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Abstract—We recently investigated the spectral efficiency,
achievable with a symbol-by-symbol receiver, for linear modula-
tions employing time-frequency packing. In this paper, we will
investigate the improvements that can be obtained by increasing
the receiver complexity. In the numerical results, we will mainly
concentrate on time packing (an extension of the so called faster-
than-Nyquist signaling technique) and on (i) receivers based
on linear processing plus symbol-by-symbol detection or (ii)
receivers based on a more sophisticated trellis processing with
constrained complexity. Finally, the potential advantage of the
proposed signalling scheme when combined with conventional
low-density parity-check (LDPC) coding of the DVB-S2 air
interface will be presented.

I. INTRODUCTION

In satellite links for broadcasting and broadband applica-

tions, orthogonal signaling, that ensures absence of intersym-

bol interference (ISI), is often adopted. As an example, in

the 2nd-generation satellite digital video broadcasting (DVB-

S2) standard [1], a conventional square-root raised-cosine

(RRC) pulse shaping filter is specified at the transmitter. In

an additive white Gaussian noise channel and in the absence

of other impairments, the use of a matched filter (MF) at the

receiver and proper sampling ensure that optimal detection

can be performed on a symbol-by-symbol basis. On the other

hand, it is known that, when finite-order constellations are

considered [e.g., phase-shift keying (PSK)], the efficiency of

the communication system can be improved by giving up

the orthogonality condition, thus accepting interference. For

example, faster-than-Nyquist signaling (FTN, see [2], [3]) is

a well known technique consisting of reducing the spacing

between two adjacent pulses in the time-domain well below

the Nyquist rate, thus introducing ISI. If the receiver is able to

cope with the interference, the efficiency of the communication

system will be increased. In the original papers on FTN

signaling [2], [3], this optimal time spacing is obtained as the

smallest value giving no reduction of the minimum Euclidean

distance with respect to the Nyquist case. This ensures that,

asymptotically, the ISI-free performance is reached, at least

when the optimal detector is adopted. The i.u.d. capacity or

information rate, i.e., the average mutual information when

the channel inputs are independent and uniformly distributed

(i.u.d.) random variables, is then computed, still assuming the

adoption of the optimal detector [4], [5]. However, the com-

plexity of this optimal detector easily becomes unmanageable,

and no hints are provided on how to perform the optimization

in the more practical scenario where a reduced-complexity

receiver is employed.

In [6], a different approach for improving the spectral

efficiency, that relies on both time packing of adjacent symbols

and reducing the spacing of the adjacent channels when

applicable (multi-carrier transmission), has been considered.

It is assumed that, at the receiver side, a symbol-by-symbol

detector working on the samples at the MF output is adopted,

and the corresponding information rate is computed, by also

optimizing time and frequency spacings to maximize the

achievable spectral efficiency (ASE). Hence, rather than the

minimum distance, the ASE is the performance measure and,

in addition, a low-complexity detection algorithm, character-

ized by a given allowable complexity irrespectively of the

interference set size, is considered at the receiver rather than

the optimal detector employed in [2]–[5]. Although the MF

output represents a set of sufficient statistics for optimal

detection, a suboptimal symbol-by-symbol receiver is consid-

ered in [6]. Hence, the ASE can be improved by employing

more sophisticated detection algorithms. In this paper, we will

consider two cases: (i) a proper filtering of the MF output

plus a symbol-by-symbol detector and (ii) the maximum a

posteriori (MAP) symbol detector that, in order to limit the

receiver complexity, takes into account only a limited amount

of interference.

This technique arises as a good alternative, for low-order

constellations, to the shaping of the transmitted symbol dis-

tribution [7], providing spectral efficiencies that cannot be

reached when orthogonal signaling is employed. Improving

the ASE without increasing the constellation order can be con-

siderably convenient since the larger the constellation size, the

higher the decoding complexity and the lower the robustness

to channel impairments such as time-varying phase noise and

non-linearities. In the case of frequency packing, a further

improvement could be achieved by adopting, at the receiver

side, a multi-user detector, although this case is not considered

in the numerical results for lack of space. The remainder of this

paper is organized as follows. The system model is described

in Section II. In Section III, we compute and optimize the

spectral efficiency considering detectors with different com-

plexity. Numerical results are reported in Section IV, where we

also show the performance of some efficient modulation and

coding formats (MODCODs) designed accordingly. Finally,

some conclusions are drawn in Section V.
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II. SYSTEM MODEL

We consider an additive white Gaussian noise (AWGN)

channel and a frequency-division multiplexed system where

perfectly synchronized (downlink assumption) adjacent chan-

nels employ the same linear modulation format, shaping pulse

p(t), and symbol interval (or time spacing) T . The shaping

pulse is assumed to have unit energy. The received signal can

be expressed as

r(t) =
√

2Es

∑

n

∑

ℓ

xn,ℓp(t− nT )ej2πℓFt + w(t) (1)

where Es is the symbol energy, xn,ℓ the symbol transmitted

over the ℓ-th channel during the n-th symbol interval, F
the frequency spacing between adjacent channels, and w(t) a

circularly symmetric zero-mean white Gaussian noise process

with power spectral density 2N0. The transmitted symbols

{xn,ℓ} are independent and uniformly distributed and belong

to a given zero-mean M -ary complex constellation χ properly

normalized such that E{|xn,ℓ|
2} = 1. Note that the sum-

mations in (1) extend from −∞ to +∞, namely an infinite

number of time epochs and carriers are employed. For the

spectral efficiency computation, we will consider the central

user only using F as a measure of the signal bandwidth.

The base pulse p(t) has often RRC-shaped spectrum (RRC

pulse in the following) with roll-off factor α. In addition

to it, we will consider other transmit pulses, e.g., a pulse

whose spectrum is raised-cosine (RC) shaped (RC pulse in the

following) and a Gaussian pulse. In general, we will consider

the case of time-frequency packing and we will optimize the

frequency separation F between two adjacent users and the

symbol interval T in order to maximize the ASE. In the case

of bandlimited pulses (i.e., RRC and RC pulses), we will also

consider time packing only. In this case, adjacent users are

not allowed to overlap in frequency (i.e., F = (1 + α)/T for

RRC and RC pulses) and we may assume that only the user

with ℓ = 0 is transmitted. In satellite communications, this can

correspond to the use of a single carrier occupying the entire

transponder bandwidth. This is of particular interest since the

on-board power amplifier can operate closer to saturation and

hence improve the efficiency.

III. SPECTRAL EFFICIENCY OPTIMIZATION

In this section, we shown how to compute the ASE for a

given receiver and how to optimize the values of T and F .

A. Symbol-by-Symbol detection

Let us consider the central user (i.e., that for ℓ = 0). We

first consider the case shown in Figure 1(a) of a receiver

composed by a filter matched to the shaping pulse p(t),
followed by a proper discrete-time filter, that works on η ≥ 1
samples per symbol interval, and a symbol-by-symbol (SBS)

detector. Although the discrete-time filter could be, in general,

fractionally-spaced (FS, i.e., η > 1), the detector will operate

on one sample per symbol interval. These samples will be

processor
trellis
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Figure 1. Some considered receivers: (a) symbol-by-symbol detector and (b)
single-user detector based on trellis processing.

denoted by {yk,0} and can be expressed as

yk,0 =
√

2Esxk,0h(0, 0, k)

+
√

2Es

∑

(n,ℓ) 6=(0,0)

xk−n,ℓh(n, ℓ, k) + zk (2)

in which h(n, ℓ, k) is the residual interference at time kT due

to the ℓ-th user and the (k − n)-th transmitted symbol, and

{zk} is the additive noise term, in general colored unless a

whitening filter (WF) is employed after the MF. The discrete-

time filter is assumed properly normalized such that the noise

variance is 2N0. The dependence of coefficients h(n, ℓ, k) on

k is through a complex coefficient of unit amplitude which

disappears for ℓ = 0 (hence h(n, 0, k) is independent of k)

and is due to the fact that F is not an integer multiple of 1/T .

Eq. (2) shows the two different impairments experienced

by the receiver, namely the background noise and the inter-

ference. Instead of simply neglecting the interference due to

adjacent symbols and users, we pursue here a more general

approach, which consists of modeling the interference as a

zero-mean Gaussian process with power spectral density equal

to 2NI , of course independent of the additive thermal noise—

we point out that this approximation is exploited only by

the receiver, while in the actual channel the interference is

clearly generated as in (2). Note that the interference is really

Gaussian distributed only if the transmitted symbols xk,ℓ are

Gaussian distributed as well. However, especially when the

interference set is small, e.g., when T and F are large, the

actual interference distribution may substantially differ from a

Gaussian distribution.

We define auxiliary channel the channel model assumed by

the receiver. With the above mentioned Gaussian approxima-

tion, the auxiliary channel is

yk,0 =
√

2Esxk,0h(0, 0, k) + vk (3)

where {vk} are independent and identically distributed zero-

mean circularly symmetric Gaussian random variables, with

variance 2(N0 +NI). It turns out that

NI = Es

∑

(n,ℓ) 6=(0,0)

|h(n, ℓ, k)|2 (4)

which results to be independent of k, as can be easily shown.

We are interested in evaluating the ultimate performance limits

achievable by a symbol-by-symbol receiver designed for the

auxiliary channel (3) when the actual channel is that in (2), in

terms of information rate (or spectral efficiency). This issue

is an instance of mismatched detection [8] (see also [9]). The

achievable information rate (AIR), measured in bit per channel
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use, for this mismatched receiver is

I(xk,0; yk,0) = Exk,0,yk,0















log2
MpYk,0|Xk,0

(yk,0|xk,0)
∑

x∈χ

pYk,0|χ(yk,0|x)















(5)

where pYk,0|Xk,0
(yk,0|xk,0) is a Gaussian probability density

function (PDF) of mean xk,0 and variance 2(N0 + NI) [in

accordance with the auxiliary channel model (3)], while the

outer statistical average, with respect to xk,0 and yk,0, is

carried out according to the real channel model (2) [9].

Eq. (5) can be evaluated efficiently by means of a Monte

Carlo average [9]. From a system viewpoint, the spectral

efficiency, that is the amount of information transmitted per

second and per Hertz, is a more significant quality figure

than the information rate. Under the assumption of infinite

transmission, the ASE is defined as

η =
1

FT
I(xk,0; yk,0)

[

bit

s ·Hz

]

. (6)

For a given constellation and shaping pulse, it is possible

to find the spacings T and F that provide the largest ASE. In

general, we could expect that the optimal spacings depend on

the signal-to-noise ratio (SNR). In fact, it is possible to show

that, as the SNR increases, not only does the ASE increase, but

also the optimal values of the spacings change. The properties

of the function η(T, F,ES/N0) cannot be easily studied in

closed form, but it is clear, by physical arguments, that it is

bounded, continuous in T and F , and tends to zero when

T, F → 0 or T, F → ∞. Hence, the function η(T, F ) has

a maximum value—according to our findings, in most cases

there are no local maxima other than the global maximum.

Formally, for a given modulation format, shaping pulse, and

value of ES/N0, the optimization problem consists of finding

the maximum of η(T, F,ES/N0) varying T and F . This

problem can be solved by evaluating η(T, F,ES/N0) on a

grid of values of T and F (coarse search), followed by an

interpolation of the obtained values (fine search).

A measure of the SNR more significant than Es/N0 is given

by Eb/N0, being Eb the mean energy per information bit,

for which Es = I(Es)Eb holds. The optimization problem

becomes

ηM(Eb/N0) = max
T,F>0

η(T, F,Eb/N0) . (7)

In order to solve it for a given value of Eb/N0, we employed

the following technique. The AIR is first evaluated for some

values of the couple (T, F ), and Es/N0. The two sets, includ-

ing their cardinalities, must be designed so as to ensure an

accurate sampling of the AIR, when the latter is interpreted as

a function of T , F , and Es/N0. For each couple (Ti, Fj), cubic

spline interpolation can be used to obtain a continuous function

of Es/N0 (fine search), denoted as I(Ti, Fj , Es/N0). Then,

given a value of Eb/N0 the following fixed-point problems

are solved in Es/N0 for different couples (Ti, Fj),

Es

N0
= I

(

Ti, Fj ,
Es

N0

)

Eb

N0

and the AIRs corresponding to the solutions are denoted by

I(Ti, Fj , Eb/N0). Further improvements could be achieved by

adding NI as variable in eq. (7). However, we have found by

numerical results that choosing NI as in (4) is almost optimal.

The spectral efficiency depends on the employed discrete-

time filter. Since the optimization of this filter with the aim

of maximizing the spectral efficiency is a hard task, we

restricted our analysis to the cases of a WF, that will be also

considered in Section III-B, and of a minimum mean square

error (MMSE) feedforward equalizer, possibly fractionally

spaced (FS) with at most 22 taps.

B. Single-User Trellis Processing

Improved, still achievable, lower bounds can be obtained by

relaxing the constraint on the adopted detection algorithm. In

other words, we can consider a more complex receiver able

to cope with (a portion of) the interference introduced by the

adoption of the time-frequency packing. The receiver consid-

ered in this section will not cope with the interference due to

the adjacent users—a single-user receiver is still adopted.

For a general channel with finite intersymbol interference,

an optimal MAP symbol detector can be designed working on

the samples at the WF output as shown in Figure 1(b). These

samples, denoted to as Forney observation model [10], can still

be expressed as in (2) with a proper expression of coefficients

h(n, ℓ, k). We assume to adopt the optimal receiver for the

following auxiliary channel:

yk,0 =
√

2Es

∑

0≤n≤L

fnxk−n,0 + vk (8)

where {fn}n≥0 are such that fn = h(n, 0, k) and, as men-

tioned, are independent of k, whereas the noise samples {vn},

that take into account the white noise and the residual inter-

ference, are assumed independent and identically distributed

zero-mean circularly symmetric Gaussian random variables

with variance 2(N0 +NI), with

NI =
∑

n>L

Es|fn|
2 +

∑

n

∑

ℓ 6=0

Es|h(n, ℓ, k)|
2 . (9)

which is still independent of k. The corresponding MAP sym-

bol detector takes the form of the classical algorithm by Bahl,

Cocke, Jelinek and Raviv (BCJR) [11] working on a trellis

whose state takes into account L interfering symbols only,

according to a given maximal allowable receiver complexity.

The number of trellis states is equal to S = ML.

Let us define x
N = (x0,0, x1,0, ..., xN,0) and y

N =
(y0,0, y1,0, ..., yN,0), N being a proper integer. The simulation-

based method described in [9] allows to evaluate the AIR for

the mismatched receiver, i.e.,

I(x;y) = lim
N→+∞

1

N
I(xN ;yN )

= lim
N→+∞

1

N
E

{

log2
p(yN |xN )

p(yN )

} [

bit

ch. use

]

.(10)
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Figure 2. ASE for QPSK with Gray mapping and a RRC pulse having
α = 0.2.

In (10), p(yN |xN ) and p(yN ) are PDF according to the

auxiliary channel model, while the outer statistical average

is with respect to the input and output sequences evaluated

according to the actual channel model [9]. Eq. (10) can be

evaluated recursively through the forward recursion of the

BCJR detection algorithm matched to the auxiliary channel

model [9]. Once the AIR has been computed, the spectral

efficiency can be derived and the optimal time and frequency

spacings optimized accordingly, as described in the previous

section. For channels with finite ISI, optimal MAP symbol

detection can be equivalently implemented by working directly

on the MF output [12], i.e., on the so-called Ungerboeck

observation model [13]. The equivalence does not hold when

reduced-complexity detection is considered and interference

from adjacent channels arises. Since it is difficult to predict

which is the most convenient observation model, it is of

interest to evaluate the ASE when both models are employed

and this can be done as described for the Forney model (see

also [14] for details).

C. Multi-User Detection

Although the assumption of a single-user auxiliary channel

gives very useful results, tighter lower bounds can be obtained

by using a more general auxiliary channel model. In fact, we

can consider a receiver for the central user (that with ℓ =
0) that, in addition to the interference taken into account by

the receivers in Section III-B, also takes into account the J
adjacent signals on each side as well (multi-user receiver)—we

again point out that this approximation is exploited only by

the receiver, while in the actual channel the interference is

generated as in (1). The exact MAP receiver for the multi-

user auxiliary channel can be easily derived and employed to

find the ASE in the new scenario. The benefit of employing

the multi-user auxiliary channel model when evaluating the

ASE is two-fold: first, it allows to evaluate the performance

degradation due to the use of single-user receivers, despite

the presence of a strong adjacent channel interference, with

respect to a more involved multi-user receiver, which is more

“matched” to the real channel. Second, it gives a practical

performance upper bound when low-complexity approximate

multi-user receivers, for example based on linear equalization
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Figure 3. ASE for 8-PSK with a RRC pulse having α = 0.2.

or interference cancellation, are employed (as examples, those

in [15] and references therein). Obviously, in this case some

(limited) degradation must be expected. For lack of space, in

this paper we will not consider further this option.

IV. SIMULATION RESULTS

In this section, we report the optimized spectral efficiency

ηM as a function of Eb/N0 for different modulation formats

and shaping pulses. The considered modulation formats are

the quaternary and octal PSK (QPSK and 8-PSK).

Fig. 2 shows the optimized ASE in case of time packing

only for the QPSK modulation with a RRC pulse of roll-

off α = 0.2. Both symbol-by-symbol detection and trellis

processing (this latter taking into account L = 4 interfering

symbols) are considered assuming Gray mapping. In this case,

at the receiver side we may use two identical and independent

detectors, one working on the in-phase and the other one on the

quadrature component. This is beneficial in case of adoption of

a MAP symbol detector. In fact, when L interfering symbols

are taken into account, we have two detectors working on

a trellis with 2L states instead of a single detector working

on a trellis with 4L states. Hence, for a given complexity, a

larger number of interferers can be taken into account. The

curve related to the absence of time packing (i.e., in case of

orthogonal signaling) and the Shannon Limit for AWGN [16],

are also shown for comparison. It can be observed that

the time-packing technique allows to improve the spectral

efficiency for each Eb/N0 value with respect to the case of

orthogonal signaling. Moreover it can noticed that, in case of

use of a symbol-by-symbol detector, the FS-MMSE equalizer

seems the best option whereas the Ungerboeck observation

model is more suited in case of trellis processing. Similar

considerations hold for the 8-PSK modulation with a RRC

pulse of α = 0.2. The relevant results are shown in Fig. 3. Still

considering QPSK with Gray mapping and trellis processing

with S = 16, we evaluated the effect of different shaping

pulses. In particular, RRC and RC pulses with different roll-

off factors have been considered along with prolate spheroidal

wave functions [17] and the Gaussian pulse. In these two latter

cases, frequency packing is also employed. Fig. 4 shows the

performance of some of the considered pulses. In particular,
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Figure 4. ASE for QPSK with Gray mapping by using different pulses. At
the receiver, a MF front end and trellis processing with S = 16 is considered.

RRC pulses with α equal to 0.2 and 1.0 outperform all

other pulses at low and high Eb/N0 values, respectively. In

particular, an impressive asymptotic spectral efficiency of 4.3

bit/s/Hz is obtained with QPSK and α = 1.1 Hence, it seems

that there is no advantage in replacing the RRC with other

pulses, at least when a single-user receiver is considered. Some

improvements could, in fact, be obtained by adopting multi-

user detection at the receiver.

What information theory promises can be approached by us-

ing proper coding schemes. We considered MODCODs using

the low-density parity-check (LDPC) codes with length 64,800

bits of the DVB-S2 standard [1], properly combined with

QPSK and 8-PSK modulations with time packing. RRC pulses

with α = 0.2 or α = 1 are considered. The corresponding

packet error rate (PER) have been computed by means of

Monte Carlo simulations and the results are reported in the

spectral efficiency plane in Fig. 5 using, as reference, an

MPEG PER of 10−4. In the same figure, the performance

of the MODCODs based on the same LDPC codes with

orthogonal signaling and employing QPSK, 8-PSK, and the

amplitude phase-shift keying (APSK) modulation with 16

and 32 symbols (16- and 32-APSK) [1], are also shown

for comparison. We can observe that we can reach, with

QPSK, values of spectral efficiency that, in case of orthogonal

signaling, cannot be reached even with 16-APSK.

V. CONCLUSIONS

We have investigated a way to improve the spectral effi-

ciency of low-order linear modulations with different receivers.

The improvement is related to the use of time-frequency pack-

ing and the adoption of detectors with different complexity. We

accordingly designed proper MODCODs, showing that large

benefits can be obtained even by simply using time packing.
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1This is due to the fact that the shaping pulse is smoother and so, for a
given value of T , the introduced interference is lower.
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