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Abstract—This paper presents a novel two-way decode-and-
forward (DF) relay strategy for Orthogonal Frequency Division
Multiplexing (OFDM) relay networks. This DF relay strategy em-
ploys multi-subcarrier joint channel coding to leverage frequency
selective fading, and thus can achieve a higher data rate than
the conventional per-subcarrier DF relay strategies. We further
propose a low-complexity, optimal power allocation strategy to
maximize the data rate of the proposed relay strategy. Simulation
results suggest that our strategy obtains a substantial gain over
the per-subcarrier DF relay strategies, and also outperforms
the amplify-and-forward (AF) relay strategy in a wide signal-
to-noise-ratio (SNR) region.

I. I NTRODUCTION

In recent years, relaying has emerged as a powerful tech-
nique to improve the coverage and throughput of wireless
networks. Compared with the traditional one-way relaying,
two-way relaying provides better spectral efficiency, where
two terminal nodes employs an intermediate relay node to
exchange information simultaneously [1], [2].

Orthogonal Frequency Division Multiplexing (OFDM) is
an essential broadband transmission technique to improve the
spectral efficiency of wireless networks. A combination of
OFDM and relaying techniques has been advocated by many
industry standardization groups of next generation wireless
networks, such as IEEE 802.16m and 3GPP’s LET-Advanced.

In one-way OFDM relay networks, multi-subcarrier joint
decode-and-forward (DF) relaying was studied in [3]–[5],
which can achieve higher data rate than per-subcarrier DF
relaying. For two-way OFDM relay networks, the amplify-
and-forward (AF) relay strategies were commonly adopted
[6]–[8]. However, their performance is quite poor in the low
signal-to-noise-ratio (SNR) region due to the amplified noises.
Theper-subcarrierDF relay strategies were considered in [9]–
[11], which are essentially simple accumulations of narrow-
band two-way DF relaying over the individual subcarriers.
Unfortunately, these strategies suffer from rate losses due to
channel mismatching.

∗Fei He and Yin Sun contribute equally to this work. This work is
supported by National Basic Research Program of China (2012CB316002),
National S&T Major Project (2010ZX03005-003), National NSF of China
(60832008), China’s 863 Project (2009AA011501), TsinghuaResearch Fund-
ing (2010THZ02-3), PCSIRT, International Science Technology Cooperation
Program (2010DFB10410) and Tsinghua-Qualcomm Joint Research Program.

In this paper, we propose a novelmulti-subcarrier DF
relay strategy for two-way OFDM relay networks. By per-
forming channel coding across subcarriers, this strategy can
exploit frequency selective fading, and achieve higher data
rate than the per-subcarrier DF relay strategy in [9]. We
further formulate a power allocation problem to maximize
the exchange rate, which is defined as the maximal data
rate can be simultaneously achieved in both directions. An
efficient dual decomposition algorithm is proposed to resolve
this problem, which has a linear complexity with respect to
the number of subcarriers. Simulation results show that the
proposed multi-subcarrier DF relay strategy outperforms not
only the conventional per-subcarrier DF relay strategy, but also
the AF relay strategy in a wide SNR region.

II. SYSTEM DESCRIPTION

We consider the two-way OFDM relay network shown in
Fig. 1: two terminal nodesT1 and T2 exchange information
via an intermediate relay nodeTR. Assume that each node
has a single antenna and operates in a half-duplex mode, i.e.,
transmitting and receiving in orthogonal time slots [1], [2].
All the nodes employ OFDM air interface with the sameN
subcarriers.
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Fig. 1. System model of two-way OFDM relay network.
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The DF relay procedure comprises of a multiple-access
(MA) phase and a broadcast (BC) phase without direct trans-
missions, as shown in Fig. 1. We setXi = (Xi1, . . . , XiN )
and Yi = (Yi1, . . . , YiN ) for i = 1, 2, R, whereXin and Yin

denote the normalized transmitted and received signal in the
nth subcarrier atTi. In the MA phase,T1 and T2 transmit
X1 andX2 simultaneously to the relay node, and the relay
TR performs multi-user detection to fully decodeX1 andX2

from the receivedYR; in the BC phase, the relayTR broadcasts
XR = f(X̂1, X̂2) to T1 andT2.

Specifically, in thenth subcarrier,h1n andh2n denote the
channel coefficients fromT1 andT2 to TR, respectively,̃h1n

and h̃2n denote the channel coefficients fromTR to T1 and
T2, respectively. Thus, the received signalsYin’s in the nth
subcarrier atTi’s are given by

YRn =
√

P1nh1nX1n +
√

P2nh2nX2n + ZRn, (1)

Y1n =
√

PRnh̃1nXRn + Z1n, (2)

Y2n =
√

PRnh̃2nXRn + Z2n, (3)

wherePin denotes the transmit power in thenth subcarrier
at Ti, and Zin denotes independent complexadditive white
Gaussian noiseswith zero mean and unit variance, i.e.,Zin∼
CN (0, 1), for i = 1, 2, R. Therefore,Pin essentially denotes
the corresponding transmit SNR.

We assume thatµ ∈ (0, 1) denotes thefixed proportion of
time slot allocated to the MA phase, and all the terminals
are subject to separate power constraints

∑N

n=1Pin ≤ Pimax

(i = 1, 2, R), wherePimax denotes the maximum available
power forTi.

III. A NOVEL DF RELAY STRATEGY FOR TWO-WAY

OFDM RELAY NETWORKS

For two-way OFDM relay networks, the conventional DF
relay strategies simply applied the narrow-band DF technique
over each subcarrier independently, and the overall throughput
was the sum rate of all the subcarriers [9], [11]. However, these
strategies suffer from rate losses due to channel mismatching.

In this section, we propose a novelmulti-subcarrier DF
relay strategy, which performs channel coding across sub-
carriers to leverage frequency selective fading, and achieve
higher data rate. An achievable rate region for this strategy is
provided in the following theorem.

Theorem 1. Any rate pair(R12, R21) satisfying the follow-
ing inequalities is achievable for the two-way OFDM relay
network given by(1)-(3):

R12 ≤ µ

N
∑

n=1

log2
(

1 + |h1n|
2P1n

)

, (4a)

R12 ≤ (1− µ)

N
∑

n=1

log2

(

1 + |h̃2n|
2PRn

)

, (4b)

R21 ≤ µ

N
∑

n=1

log2
(

1 + |h2n|
2P2n

)

, (4c)

R21 ≤ (1− µ)

N
∑

n=1

log2

(

1 + |h̃1n|
2PRn

)

, (4d)

R12 +R21 ≤ µ

N
∑

n=1

log2
(

1 + |h1n|
2P1n + |h2n|

2P2n

)

, (4e)

N
∑

n=1

Pin ≤ Pimax, i = 1, 2, R, (4f)

Pin ≥ 0, ∀ n ∈ N , i = 1, 2, R. (4g)

whereN , {1, . . . , N}, R12 and R21 denote the achievable
data rates fromT1 to T2 and fromT2 to T1, respectively.

Proof: An achievable rate region of a DF relay strategy
for the discrete-memoryless two-way relay network has been
given by the set of(R12, R21) rate pairs satisfying [12]

R12 ≤ min{µI(X1;YR|X2), (1− µ)I(XR;Y2)} , (5a)

R21 ≤ min{µI(X2;YR|X1), (1− µ)I(XR;Y1)} , (5b)

R12 +R21 ≤ µI(X1, X2;YR). (5c)

Each mutual information item in (5a)-(5c) corresponds to the
achievable rate of a parallel point-to-point channel. Similar
to the idea in the proof of [3, Theorem 1], we choose the
input signals for each subcarrier to beindependent Gaussian
distributed with unit variance, i.e.,Xin∼CN (0, 1). Thus, each
mutual information item in (5a)-(5c) is replaced by the sum
of N logarithmic rate items decided by (1)-(3) with separate
power constraints. The proof is complete.

Remark 1:The key idea of thismulti-subcarrier two-way
DF relay strategy is introducing channel coding across sub-
carriers to fully exploit frequency selective fading. Implicitly,
the information transmitted over one subcarrier in the MA
phase may be forwarded over some other subcarriers in the
BC phase. By this, the problem frommismatchingof wireless
channels over subcarriers is resolved. The achievable rate
region of Theorem 1 is no smaller than that achieved by the
per-subcarriertwo-way DF relaying, which is the set of rate
pairs satisfying [9]

R12 ≤
N
∑

n=1

min
{

µ log2
(

1 + |h1n|
2P1n

)

,

(1− µ) log2
(

1 + |h̃2n|
2PRn

)}

,

R21 ≤
N
∑

n=1

min
{

µ log2
(

1 + |h2n|
2P2n

)

,

(1− µ) log2
(

1 + |h̃1n|
2PRn

)}

,

R12 +R21 ≤ µ

N
∑

n=1

log2
(

1 + |h1n|
2P1n + |h2n|

2P2n

)

.

Therefore, multi-subcarrier two-way relay channel is not
a simple linear combination of multiple narrow-band single-
subcarrier two-way relay subchannels. Similar observations
have been found forone-wayparallel relay networks [3].

IV. OPTIMAL POWER ALLOCATION

In this section, we investigate the largest achievable sym-
metric exchange data rate of our proposed DF relay stratey,
which can be approached by an optimal power allocation.



A. Problem Formulation

By optimizing the power allocation strategy(P1,P2,PR),
our objective is to maximize theexchange rateRX =
min {R12, R21}, which is defined as the data rate can be
achieved simultaneously in both directions, wherePi =
[Pi1, Pi2, . . . , PiN ]T denotes the power allocation vector atTi,
for i=1, 2, R. This can be expressed as the followingconvex
optimization problem:

max
P1,P2,PR,RX

RX (7a)

s.t. RX ≤ µ

N
∑

n=1

log2
(

1 + |h1n|
2P1n

)

, (7b)

RX ≤ (1− µ)

N
∑

n=1

log2

(

1 + |h̃2n|
2PRn

)

, (7c)

RX ≤ µ

N
∑

n=1

log2
(

1 + |h2n|
2P2n

)

, (7d)

RX ≤ (1− µ)

N
∑

n=1

log2

(

1 + |h̃1n|
2PRn

)

, (7e)

RX ≤
µ

2

N
∑

n=1

log2
(

1 + |h1n|
2P1n + |h2n|

2P2n

)

, (7f)

N
∑

n=1

Pin ≤ Pimax, i = 1, 2, R, (7g)

Pin ≥ 0, ∀ n ∈ N , i = 1, 2, R. (7h)

It is readily observed that in the problem (7),P1 andP2 are
only related to the constraints (7b) (7d) (7f), whilePR is only
related to the constraints (7c) (7e). This observation helps to
decompose our original power allocation problem (7) into the
following two subproblems:

max
P1,P2,RMA

RMA (8)

s.t. RMA ≤ µ

N
∑

n=1

log2
(

1 + |h1n|
2P1n

)

,

RMA ≤ µ

N
∑

n=1

log2
(

1 + |h2n|
2P2n

)

,

RMA ≤
µ

2

N
∑

n=1

log2
(

1 + |h1n|
2P1n + |h2n|

2P2n

)

,

N
∑

n=1

P1n ≤ P1max,

N
∑

n=1

P2n ≤ P2max,

P1n ≥ 0, P2n ≥ 0, ∀ n ∈ N .

max
PR,RBC

RBC (9)

s.t. RBC ≤ (1 − µ)

N
∑

n=1

log2

(

1 + |h̃1n|
2PRn

)

,

RBC ≤ (1 − µ)

N
∑

n=1

log2

(

1 + |h̃2n|
2PRn

)

,

N
∑

n=1

PRn ≤ PRmax, PRn ≥ 0, ∀ n ∈ N .

We can denoteR⋆
MA and R⋆

BC as the optimal values for
the MA subproblem (8) and the BC subproblem (9), respec-
tively. Eventually, the maximal practical exchange rate for our
proposed DF strategy is given byR⋆

X = min{R⋆
MA, R

⋆
BC}.

B. Proposed Dual Decomposition Algorithm

The interior-point methods can be used to solve both of
the convexoptimization problems (8) and (9), however, they
quickly become computationally intractable asN increases,
because they have a complexity ofO(N3) at least when
solving the search direction in each iteration [13]. Therefore,
we present a low-complexity dual decomposition algorithm for
the subproblems (8) and (9), to efficiently obtain the optimal
solution to (7). Next, we will take the subproblem (8) as an
example to illustrate this algorithm.

Note that problem (8) is strictly feasible. Then, accordingto
the Slater’s condition [13], it is equivalent with the following
dual optimization problem:

max
λ,α�0

{

min
P1,P2�0,RMA

L (P1,P2, RMA,λ,α)

}

, (10)

where

L (P1,P2, RMA,λ,α) = −RMA

+ λ1

[

RMA − µ

N
∑

n=1

log2
(

1 + |h1n|
2P1n

)

]

+ λ2

[

RMA − µ

N
∑

n=1

log2
(

1 + |h2n|
2P2n

)

]

+ λ3

[

RMA −
µ

2

N
∑

n=1

log2
(

1 + |h1n|
2P1n + |h2n|

2P2n

)

]

+ α1

(

N
∑

n=1

P1n − P1max

)

+ α2

(

N
∑

n=1

P2n − P2max

)

=

N
∑

n=1

[

α1P1n + α2P2n − µλ1 log2
(

1 + |h1n|
2P1n

)

− µλ2 log2
(

1 + |h2n|
2P2n

)

−
µλ3

2
log2

(

1 + |h1n|
2P1n + |h2n|

2P2n

)

]

+ (λ1 + λ2 + λ3 − 1)RMA − α1P1max − α2P2max (11)

is the partial Lagrangian of (8), andλ = [λ1, λ2, λ3]
T ,α =

[α1, α2]
T are nonnegative dual variables associated with the

three rate constraints and two power constraints, respectively.

According to (11), theinner minimizationproblem of (10)
can be decomposed asN independent per-subcarrier power
allocation problems. Hence, the computational complexity
for solving the inner problem is only linear with respect
to N . In addition, the optimal(P1n, P2n) must satisfy the
following Karush-Kuhn-Tucker (KKT) conditions for given



dual variables(λ,α) [13]:

∂L

∂P1n

= α1−
µλ3|h1n|2

2 ln 2(1 + |h1n|2P1n + |h2n|2P2n)

−
µλ1|h1n|2

ln 2(1 + |h1n|2P1n)

{

≥ 0 if P1n = 0

= 0 if P1n > 0
, (12)

∂L

∂P2n

= α2−
µλ3|h2n|2

2 ln 2(1 + |h1n|2P1n + |h2n|2P2n)

−
µλ2|h2n|

2

ln 2(1 + |h2n|2P2n)

{

≥ 0 if P2n = 0

= 0 if P2n > 0
. (13)

Thus, it must belong to one of the following four cases:
Case 1: P1n > 0, P2n > 0. Then the formulas (12)

and (13) hold with equality. It is hard to solve (12) and
(13) directly since they are bothquadratic equations of two
variablesP1n andP2n. However, we can utilize an auxiliary
variable defined asx = |h1n|2P1n + |h2n|2P2n to simplify
them. More specifically, from (12) and (13), one can obtain
that

|h1n|
2P1n =

2µλ1|h1n|2

2 ln 2 · α1−µλ3|h1n|2/(1 + x)
− 1, (14)

|h2n|
2P2n =

2µλ2|h2n|2

2 ln 2 · α2−µλ3|h2n|2/(1 + x)
− 1. (15)

Taking the sum of the above two equations, we obtain a
cubic equation ofx, which has closed-form solutions given
by Cardano’s Formula[14]. After deriving the positive rootx
of this cubic equation, we can easily obtain the optimalP1n

andP2n from (14) and (15). By this procedure, the quadratic
equations (12) and (13) are solved analytically by converting
to an equivalentcubic equation. Finally, we need to check
whetherP1n andP2n satisfy the conditionsP1n > 0, P2n > 0.

Case 2:P1n > 0, P2n = 0. Then the solutions to (12) and
(13) can be derived as

P1n =
µ(2λ1 + λ3)

2 ln 2 · α1

−
1

|h1n|2
, (16)

P2n = 0. (17)

This case happens only ifP1n > 0 and the KKT condition
(13), 2 ln 2·α2 ≥ 2µλ2|h2n|2 +

µλ3|h2n|
2

1+|h1n|2P1n
, is satisfied.

Case 3:P1n = 0, P2n > 0. Then the KKT conditions can
be reformulated as

P1n = 0, (18)

P2n =
µ(2λ2 + λ3)

2 ln 2 · α2

−
1

|h2n|2
. (19)

This case happens only ifP2n > 0 and the KKT condition
(12), 2 ln 2·α1 ≥ 2µλ1|h1n|

2 + µλ3|h1n|
2

1+|h2n|2P2n
, is satisfied.

Case 4:P1n = 0, P2n = 0. This is the default case when
the above three cases do not happen.

Then, we optimize the dual variables(λ,α) for the
outer maximizationproblem of (10). We redefineν =

[λ1, λ2, λ3, α1, α2]
T . Further, considering the KKT condition

for the optimal data rateRMA, we have

∂L

∂RMA

= λ1 + λ2 + λ3 − 1 = 0. (20)

In view of that the objective function is not differentiable
with respect to(λ,α), we consider to updateν using the
subgradient method [15], [16]. Specifically, in thekth iteration,
the subgradient method updatesνk by

νk+1 =
[

νk + skη(νk)
]

P
, (21)

where [ν]P represents theorthogonal projectionof ν to the
dual feasible set{ν | 1Tλ = 1,λ,α � 0} based on a finite
algorithm in [17],sk is the step size of thekth iteration, and
η(νk) is the subgradient of the outer problem of (10) atνk,
which can be chosen as

η(νk)=





















−µ
∑N

n=1
log2

(

1 + |h1n|2P ⋆
1n

)

−µ
∑N

n=1
log2

(

1 + |h2n|2P ⋆
2n

)

−µ

2

∑N

n=1
log2

(

1 + |h1n|2P ⋆
1n + |h2n|2P ⋆

2n

)

∑N

n=1
P ⋆
1n − P1max

∑N

n=1 P
⋆
2n − P2max





















,(22)

whereP ⋆
1n and P ⋆

2n are the optimal solution of the inner
minimization problem in thekth iteration. It has been shown
that the subgradient updates in (21) can converge to the
optimal dual pointν⋆ ask → ∞, provided that the step size
sk is chosen according to a diminishing step size rule [16].

Let CMA,i(P1,P2)(i = 1, 2, 3) denote the the right-hand
sides of three rate constraints in (8), respectively, and thus we
obtain the optimalR⋆

MA = min{CMA,i(P
⋆
1 ,P

⋆
2 ), i=1, 2, 3}.

The proposed dual decomposition algorithms for the MA
subproblem (8) are summarized in Algorithm 1. Similarly, the
BC subproblem (9) can be solved with the same techniques.
Their complexity grow in the order ofO(N), which are much
lower than the classic convex optimization software package
based on interior-point methods. Therefore, our proposed
algorithm is more favorable for large value ofN , which is
quite typical in OFDM systems.

Algorithm 1 Proposed dual decomposition algorithm for (8)

1: Input the system parameters{N,P1max, P2max}, the chan-
nel coefficients{h1n, h2n}Nn=1, and a solution accuracyǫ.

2: Setk = 1; Initialize dual variablesν1 = 1.
3: repeat
4: Compute the optimal{P1n, P2n} according to (12)

and (13) for∀ n ∈ N ;
5: Update the dual variablesνk according to (21);
6: k := k + 1;
7: until ‖νk − νk−1‖ ≤ ǫ ‖νk−1‖.
8: Output the optimal primal solution{P ⋆

1 ,P
⋆
2 } andR⋆

MA=
min{CMA,i(P

⋆
1 ,P

⋆
2 ), i=1, 2, 3}.



V. SIMULATION RESULTS

We consider an OFDM system withN = 32 subcarriers.
The frequency-domain channels are generated using 8 inde-
pendently and identically distributed Rayleigh distributed
time-domain taps with unit variance [6]. The separate power
constraints are set asP1max = P2max = PRmax, andµ = 0.5.

Our proposed multi-subcarrier DF relay strategy is denoted
as “Type 1 DF” scheme. Two reference schemes are considered
in our simulations: The first one is theper-subcarrier two-
way DF OFDM relay strategy in [9], which is denoted as
“Type 2 DF” scheme; the second one is the two-way AF
OFDM relaying scheme with optimized tone permutation in
[6]. We divide the sum rate (approximated by the lower bound
2RX in Type 1/2 DF scheme) byN and use this per-subcarrier
sum rate to evaluate performance at different average SNRs,
which are only related with the power constraintsPimax’s.

Fig. 2 presents the performance of different two-way OFDM
relay strategies. The best performance is achieved by Type 1
DF scheme with optimal power allocation (PA). At the spectral
efficiency of 2 bits/s/Hz, Type 1 DF scheme with optimal PA
provides a coding gain of about 2.5 dB compared with Type 2
DF scheme, by performing channel coding across subcarriers.
The PA gain between optimal PA and uniform PA of Type 1
DF scheme is given by 1.6 dB. It is interesting that Type 1 DF
scheme with uniform PA even outperforms Type 2 DF scheme
with optimal PA, when the average SNR is in the region [0 dB,
20 dB].

Although Type 1 DF scheme has no advantage over the
AF scheme in the high SNR region due to its additional fully
decoding requirement atTR, it outperforms the AF scheme
in the low and median SNR region. The intersection of the
curves for Type 1 DF scheme and the AF scheme is at about
17.5 dB, which is 5 dB higher than that for Type 2 DF scheme
and the AF scheme.

VI. CONCLUSION

We have proposed a novel DF relay strategy for two-way
OFDM relay networks and derived its achievable rate region.
The key idea is making use of cross-subcarrier channel coding
to fully exploit frequency selective fading. An efficient duality-
based power allocation algorithm is also proposed to maximize
the symmetric exchange data rate in both directions. Our
simulation results suggest that the proposed DF strategy has
better performance than existing DF or AF two-way OFDM
relay strategies in the moderately low SNR region. We believe
this two-way DF strategy tends to be optimal, i.e., achieving
the capacity region outer bound, in the moderately low SNR
region. The optimality of the proposed two-way DF strategy
and the effect of channel uncertainty are currently under our
investigation.
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