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Abstract— We study optimal transmission strategies in inter- The MDP is solved through a linear fractional program,
fering wireless networks, under Quality of Service constrants. A where the optimization variables are the steady-stategibb
buffered, dynamic network with multiple sources is consideed, ity of state-action pairs. Optimizing the ratio of time aaged

and sources use a retransmission strategy in order to imprav t functi ield timal ret . tratedie€act
packet delivery probability. The optimization problem is for- cost functions yields optimal retransmission stratedre$act,

mulated as a Markov Decision Process, where constraints and the formalization as a linear fractional program enablesaay
objective functions are ratios of time-averaged cost funddns. The incorporation in the optimization problem of individualghat
optimal strategy is found as the solution of a Linear Fractimal performance and relevant tradeoffsg(, energy per unit of
Program, where the optimization variables are the steadyiate throughput, average delay over failure probability), whare

probability of state-action pairs. Numerical results illustrate the btained tio of ti f t functi defined
dependence of optimal transmission/interference stratégs on the obtainéd as ratio of ime-averages of cost functions define

constraints imposed on the network. on the state-action space. To the best of our knowledge, this
is the first formalization of an MDP problem incorporating
|. INTRODUCTION these objective/constraints. Interestingly, the progdsame-

Retransmission-based error control techniques have baerk finds connections with optimization frameworks used to
widely employed to improve reliability to communicationsninimize the cost per unit of time in controlled semi-Markov
against the impairments of the wireless channel [1]-[3]. Iprocesses [9], [10].
time-varying channels, the transmission of multiple cepp¢ ~ The observation of the optimal transmission/interference
a packet can provide diversity and improve the Quality sfirategies enables the understanding of objective/aintsr
Service (QoS) of the link. Implementations of retransnoissi related behaviors, which may serve as guidelines for ralcti
based error control technigues range from pure Automatic Rgotocols. Numerical results are provided for a networkhwit
transmission reQuest (ARQ), where packets are sent uncotied sources with the goal of minimizing the aggregate averag
over the channel, to hybrid ARQ, which introduces packenergy per unit of throughput with constraints on individua
encoding and memory of previous transmissions [4]-[6]. source’s throughput, individual packet total delay andufai

ARQ technigues have been mostly studied in single lirkrobability.
scenarios [1]-[6]. This paper studies ARQ in interference The remainder of the paper is organized as follows. In
networks, where multiple sources may access the same tirbection[ll the considered network is described. Sedfian IlI
frequency resource. Mutual interference couples the behawdefines the stochastic model of the network, the performance
and effectiveness of link level ARQ protocols. This, in turnmetrics and the optimization problem. In Sectibn] IV the
couples the stochastic evolution of the content of eachslinkinear fractional program used to solve the constrainediiefi
buffer. For example, two links simultaneously transmgtoan horizon MDP addressed in this paper is described in detail.
adversely effect the packet error probability of each limk a Section[V provides a renewal interpretation of some perfor-
thus through the ARQ protocol, the contents of each link®ance metrics. Sectign VI investigates the optimal stsateg

buffer. an instantiation of the network.

The coupling between interference and ARQ process has
been studied in cognitive networks, where the ARQ protocol Il. NETWORK DESCRIPTION
of the primary sources is fixed [7], [8]. In this paper, we A single-hop network ofS sources is considered. Each
instead center the discussion on the optimization of mleltipsources=1,...,S stores packets to be delivered to its in-
and mutually inter-dependent retransmission process#s vtended destination in a finite First-In First-Out buffer dfes
QoS constraints. B packets.

We consider a network of multiple sources with packet Sources adopt a memoryless ARQ retransmission-strategy
arrival, buffering and memoryless retransmission-basear e in order to improve packet delivery probability. Therefore
control. The network is modeled as a collection of inteprior transmissions of the wanted packet are discarded at
dependent stochastic processes. A constrained infiniizemo the receiver. More refined retransmission protocols piagid
Markov Decision Process (MDP) is formulated in order taombination of packets referring to the same information
optimize the transmission/interference strategy of theas. content, such as type-ll hybrid ARQ, can be incorporated in
Performance metrics such as packet delivery probability, ahe model at the price of a larger state space of the stochasti
erage throughput, total packet delay and unit of energytspemodel.
per unit of throughput are the objective/constraint fumresi of We fix a maximum time interval for packet service. The
the optimization problem. transmission/interference strategy, then, defines paekeins-
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P(Yi=yr|Xr=2k, ..., Xo=20, Yic1=Yi—1, ..., Yo=yo0, U=, ..., Uy=u0) =P YVi=yr| X =2k, Upr=1r)=P(yr|xr, ur). (2)

mission within this interval. The service interval of a patk A. Sochastic Model of the Network
is defined as the time elapsed since it became the oldest in th
gueue and the time it is removed form the buffer. Time slott
operations are ass_umed,where the duration of the_trans_mls k= 0,1,2,..., take values in the finite state spaces
of a packet plus its associated ARQ feedback fits with t . :

! : ) C and ), respectively. We also define the control se-
duration of one time slot. The maximum service time, then, IS enceU—{Uy, Uy, Us, ...}, where the control variables;
fixed to F* slots, which corresponds to the maximum number of T EL L S k)

. . =0,1,2,..., take values in the finite action skt Process
transmissions of a packet. A packet is removed from the bu % .
. : . ) o models the correlated temporal evolution of the network
either if successfully delivered to the intended destoratr

. . iven the control sequen whereas proces¥ represents
has been in service faf' slots. 9 q @, P P

o s .a sequence of random outcomes of state-action pairs.

Packet arrival in the buffer of each individual source is The transition probabilities oX are denoted by
modeled through the variables, denoting the probability
that a new packet arrives in the buffer of sourcen a slot. Pzt |0, v us) = P(Xns1=2ps1| Xo=2s, Ve=ys, Us=uy),
This simple model is used to enable the obtaining of a clear 1)
relationship between the transmission/interferencéegyeand  \yherep(.) denotes the probability of an event. The probabil-
the queue/service time state of the network. More mvolver@/ that Y}, takes a certain valug does not depend on the past
packet arrival_processeeg., Markovian arrivals) can be easily history of X andY’, but only on the action variable and on
incorporated into the framework. the current state of process, (see Eq.[(R)). The probability

The sources’ transmission/interference strategy is the Sofhat X moves from stater; to 441 conditioned on action
tion of an offline optimization problem that maximizes a per;, g

formance metric subject to QoS constraints. In particulee,

optimization problem is formalized as a constrained ininit  P(zy|zg, up) = Z P(zps1|Tr, Y, wi) Py |k, uk).

horizon undiscounted MDP, where the optimal policy corstrol €Y

packet transmission and dropping at each individual source )
The next section describes, in detail, the stochastic mafdel The processX tracks the state of the sources in terms

the network, the selected performance metrics and the M. queue length and service time. In particular, the state

The formulation of the linear fractional program used toveol 0f X at time ¢ is decomposed intoS variables Xj(s),

the optimization problem is provided in Section] IV. s=1,..5, with Xj(s)eX(s)=00{1, ..., F}x{1,..., B} [}

Xi(s)=0 means that sources has an empty buffer,

whereas Xy (s)={bx(s), fx(s)}, with fi(s)=1,..,F and
[1l. STOCHASTIC MODEL AND PERFORMANCEMETRICS br(s)=1, ..., B, means that source hasby(s) packets in its

The network is modeled as collection of random process@4ffér and the packet currently under service has beenderve

and control sequences tracking individual sources’ statege 0F fk(s) slots. .
length and service time) and actions (packet transmission! € policy . controls sources’ access and packet dropping
and dropping from the buffer). Interference ties togeter t from the buffer. Assuming causal contrql, is a function
stochastic processes of the individual sources. In fae, tAf the past states of the processes and control variables,
success probability of a source’s transmission dependsen € U=4(Z0; -, Tk—1, Y0, -+, Yk—1, U0, ---, Uk—1). HOwever,

set of sources which transmit in the time slot. Thereforfr the optimization problem formalized in the following,
other sources’ activity determines the probability thanaket there exists an optimatandomized stationary policy [11].

is removed from the queue due to successful delivery p€ control variablelj, can be split into individual source
experiences continued service because of a failed trasigmis VariablesUy(s), s=1,..., 5, determining source’s transmis-
Moreover, in the case considered, the optimal policy is $°n and packet dropping in the time st In particular,
randomized stationary policy (see Sectiof 1V), in which th&x(s)=(Tk(s), Dx(s)), whereT},(s)=1 and Tj(s)=0 corre-
probability that an action is chosen is a function of the atter SPond to transmission and idleness in glptespectively, and
state of the network. Dy (s)=1 and Dy(s)=0 correspond to packet dropping and

In order to characterize the performance of the aggreg&@@'manence in the buffer of the packet currently being skrve
network and of the individual sources, a set of cost funetiohlote that if X (s)=0, i.e, sources has an empty buffer,
mapping the state-action space to a real cost is defined. T8N 7k(s) and Dy(s) are forced to zero. Moreover);(s)
performance metrics, are in turn defined as ratios of timis forced to one ifX; (s)=(bx(s), I), as the packet currently
averages of those cost functions. As explained later in tH{8der service is always dropped aftérslots.
section, this construction enables the formalization afi-in
vidual packet and individual source performance, as well %‘nsql(\eNe recall thatB is the size of the buffer and’ is the maximum service
relevant tradeoffs, required to accurately track the perémce  2pqyer control, and in general any transmission parametarbe included
of the retransmission and channel access strategy. in the model by extending the skt

Eonsider the homogeneous random proces3es =
0, X1, X2,...} andY = {Y¥p,Y1,Ys,...}, where X}, and



The random procesY tracks the success/failure of allwherexy(s) = (¢x(s),dk(s)). Similarly, the average normal-
the sources of the network. In particuladf, takes values in ized energy expense of soureés the time average of the cost
Y={0,1}°. Again, the variable/c) is decomposed into mul- function
tiple variablesy(s)e{0,1}. y(s)=0 andy(s)=1 corresponds zo(Tk, Yy ur) = ti(8). 9)
to failure and success of sourgs transmission, respectively.

The success probability of soureén statez given that action NOt€ that the aggregate normalized throughput and energy
u is chosen is denoted by, (z,u)=P(yx(s)=1|zx,uz). If EXPENSe can be obtained as sum of the individual source

T(s)=0, i.e., sources is idle in slotk, then p,(z, u)=0. throughput and energy expense. The ratigz; measures the
efficiency of source’ss transmission/interference strategy in
terms of unit of energy spent per unit of delivered traffic.
Individual packet performance metrics such as packet suc-
Much of prior work on optimization of transmissioncess probability, number of transmissions and total delay
scheduling focused on performance metrics such as throughn be obtained as ratios of time-averages of apposite cost
put [12]-[14]. Alternatively, packet delay can be constesl functions. In the first two metrics, the number of delivered
using Lyapunov functions [15]. In order to characterizpackets or overall transmissions needs to be normalized to
the performance of individual source and individual packefe number of effectively served packets, which is function
transmission, we propose the construction of specific ebjasf the policy. The average total deldye., the average time a
tive/constraints functions defined as ratios of time-ageseof packet spends in the buffer, is computed as the ratio between

B. Performance Metrics and Optimization Problem

cost functions. the average queue level and the average number of packet
In particular, we define the set of cost functions: X x arrivals.
Y xU =R, a=1,..., A, which assign to the tripl¢x, y, u) The fraction of slots in which sourcesuccessfully delivers

a finite costz,(z,y,u), for anyze X, yeY anducld. The a packet to the intended destinatiorgig where
time-average of the cost function is defined as
L if y(s) =1,

. (10)
0 otherwise.

n—-+o0o
k=1

) ) and p,(x,u)=1 if u : t(s)=0, i.e, sources is idle. The time
a=1,...,A, whereE[] is the expectation operator. averagez; of the cost function

The objective and constraint functions are defined as ratios

of time-averages of cost functions. e g k) = {(1) lfthfk(s-) =1, (11)
R(U)=%,,U)/z,U) (5) orherwIse.
C,(U) =8, %n(q)(U)/Ead(q)(U)Jr/\qa (6) measures the fraction of time in which sourgestarts the

) . service of a new packet. The rafig/z, corresponds to the
respectively, where,, and 3, are constants iit, andr., 4,  ayerage number of packets successfully delivered by source

an(q) @ndaq(q) are indexes inl, ..., A. o normalized to the number of served packéss, the success
The optimization problem is the determination of the S&robability of sources’s packets. In fact

quenceU that minimizes the objective functioR(U) over

all the control sequences > subject toM, constraints on Zz _ limn 400 supn Y p_y E[z3(X, Vi, Uy)] (12)
the functionsz,(U). Formally, Zs limpsqoesupnd ey Blza(Xe, Vi, Ur)]
U =arg inf R(U) (7) Note that the cost functions, andz5 are indicator functions
Ueu of subsets of the state-action space of the network. In this
s.t. Cg(U) < g, for q=1,2,..., M.. case, the associated time-averages correspond to a gditybabi
The above optimization problem represents a constrain@§asure. In particular, the time average of a cost function
infinite-horizon Markov Decision Process (MDP). sampling the occurrence of a subset of the state-actiorespac

AssumingX is unichain, i.e, the transition matrix for any IS the steady-state probability of the subset. As discussed
stationary deterministic policy has a single recurrenssiplus detail in SectiorLV, in this case, the ratio of time-averages
a (perhaps empty) set of transient states [16], then thésesex@SSUMes a particular meaning cc_)nnected to renewal theory.
an optimal stationary randomized policy solving the abovEN€ average number of transmissions of a packet of source
optimization problem [11]. Moreover, the optimal policysha'S Za/Za- ] .
at most}M, randomizations, i.e., states in which the policy is  According to Little’s law [17], the total delay of a packet of
non-deterministic [11]. sources, defined as the average time a packet spends in the

In the following, the performance metrics used to charabuffer of sources, can be measured as the ratig'z7, where
terize the performance of the network are listed. The aeerag 26(, Yo, ) = bi(s) (13)
normalized throughput of the soureds the time-average of T ’
the cost function and

ps(zr,ur) if ug(s) : tr(s) =1, as if xp(s) 1 br(s) < B,
) ) = 8 ) ) =
#1(®k, Y, i) {O otherwise, ® 21k i ) 0 if xx(s):br(s) = B.

»

(14)



In fact, zg/Zz7 corresponds to the ratio of the average queyeoblem can be restated as a Linear Program optimizing over
length and the average number of packets arrived in therbuffee admissible polyhedron of the steady-state distributid

of sources.

IV. OPTIMIZATION FRAMEWORK
The optimal policy is a stationary randomized poligy:

the state-action pairs [11].

Define the optimization variable,, ,, as the probability that
the processX is in statex and actionu is chosen. The reward
function R(y) and the constraint functions, (1) can then be

X xU—[0,1], where u(z,u) indicates the probability that €xPressed as

actionucld is selected in statecX. Given the policyy, it is
possible to define the transition kernel

Pu(zpsalor)= Y P@ri|on, e, we) Plykler, un) p(zr, i),

yr Y, ueld
(15)
Vi, rp+1 €X,which denotes the probability thaX moves
from statex to statex;,; under policypu.

Since X is unichain, then for any: as defined above

the limiting distribution7, () = lim¢ 4 Pﬁ(x|x') exists

Va', € X [16], where P/ (z|2’) is thet-step transition proba-
bility from statex’ to statez§ We remark that since the limit

lim;, 1 o Pf(x]2’) converges tar, (), then [18]

. 1
= lim —
m——+o00 M,

m—1
> Eu[1(Xe=x|Xo=2')], (16)
k=0

ZwEX ZuEZ/I Zrp (Ia u)wz,u

= 21
R(N) ZEGX Zueu Zrq (‘T’ U)ZZ,u ( )
Z X Z U *a (q)(xvu)wmu

Cop) = B S 2N, (22)

Q( ! ZmeX Zueu Zaq(q) (z, U)Wz.,u e

or equivalently

R(p)=z," w/z,! w (23)
Cq (N) = quag:(q) w/zaf(q)W—F/\q, (24)

where T denotes the transpose operator, apd =
[2a(x, w))icx weu ANAw = [wy u)icx uey are|X xU| column
vectors listing the costs and the steady-state probasiliti
associated with state and decisioru, Vz, wu.

Note that the constraints can be restated as the following
linear combinations of the variables

whereE,,[-] and1(-) are the expectation operator, conditioned (8aZa..(q) + Ag=79)Zz()” @ <0, g=1,..., M, (25)

on policy p, and the indicator function. Thus,(x) is the
average fraction of time spent by is statez

and collected in the matrix forrs w<0 wherez is a M, x

The average cost collected by the network in state | x U| matrix. Define, with a slight abuse of notatiaR, as

associated with action is

za(T,u)= Z za(2,y,u) P(ylz, u).

yey

(17)

a|X| x |X x U| matrix, such that the element in the column
and row corresponding to the pdit’,u) and z is equal to
1-P(z|2’,u) if z=2', and—P(x|z’,u) if x#z’.

The optimization problem can then be formalized as the

Therefore, the average cost collected by the network ire stébllowing Linear-fractional Program [19]

2 under policyu is

za (T, )= Z za(z, w)p(z,u), a=1,...A.

ueU

(18)

The time averages in EqlJ(4) can then be rewritten as the

following linear combinatiorfs

Za(p) = Z T (2)ze(x, 1), a=1,...A. (19)
reX
The optimization probleni{7) becomes
7 = argint eex Tu@)n, (@ 1) (20)

® i€EX WM(,T)ZTUZ (:Ea :u)
st B Z’LGX T‘—N(x)zan(q)(x’u)
! Zze)\’ Ty (I)Zad(q) (Ia ,U)

wherei denotes the optimal stationary policy. Sirgeis fi-
nite, and the limiting distribution exists, the above op#ation

+)\q§’7q7 q:17 L) Mca

3The t-step transition probabilites can be inductively foundonfr
P, (z|z’) [16].

“We underline that, under the hypothesis that all the chaimishain, the
limiting distribution of the chain is independent of thetiai state.

5In the following notation, the action sequentg is substituted with the
function p.

© =argmin(z,! w)/(z,! z)
z

(26)
st wz < 0p. 1,
[M} w — [#}
P 0x1
W, u >0, VIGX,UGM

wherel,, ,, and0,, ,, arem x n matrices whose elements are
set to one and zero, respectively.

The equality constraints forceto be an admissible steady-
state distribution for the transition probabilities &f, and are
equivalent to

SN weu=1 (27)
reEX uel
Z Z P(z|2 w)wy o = Z Wauy V. (28)

reX ueld ueld

If {w:2w<0,-Tw<0,17w=1,P w:O,sz w>0}
is a feasible set, then the above problem can be easily
transformed to the following equivalent linear program tia



n

1 1 «
Eqb(ﬂ): lim SupﬁEH[Zza(Xk,Yk,uk)] = lim SupﬁZP#(Xk€X¢,Yk€y¢,UkGU¢|;1;/) (32)
k=1

n—-+oo n—-+o0o
k=1

. RS
nll)r-ﬁr-loo sup — Z Z Pl (Xp=z|Xo=2") Z P(Yi=y|Xp=x, Uy=u)P(Ur=u| X=x)
k=1 \z€X, yEVg,ucly

= Z Wu(x) Z Pu(y|x7u)ﬂ(x7u) éwu((b)'

TEX YEVy , ucly
change of variableg=gw [19, Ch. 4.2.3]: of ¢ is E,[14(0)|=14=1/7,(¢) [18], wherer,(¢) is the time
R o between the/-th and the/+1-th occurrence of event.
{k,g} =arg Nz, K (29) Consider now two events and ). Assumez,,(1)>0, that

is, the number of times the netwohits eventy in an infinite

sample-path is infinite. The rati@y (1) /Zy (1) =7, (¢) /7, (V)
can be used to formulate performance metrics expressed as

st. z K S O]uml,

1 | xxu 1 0
0 1

TV 9= the average number of occurrencesgofper occurrence of
P Ox)1 01,1 1, e.g., average number of transmissions per packet. In other
920, Kpu>0, VeeX, uell. words, Z (1) /Zy (1) =, (6) /7, () is the ratio between the

R ) ) . frequencies of the two events.
M Juel: &, >0, then the optimal time-sharing map |+ can be observed that, due to the characterizatiorKof
in state is ji(z,u) = Gou/ Dyey @oue F 30y ©eu=0,  andy, the occurrence of an evetitis arenewal event [18]
e, zis transient under the optimal policy, then adetermms%r the network, meaning that the future evolution after an
action can be chosen at random such frat u)=1if u=u" €  ooeyrrence ofy does not depend on the past history of the
U, andi(z, u)=0 otherwise. processes. As a consequence, the sample paxharidY” can

be split intorenewal intervals [18] defined by the occurrence
V. RENEWAL INTERPRETATION of 4. The functionals of the states & andY computed in

. . . . . any renewal interval have the same distribution.
In this section, we discuss the case in which the cos : .
. Define Ny (t) as the process counting the occurrences of
functions are used tsample the occurrence of a subset of

the state-action space. For instance, a cost functionatidig up to timet. The number of occurrences gfwithin the (~th

the occurrence of the first slot of a service interval of a nerenewal interval is denoted with the random variablg/).

packet can be used to measure the number of packets serve%?)e cumulative procesl,(£) is then defined as the sum

o ¥4
a source. The time-average of this cost function correspon ‘15)(6)_ 21-1 V4 (1). Note that
to the fraction of slots in which this specific state occuses, lim E,[W4(0)]/¢ = lim E,[Ny(t)]/t. (32)
. e m 1] . Ve
its steady-state probability. f=too oo
In this case, the ratio of average functions can be intezdret The following holds [18]:
as the average number of occurrences of a subset of the state- )
action space per renewal interval, where the renewal event EVs(O)]/70 = ZETOO E Wy (0)]/2, (33)
corresponds to the occurrence of another subset of the state . . :
action space i.e, the average occurrences ¢f per unit of time in any
Define theevent ¢ as the sett, x Vs xUy, where X,C X, renewal mt_erval is equal to the average number of occueenc
. of ¢ per unit of time in the whole sample-path of the process.
YV, CY andi,CU. We then say that evewdt occurs at timef ,
: We observe that, due to the assumptigii) >0, E,, [V, (¢)]
It Xy € Ay, Vi € Vs anduy, € Us. In words, eventb occurs is finite, and the above limit converges. It followsl'
at time ¢ if the processX enters the set of state¥,, the ’ ges. '
value of the random proced$ belongs to the subsgéiy and Ty im0 B [Ng(1)]/t
an action inlf,, is selected. The time-average of the sampling BulVo(O)] = Jim =7 Eu[Ws (g)]_limtﬁjuoo Eu[Ny(t)]/t

function =1(8) /7 (), (34)
2o (T s ) = Uif {og, gk uk} € XpxVpxUy that is, the ratio between the steady-state probabilitiche
oA Tl 0  otherwise, two events is equal to the average number of occurrencgs of

(30) inasingle renewal interval defined by consecutive occuesn
measures the average fraction of time in which eveatcurs. of 1.

Note that, in this case,; (1) is a probability measure, which  This observation connects the present work to the frame-
we denote byr,(¢) and that corresponds to the probabilitywvork presented in [9], [10], in which a linear fractional pro
that ¢ occurs in a randomly chosen slot (see Eqg] (31). Morgram is used to minimize the average cost per unit of time of a
over, the average time between two consecutive occurrencestrolled Semi-Markov process. In the framework consder
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Fig. 1. Average aggregate energy expense per unit of thppighverage throughput, average energy expense and tsaimmprobability as a function of
the constraint on the minimum normalized throughput of segr

in [9], [10], to each state of the Markov chain is associatedansmission/interference strategy and the service tNute
an average time interval. The denominator of the objectitleat, in this case, if the state of the individual sourcés
function, then, is used to measure the average amount of tin@)-£0 thenb(s)=1.

the process s_pends in a state. In the proposed framework, 'f:ig.[] shows the average aggregate energy expense per unit
the cost functions are use to sample the occurrence of atsu%ethroughput, average throughput, average energy expense
of the state-action space, the reference time is the average {ransmission probability as a function of the constrain
renewal time, where the renewal intervals are defined by & minimum normalized throughput of sourgewhere the
occurrence of the event associated to the denominator.  minimum average normalized throughput of soutds fixed
to 0.35. The packet arrival probabilities are;=a2=0.95.
VI. NUMERICAL RESULTS The maximum service time and the buffer size are5 and

In this section, we provide numerical results for the frame3=1, respectively. The failure probability of a single source
work presented before. In particular, the optimizationgpeen  transmitting alone and with |n.terference f_ro_m the otherseu
is formalized to minimize the aggregate normalized unit G€r=0.2 andp*=0.4, respectively. The minimum throughput
energy spent per unit of throughput achieved in a two-sourgk Sourcel is fixed to 0.35. The minimum packet delivery
network with constraints on the individual source minimurRroPability is0.8. The maximum packet total delay sslots.
throughput, maximum total delay and maximum packet deliv- For the selected parameter setting, the strategy lettifg on
ery failure probability (including retransmissions). $lsietting one source to transmit at a given time produces a better gnerg
is motivated by the considerable interest in energy efficieaver throughput balance with respect to the strategy fgrcin
wireless communications of late [20]. As a general observiaeth the sources to transmit. On the other hand, the aggregat
tion, stringent QoS constraints force the system to mowva frahroughput achieved with the latter strategy is larger ttheat
time-splitting to simultaneous transmission schedulibe associated with the former strategy. Therefore, as longes t
latter achieves, in the considered setting, a larger thrpug throughput requirements are below a certain threshold, the
and allows a faster packet delivery with respect to timeontroller allows only a single source to transmit in eadh, sl
splitting. On the other hand, simultaneous transmissidess and tunes the fraction of slots assigned to each source ér ord
efficient, i.e., requires a larger energy expense per unit &6 meet the constraints. It can be observed that, given tigt o
throughput. a single source transmits in each slot, the average eneegy sp

A buffer of size B=1 is assumed in the first two setsper unit of throughput does not depend on how often a source
of plots in order to investigate the relation between theansmits, so that the overall balance remains the same. As
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Fig. 2. a) transmission probability of sourtes a function of the state (the transmission probabilitycafrse2 is symmetric). b) probability of simultaneous
transmission of both the sources as a function of the state.

soon as the throughput requirement of soutcgoes above is scheduled grows as the minimum throughput requirement
a certain threshold, the controller is forced to let both thie increased. This result shows how the state space is split t
sources transmit in a fraction of slots in order to colle@rgér achieve the largest energy efficiency with stringent thhgug
throughput, thus worsening the energy/throughput balamcerequirements.
can be observed that in the region in which the controller Fig.[3 and[#% investigates the optimal strategy in a scenario
schedules simultaneous transmissions, the source with thith larger buffer size B=3 and F=3). Fig. [3 plots the
smallest throughput requirement (sourcén the figures) is average aggregate energy expense per unit of throughput,
forced to transmit more often than the other source in slaserage throughput, average energy expense and transmissi
where both the sources transniié., those slots providing the probability as a function of the constraint on the maximum
worst energy/throughput balance (Fjg. 1(d)). In fact, seurtotal delay of sourc&’s packets. The maximum total delay of
1 spends more energy to collect a unit of throughput witbourcel’s packets is fixed téslots. The minimum throughput
respect to sourcé (Fig.[I(a)). On the other hand, sourceequirement is equal t0.3 for both the sources. It can be
2 is often scheduled irinterference free slots in order to observed that, as the total delay constraint so@isgackets
collect throughput, and achieves a higher energy efficiendy relaxed, sourcé’s throughput, transmission probability and
The optimal strategy in this simple configuration suggestmergy expense increase, whereas those of sQudeerease.
that channel access protocols should schedule transmisgio In fact, a stringent delay constraint forces souzde transmit
sources with relaxed QoS constraints in slots accessechiey obften in order to deliver packets, whereas soutcis often
sources, while reserving part of the channel resource tieesu forced to idleness in order to reduce its impact in terms of
with stringent QoS constraints. Note that idle time, whish iinterference. Due to the constraint on the delivery proligpi
initially scheduled in order to save energy, vanishes fghhi which limits packet discarding, delay and throughput are
throughput requirements. connected. In fact, in order to achieve a smaller delay,casur
Fig.[2 plots the transmission probability as a function @ thare forced to transmit, thus increasing the throughput.
state of the network for a similar setting, where the minimum Fig. [4(a) and[4(®) plot the energy expense per unit of
throughput requirement is equal @045 for both the sources, throughput in the feasible region. In Fjg. 4(a), the x and i ax
a1=a2=0.6 and the total delay constraint islots. are the throughput constraint of sourcend 2, respectively.
Fig.[2(a) shows the transmission probability of sour@s a The maximum total delay i$ slots. In Fig[4(H), the x and
function of the individual state:(1) and:z:(z)ﬁ. Interestingly, y axis are the throughput and total delay constraint of both
transmission probability clusters in the state space. higga sourcel and 2. In general, stringent throughput and total
ular, sourcel transmits if f(1)>f(2), i.e, the service time delay constraints require the system to allocate simuttasie
of sourcel’s packet is larger than that of sour@& packet. transmissions in some regions of the state space. As simulta
This strategy is meant to reduce the probability of packatous transmission requires a larger energy expense ger uni
discarding because of maximum service time expiration. Tlo@ throughput, the efficiency of the network decreases.
region of the state space allocated for Sow'sdransmission
is symmetric to that shown in Fif. 2[a). The probability of VII. CONCLUSIONS

simultaneous transmission, shown in Hig. P(b) is largentha we present a general framework to find optimal ARQ
zero on the border-region between the transmission areassphtegies. We model the network as a set of three intertiine

the two sources. Other results, not shown here, indicate tigchastic processes. The framework extremizes an MDP
the area of the state space in which simultaneous transmissinger constraints, using techniques from Linear Fractiona

6The queue staté(s) is omitted because either equaldf z(s)=0 or 1 Progrgmm_ing. Differe_nt objectives or d?ﬁerent consttaiwill
if (s)>0. result in different optimal ARQ strategies.
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Here, we consider the objective of minimizing energy ex{3]
pense normalized by throughput, under constraints on gfirou
put, delay and packet loss. Numerical results obtainedreplv [4]
the linear fractional program presented in this work show ho

the system allocates transmissions as a function of the stgs)
of the network, enlightening interesting system behaviors
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