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Abstract—Existing methods for sparse channel estimation ty-
pically provide an estimate computed as the solution maxinzing
an objective function defined as the sum of the log-likelihod
function and a penalization term proportional to the £;-norm of
the parameter of interest. However, other penalization tems have
proven to have strong sparsity-inducing properties. In ths work,
we design pilot-assisted channel estimators for OFDM wirglss
receivers within the framework of sparse Bayesian learning
by defining hierarchical Bayesian prior models that lead to
sparsity-inducing penalization terms. The estimators reslt as
an application of the variational message-passing algofitm on
the factor graph representing the signal model extended wit
the hierarchical prior models. Numerical results demonstate the
superior performance of our channel estimators as comparedo
traditional and state-of-the-art sparse methods.

I. INTRODUCTION

During the last few years the research on compressige
sensing techniques and sparse signal representaltibnf2]1],
applied to channel estimation has received consideratdp-at

tion, see e.g. |3]=]7]. The reason is that, typically, tmpiulse

response of the wireless channel has a few dominant mudtipat
components. A channel exhibiting this property is said to be

sparsel([B].

among others [4]+[6]:
)

with k > 0 and|| - ||,, p > 1, denoting the/,, vector norm.
This method is also known as Least Absolute Shrinkage and
Selection Operator (LASSO) regression [8] or Basis Pursuit
Denoising [9]. The popularity of the LASSO regression is
mainly attributed to the convexity of the cost function, asllw

as to its provable sparsity-inducing properties (5ée [B]j4]—

[6] the LASSO regression is applied tothogonal frequency-
division multiplexing(OFDM) pilot-assisted channel estima-
tion. Various channel estimation algorithms that minimize
LASSO cost function using convex optimization are compared
in [6].

Another approach to sparse channel estimation is sparse

& = argmin { |y — ®af} + ol }
(a7

ayesian learning (SBL) 7], [10]=[12]. Specifically, SBLres
at finding a sparsenaximum a posterior{fMAP) estimate of

®)

by specifying a priop(c) such that the penalty ter@(a) ©

& = argmin {|ly - ®af3 + A1 Q(a)}
(a3

The general goal of sparse signal representations fromlogp(a) induces a sparse estimat

overcomplete dictionaries is to estimate the sparse veetor

in the following system model:

y=Pa + w. (1)

Obviously, by comparing{2) andl(3) the SBL framework
realizes the LASSO cost function by choosing the Laplace
prior p(at) o exp(—all||1) with & = A~ta. However, instead
of working directly with the priorp(c), SBL models this

In this expressiory € CM is the vector of measurement samiSing & two-layer (2-L) hierarchical structure. This inues
ples ancw € CM represents the samples of the additive whitgPecifying a conditional priop(a|v) and a hyperpriop(~y)

Gaussian random noise with covariance matkix'I and
precision parametek > 0. The matrix® = [¢,,...,¢;] €

such thatp(ar) = [ p(aly)p(y)dy has a sparsity-inducing
nature. The hierarchical approach to the representatipfcof

CM~*L is the overcomplete dictionary with more columns thaRas several important advantages. First of all, one is ee t

rows (L > M) anda = [, .. .,

ar]T € CE is an unknown choose simple and analytically tractable probability dgns

sparse vector, i.eq has few nonzero elements at unknowfnctions (pdfs). Second, when carefully chosen, the tiegul

locations.

Often, a sparse channel estimator is constructed by solvh‘f"gi;t

hierarchical structure allows for the construction of et
computationally tractable iterative inference altoris

the ¢;-norm constrained quadratic optimization problem, sedth analytical derivation of the inference expressions.
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In [13] we propose a 2-L and a three-layer (3-L) prior
model for a. These hierarchical prior models lead to novel

IHerex oc® y denotesexp(z) = exp(v) exp(y), and thusz = v+, for
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sparsity-inducing priors that include the Laplace prior fas modeled as a sum of multipath components:

complex variables as a special case. This paper adapts the K

Bayesian probabilistic framework introducediin[13] to G#D g(r) = Z Bed (T — T1) . (6)
pilot-assisted sparse channel estimation. We then propose 1

variational message passing (VMP) algorithm that effetyiv In this expressiong;, and 7, are respectively the complex

exploits the hierarchical structure of the prior modeISJsThWeight and the continuous delay of tigh multipath com-
approach leads to novel channel estimators that make use

of various priors with strong sparsity-inducing propestie ponent, andi(-) is the Dirac delta function. The parameter

. - . K is the total number of multipath components. The channel
The numerical results reveal the promising potential of our .

; N arameterss, [, and7, k = 1,..., K, are random vari-
estimators with improved performance as compared to sta &

of-the-art methods. In particular, the estimators outpenf ables. Specifically, the we|gh}fa, k= 1,...,K,.are ".‘“t“a”y
LASSO uncorrelated zero-mean with the sum of their variances nor-

ThroughoTut the pgper we shall make use of the foIIowin&altlﬁzdr;g dcé?[j((ab)A;rilt;g?/: dizt?;:ssr: (g:;t|r\1/? the assunmstio
notation: (-)* and (-)* denote respectively the transpose and
the Hermitian transpose; the expressipf(x)),.) denotes IIl. THE DICTIONARY MATRIX

the expectation of the functiorf(x) with respect to the  Our goal is to estimatéd in (@) by applying the general
density ¢(x); CN(x|a, B) denotes a multivariate complexoptimization problem[{3) to the observation modél (5). For
Gaussian pdf with meam and covariance matri®; similarly, - doing so, we must define a proper dictionary maixin this
Ga(z|a,b) = Flza) ! exp(—bz) denotes a Gamma pdf withsection we give an example of such a matrix. As a starting
shape parameter and rate parametex point, we invoke the parametric modéll (6) of the channel.

Making use of this model[{5) can be written as

y=T(1)B+w (1)

Il. SIGNAL MODEL

We consider a single-input single-output OFDM system_ . T
with N subcarriers. A cyclic prefix (CP) is added to preWith hp = T(7)8, w = (Xp)"'np, 8 = [B1,.... Bx] ",
serve orthogonality between subcarriers and to elimimaeg-i 7 = [71.- -, 7], andT(r) € C*** depending on the pilot
symbol interference between consecutive OFDM symboRattern” as well as the unknown delays in Specifically,
The channel is assumed static during the transmission tB€ (m, k)th entry of T'(7) reads

each OFDM symbol. The received (baseband) OFDM signal R m=1,2....M
r € CV reads in matrix-vector notation T(T)mn = exp(=i20fmmh), o 8
r=Xh+n. (4)

with f,, denoting the frequency of the:ith pilot subcarrier.
The diagonal matrixX = diag(z1, 22, ...,zy) contains the In the general optimization problerii] (3) the columns ®f
transmitted symbols. The components of the vedtor CV  are known. However, the columns @f(r) in () depend on
are the samples of the channel frequency response a¥thdhe unknown delays inr. To circumvent this discrepancy we
subcarriers. Finallyn € CV is a zero-mean complex symmeJollow the same approach as in! [5] and consider a grid of
tric Gaussian random vector of independent components withiformly-spaced delay samples in the interi@lrax]:
variancex 1. T, 2T, T

To estimate the vectds in (4), a total of M pilot symbols 7?’ T’ e 7Tma><} ©)
are transmitted at selected subcarriers. The pilot paffeeth . . . ,
{1,..., N} denotes the set of indices of the pilot subcarrier%‘fl'th ¢ > 0 such thatgf;“gx/TS |sian integer. We now define
The received signals observed at the pilot positiersare the dictionary® < C a;cp = T(7a). Thus, the entries

of ® are of the form[(B) with delay vector,;. The number

then divided each by the corresponding pilot symBbbh = - . : .
diag(x, : n € P) to produce the vector of observations: of cqumnsL = (Tmax/Ts + 1 in @ is thereby inversely
proportional to the selected delay resolutibyy¢.

y2(Xp) lrp=hp+ (Xp) np. (5) It is important to notice that the system modél (1) wibh
defined using discretized delay components is an approxima-
fbn of the true system moddIl(7). This approximation model
is introduced so thaf3) can be applied to solve the channel
: ; . %5timation task. The estimate of the channel vector at tioe pi
response (at the pilot subcarriers) corrupted by additora-c subcarriers is theﬁp = ®a. In order to estimate the channel

plex Wh'te Gaussian noise with component vanaﬁcé. . h in (@) the dictionary® is appropriately expanded (row-wise)
In this work, we consider a frequency-selective wwelestg include all N subcarrier frequencies

channel that remains constant during the transmission of

each OFDM symbol. The maximum relative delayay is IV. BAYESIAN PRIOR MODELING

assumed to be large compared to the sampling fiipd.e., In this section we specify the joint pdf of the system model
Tmax/Ts > 1 [3]. The impulse response of the wireless chann€ll) when it is augmented with the 2-L and the 3-L hierarchical

Td = [0

We assume that all pilot symbols hold unit power such th
the statistics of the noise ter(X »)~'np remain unchanged,
i.e.,y € CM yields the samples of the true channel frequen
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Fig. 1.  2-L hierarchical prior pdf forac € C2: (a) Contour plot of Fig. 2. Three-layer hierarchical prior pdf far € C? with the setting
the restriction to the Ifv1} = Im{a2} = 0 — plane of the penalty « = 1, b = 0.1: (a) Restriction to In@¢a}{y} = 0 of the resulting
term Q(a1,az;€,m) o« —log(p(ai;e,n)plaz;e,n)). (b) Restriction to MAP estimation rule [(B) withe as a parameter in the case whdn is
Im{¢>lHy} = 0 of the resulting MAP estimation rulgl(3) withas a parameter orthonormal. The black dashed line indicates the harcstiuld rule and the
in the case whe® is orthonormal. The black dashed line indicates the hardslack solid line the soft-threshold rule. (b) Contour plbtle restriction to the
threshold rule and the black solid line the soft-threshaitd (obtained with Im{a1} = Im{a2} = 0 — plane of the penalty terr® (a1, a2;¢, a,b) x*
e = 3/2). The black dashed line indicates the penalty term regultihen —log(p(ai;e, a, b)p(az;e, a,b)).

the prior pdf is a circular symmetric Gaussian pdf.

prior model. The joint pdf of [{1) augmented with the 2-L/4 (2) = /57 exp(—=2) [14], (13) yields the Laplace prior

hierarchical prior model reads 2m
plause =3/2,m) = — exp(=2/mi|cul). (15)
p(y, v, A) = p(yle, Vp(Np(aly)p(v;m).  (10) _ i .
With the selectionm); =n, 1 =1,..., L, we obtainQ(«a; n) =

The 3-L prior model considers the parametgrspecifying 2/malls.
the prior ofv in (I0) as random. Thus, the joint pdf &fl (1)

augmented with this hierarchical prior model is of the form The prior pdf {IB) is specified by and the regularization

parametern. In order to get insight into the impact af
p(y, a,v,1m,\) = p(yla, N)p(MN)p(aly)p(yIn)p(n). (11) on the properties of this prior pdf we consider the case

5 . . -
B . a € C?. In Fig. [I(a) the contour lines of the restriction
In @) and m) we haV@(y|a,A) = CN(y|®a,)\ I) to RQ Of (Ofl,OéQ;E,'I’]) € —lOg(p(al,E,n)p(az,E,n)) are

due to [1). Furtflermore, we s_elect the conjugate P"Qlsualizedd each contour line is computed for a specific choice

p(é) = p(Xcd) = Ga(MCA’d)' Finally, we letp(aly) = o [ Notice that ase decreases towards more probability

[1.2 plaalm) with p(aq|y) = CN(aq[0, %). In the following  a5q accumulates along tkeaxes; as a consequence, the

we show the main results and properties of these prior modes, je of the resulting posterior is more likely to be located

We refer to [13] for a more detailed analysis. close to the axes, thus promoting a sparse solution. The
behavior of the classicadh penalty term obtained far = 3/2

A. Two-Layer Hierarchical Prior Model can also be clearly recognized. In Fg. 3(b) we consider the

case whenp is orthonormal and compute the MAP estimator

(@) with penalty term [(14) for different values af Note

the typical soft-threshold-like behavior of the estimatohs

e — 0, more components ofx are pulled towards zero

00 L . . .

since the threshold value increases, thus encouragingsespa
plasen) = / plaptviemdy = [[plasem) (12) ¢ ution
0 =1 '

The 2-L prior model assumes thaty) = Hlep(yl) with
p(m) = p(vi;6,m) £ Ga(yile,m). We compute the prior of
a to be

with
(et+1) . . .
plause,m) = %771 ta log|* ' Kc—1(2y/milew]).  (13) B. Three-Layer Hierarchical Prior Model
L (€

In this expressionkK,(-) is the modified Bessel function of We now turn to the SBL problem with a 3-L prior model for

the second kind with order € R. The prior [I3) leads to the « leading to the joint pdf in[(11). Specifically, the goal is to

general optimization problen](3) with penalty term incorporate the regularization parametginto the inference
framework. To that end, we defing(n) = HlL p(m) with

L
aen) =S log (Jay| K. 1 (2/mleul)) . 14y p(m) = p(m;a, b)) £ Ga(mla,b;) and compute the prior
Qs &m) ; g (Jou] 1 (2vilaa) a4 p(c). Defininga £ [ay,...,q)" andd £ [by,...,b]" we

We now show that the 2-L prior model induces the
norm pgnalty term and_thereby the LASS_O cost fl.mCt'Qn a et f denote a function defined on a sét The restriction off to a subset
a special case. Selecting = 3/2 and using the identity B c A'is the function defined o that coincides withf on this subset.



fn to variable nodd@;. This message is computed as

fn

myf, 6, = €xp (<1n Ind11, a00)), 65 e/\/fn\{ei}) ,  (18)

A where NV, is the set of variable nodes neighboring the
Fig. 3. A factor graph that represents the joint pdfl (11). his tfigure factor nodef,,. After an initialization procedure, the individual
fy =pla,A), fa = paly), fv =p(vIn), fn =p(n), andfx =p(A). factors of¢(®) are then updated iteratively in a round-robin
fashion using[(17) and(18).
We provide two versions of the VMP algorithm: one applied

obtainp(as; €, @, b) = [T} pleus e, ar, br) with to the 2-L prior model (referred to as VMP-2L) and another
S one applied to the 3-L model (VMP-3L). The messages
plas; e, ar, by) Z/O plalv)p(v)dv corresponding to VMP-2L are easily obtained as a special

o =1 ) case of the messages computed for VMP-3L by assuming
_ Dle+a)l(m+1) <|az| > U <6 Yage M) ~ q(m) = 6(m — 7j1), wherer, is some fixed real number.
bl (€)T (ar) b ! (16) 1) Update of g(a): According to [I¥) and Fig[3 the
computation of the update af(«) requires evaluating the
In this expression[J(-;-;-) is the confluent hypergeometricproduct of messages.;, .o andmy, . Multiplying these
function [14]. In Fig.[2(d) we show the estimation ruleswo messages yields the Gaussian auxiliary pdf) =

produced by the MAP solver for different values efand (N (a|d7 Ea) with covariance matrix and mean given by
fixed parameters; and b, when & is orthonormal. It can

be seen that the estimation rules obtained with the 3-L prior S = (<)\>q(,\)<I>H<I> + V() (19)
model approximate the hard-thresholding rule. In [Fig.]2(b) . - & aH
we depict the contour lines of the restriction ®* of & = (@)g(a) = Vg Za®y. (20)
Q(a1, a5€,a,b) «x® —log(p(au;e, a,b)p(asz;e a,b)). Ob- In the above expression we have defindd(y) =
serve that although the contours behave qualitativelylaityi diag((v; giy)s- - (V5 Datn)-
to those shown in Flg[IQa) for the 2-L prior model, the 2) Update ofg(v): The update of;(+) is proportional to
estimation rules in quzh) and Fig. 1i(b) are different. 1o product of the messagesy.. -, andm;. :

Naturally, the 3-L prior model encompasses three free .
parametersg, a, and b. The choicee = 0 and b; small o 1
(practically we leth, = 10=%, I = 1,...,L) induces a g(v) o [T 2 exp (= el gy = 1elm)g@my) - (21)
weighted log-sum penalization term. This term is known to . =1 . o _ _
strongly promote a sparse estimafe![10],][11]. Later in thEhe right-hand side expression in{21) is recognized as the

text we will also adopt this parameter setting. product of Generalized Inverse Gaussian (GIG) pdfs [17h wit
orderp = e—1. Observe that the computation ¥f(~) in (19)
. . —1 o .
V. VARIATIONAL MESSAGEPASSING requires evaluatingy, "), foralll =1,..., L. Luckily, the

moments of the GIG distribution are given in closed form for

In this section we present a VMP algorithm for estimatingny 7 € R [17]:
h in (@) given the observatiog in (B). Let® = {a,v,n, A} 2 e 9 3
be the set of unknown parameters asi@), ©) be the joint (/")) = <<|<0‘l |>>q(a)) Iz;+n2( \/<771>Q(n)<|0412| Jat)
pdf specified in [(I11). The factor graph_[15] that encodes ") q(m) p(2V/ ) () (P g(a)
the factorization ofp(y, ®) is shown in Fig[B. Consider an (22)
auxiliar_y pdfq(®) for the unknown parameters that fac_torizes 3) Update ofg(n): The update of()
according tog(®) = q(a)q(v)q(n)q(A). The VMP algorithm .
is an iterative scheme that attempts to compute the auxiliar

is proportional to
product of messages;, ., andmy. .

pdf that minimizes the Kullback-Leibler (KL) divergence L T

KL (¢(®)||p(®ly)). In the following we summarize the key q(n) an rexp (— (Mgt +01)m) - (23)
steps of the algorithm; the reader is referred td [16] for enor =1

information on VMP. Clearly, q(n) factorizes as a product df gamma pdfs, one

From [16] the auxiliary function(8;), 8; € ©, is updated for each individual entry im. The first moment ofy; used in
as the product of incoming messages from the neighborif&?) is easily computed as

factor nodesf,, to the variable nodé;: e+ a
Moy = T —7 (24)
q(0:) o< ] my.e.- (17) (V) q(y) + b
fn€NG; Naturally, ¢(n) is only computed for VMP-3L.

In (T7) N, is the set of factor nodes neighboring the variable 4) Update ofy()\): It can be shown that()\) = Ga(\| M +
node®; andmy, e, denotes the message from factor node (||ly — ®a||3) () + d). The first moment of\ used in [ID)



\ -1
*RWE 10 ¢
—_ e Sae
~5 -©VMP-2L S Nar
¢ \a\ VMP-3L VMP-31)
107} 3\\:\ —
= =
g \ & —
= =l \‘\\
-2|
10 V% S
| s
10 ™~ KV\(?\V\\S\\-S-\
107 ‘ I
0 10 15 20 0 5 10 15 20 80 100 120 140 160 180 200
E,/N, [dB] Ey/Ny [dB] M

(@) (b) (c)
Fig. 4. Comparison of the performance of the VMP-2L, VMP-BWF, RVM, and SparseRSA algorithms: (a) BER ver&is' Ny, (b) MSE versusEy, /Ny,

(c) MSE versus number of available pilatd with fixed L = 200 and the ratio between received symbol power and noise a&riset to 15 dB. In (a,b) we
have M = 100 and L = 200. In (a) the dashed line shows the BER performance when tleectiannel vectot. in @) is known.

TABLE |

PARAMETER SETTINGS FOR THE SIMULATIONSTHE convoLuTionaL  the inverse number of columns respectively. Furthermore,
CODE AND DECODER HAS BEEN IMPLEMENTED USINGL8]. we letc = d = 0 in (@28), which corresponds to the
Sampling time 75 32.55 ns Jeffreys noninformative prior fo. Once the initialization

CP length 4.69 us | 1447, is completed, the algorithm sequentially updates the il
Subcarrier spacing 15 kHz pdfsq(a), ¢(v), q(n), andg()) until convergence is achieved.
Pilot pattern Equally spaced, QPSK Obviously, ¢(n) is only updated for VMP-3L, whereas for
Modulation QPSK VMP-2L the entries inp are set toM. For both versions we
Subcarriers N 1200 selecte = 0 and for VMP-3L we sets; = 1 andb, = 1076,
Pilots, M 100 l=1,..., L. Finally, the dictionary® is specified byM pilot
OFDM symbols 1 subcarriers and a total df = 200 columns (corresponding to
Information bits 727 the choicerya.x = 144 Ty and( ~ 1.4 in (9)).
Channel interleavet Random The VMP is compared to a classical OFDM channel estima-
Convolutional code (133,171,165)s tor and two state-of-the-art sparse estimation schemesifsp
Decoder BCJR algorithm[[19] cally, we use as benchmark the robustly-designed Wientr Fil

(RWF) [22], the relevance vector machine (RVM) [10], [ﬂl],
and the sparse reconstruction by separable approximation
and [20) is therefore (SpaRSA) algorithm[[24]. The RVM is an EM algorithm
M+ e based on the 2-L prior model of the student-t pdf over

Ny = 5 ) (25) eachqg, whereas SpaRSA is a proximal gradient method for
(ly = @all2)g() +d solving [2). In case of the SpaRSA algorithm the regulaidzat
V1. NUMERICAL RESULTS parametek needs to be set. In all simulations, we fet= 2,
which leads to good performance in high signal-to-noisie rat

We perform Monte Carlo simulations to evaluate the pe SNR) reqime
formance of the two versions of the derived VMP algorith gime. . _ .
in Section[V. We consider a scenario inspired by the SGPPThe performance is compared with respect to the resulting
LTE standard[[20] with the settings specified in Talle I. Thglt-_error—iate (BER) and mean-squared error .(MSE) of the
multipath channel[{6) is based on the model used[in [ZEJ\jt'mateh versus the SNREb/NO)' In addition, in order to
where, for each realization of the channel, the total numba antify the necessary p'_IOt over_head, we evgluat_e the MSE
of multipath component& is Poisson distributed with meanYESUs the number of available pilatg. Hence, in this setup

M is no longer fixed as in Tab[@ I.
of (K),(xy = 10 and the delaysr,, £k = 1,...,K, are .
independent and uniformly distributed random variableswir d_flfn Fig. Wev\iomparﬁ th\?ME’E?L perfor:cnance hOf trr\]e
from the continuous interval [0, 144;] (corresponding to the lfterent schemes. We see that -3L outperforms the other

CP length). The:th nonzero componert, conditioned on the schemes across all the SNR range considered. Specifically, a

; - % BER the gain is approximately 2 dB compared to VMP-
delay 7, has a zero-mean complex circular symmetric Gau%—
sian distribution with variancer?(r;,) — <|5k|2>p(5k\rk) _ L and RVM and 3 dB compared to SpaRSA and RWF. Also

wexp(—71./v) and parameters, v > 0 VMP-2L gihlg\\//el\i Iov;er BERtlrr]] therzl ?NSRNrsnge 0-12 dB .
To initialize the VMP algorithm we set()\),, and compared to and across the whole range compare

-1 , : to SpaRSA and RWF.
[to th f th I @ind . . .
(%" Jat) equalto the inverse of the sample variancey The superior BER performance of the VMP algorithm is

3The parameter: is computed such thats X [8(6)[2)(a.r.x6) = L well reflected in the MSE performance shown in Hig. B(b).

wherep(83, T, K) is the joint pdf of the parameters of the channel model. ] ) )
In the considered simulation scenar(dﬂp(m = 10, Tmax = 144 Ty, and 4The software is available on-line [at http://dsp.ucsd-edwipf/.
v = 20 Ty (the decay rate). 5The software is available on-line [at http://www.Ix.it-ptitf/SpaRSA/
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Again VMP-3L is a clear winner followed by VMP-2L. The [4]
bad MSE performance of the SpaRSA for low SNR is due to
the difficulty in specifying a suitable regularization peweter
k across a large SNR range. [5]
We next fix the ratio between received symbol power
and noise variance to 15 BBand evaluate the MSE versus
number of available pilots\/. The results are depicted in [6]
Fig. [4(c). Observe a noticeable performance gain obtained
with VMP-3L. In particular, VMP-3L exhibits the same MSE (7,
performance as VMP-2L and RVM using only approximately
85 pilots, roughly half as many as VMP-2L and RVM. Fur-
thermore, VMP-3L, using this number of pilots, significantl [
outperforms SpaRSA and RWF using 200 pilots. [9]

VII. CONCLUSION

In this paper, we proposed channel estimators based [23?4
sparse Bayesian learning. The estimators rely on Bayesiat
hierarchical prior modeling and variational message pgssi[lz]
(VMP). The VMP algorithm effectively exploits the proba-
bilistic structure of the hierarchical prior models and tesult-
ing sparsity-inducing priors. Our numerical results shoatt (13]
the proposed channel estimators yield superior performanc
terms of bit-error-rate and mean-squared error as compared
other existing estimators, including the estimator basethe (14]
¢1-norm constraint. They also allow for a significant reductio; 5
of the amount of pilot subcarriers needed for estimatingyargi

channel. [16]
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