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Abstract—Content Centric Networking (CCN) is a new network 

infrastructure around content dissemination and retrieval, shift 

from host addresses to named data. Each CCN router has a cache 

to store the chunks passed by it. Therefore the caching strategy 

about chunk placement can greatly affect the whole CCN 

performance. This paper proposes an implicit coordinate chunk 

caching location and searching scheme (CLS) in CCN 

hierarchical infrastructure. In CLS, there is at most one copy of a 

chunk cached on the path between a server and a leaf router. 

This copy is pulled down one level towards the leaf router by a 

request or pushed up one level towards the server by the cache 

eviction. Thus, it is possible to store more diverse contents in the 

whole CCN and improve the network performance. Plus, in order 

to reduce the server workload and file download time, a caching 

trail of chunk is created to direct the following request where to 

find the chunk. Extensive test-bed experiments have been 

performed to evaluate the proposed scheme in terms of a wide 

range of performance metrics. The results show that the 

proposed scheme outperforms existing algorithms. 
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I.  INTRODUCTION  

With the spread of the information-centric services, the 
need for a content-aware infrastructure has been addressed to a 
certain extent through various solutions like CDN, P2P and 
HTTP proxies, deployed on top of the current Internet. In 
parallel, significant research projects have been funded in the 
recent years focusing on the definition of novel infrastructure 
for the future Internet (e.g. US NSF GENI). It is generally 
accepted that named data, instead of its physical location, is the 
central element of routing in the future Internet. Content 
Centric Networking (CCN) [1], one of the predominant 
proposals, radically changed data transfer by pushing content 
storage and delivery through name at network layer itself.  

Chunk-level caching is a distinctive feature of CCN 
infrastructure and plays a fundamental role on system 
performance. Recently, there are two chunk-level caching 
analytical models proposed to evaluate data transfer in CCN 
using markov chains [2] and markov modulated rate process 
[3]. Furthermore, an analytical model of bandwidth and storage 
sharing is provided in [4] to guide a tradeoff between user 
performance and limited network resources. In addition, some 
experimental evaluations of storage management in CCN are 

presented in [5]. All the above related works, however, do not 
explore any optimal caching management strategies. Actually, 
dynamically placing the chunks in suitable intermediate nodes 
is an important and challenging task.  

The optimal object placement algorithm needs the caches’ 
coordination along the download path to the clients, which can 
be divided into two main types: explicit and implicit. With 
explicit coordination, caches share their state and additional 
information with each other [6, 7]. Using this information, each 
cache determines what to cache, when to do so and what to 
drop. In [6], the object placement problem is formulated as an 
optimization problem and the optimal locations to cache the 
object are obtained using additional information such as access 
patterns and content popularity. In addition, a Filter algorithm 
presented in [7], which aims at finding fundamental design 
principles for hierarchical caches, makes local caching 
decisions based on the document request frequency at the leaf 
cache which received the original request. However, the main 
cost of these explicit schemes is the additional communication 
overhead needed for coordination as well as coordination 
algorithms that can be quite complex and sophisticated. 

Implicit coordination, on the other hand, removes the need 
for such elaborate reporting protocols. Instead, it relies on local 
cache management policies, as well as the relative position of 
each cache in the network, to achieve good performance [8-11].  
Therefore, implicit coordination is more applicable than the 
explicit coordination. This is the reason why we focus on the 
implicit coordination scheme in this paper. Currently, it is not 
optimal to cache the download chunk at all intermediate routers 
in CCN. The implicit schemes in [10, 11], however, still have 
some problems. For example, placing the copy of a chunk at 
few routers may cause the other clients long download time, 
which will be discussed in details in the next section. 

This paper proposes an implicit coordinate chunk caching 
location and searching scheme (CLS) in CCN hierarchical 
infrastructure. The hit chunk at level l is pushed down to the l-1 
level cache towards the clients, and the evicted chunk at level l 
is pushed back to the l+1 level cache. Thus, there is always one 
and at most one copy of a chunk cached on the whole path 
between a server and a leaf router. Furthermore, a trail storing 
the chunk caching history is set up during the chunk cached up 
and down, which is used to definitely direct the following 
chunk search.  



The main contributions of this paper are: 

 We propose an implicit coordinate chunk placement 
scheme to improve the CCN cache efficiency. 

 We provide a chunk searching policy based on the 
caching trail. At the best of our knowledge, this is the 
first scheme proposed by considering both caching 
strategy and request routing together. 

 We evaluate the effectiveness of the CLS scheme by 
extensive test-bed experiments. The results show that 
our scheme outperforms existing schemes. 

The remainder of this paper is organized as follows: Section 
II presents the background and relevant problems analysis, and 
then the proposed CLS scheme is described in detail in Section 
III. Scheme evaluation through test-bed results are presented in 
Section IV. Finally, Section V offers some concluding remarks. 

II. BACKGROUND 

This section covers the introduction of CCN，three implicit 

coordinate caching schemes, and relevant problems analysis.  

A. CCN 

It is generally recognized that the CCN has the following 
four main characteristics [4]: (1) named objects segmented in 
uniquely identified chunks; (2) receiver-driven chunk-based 
transport protocol; (3) routers with in-network per-chunk 
storage capabilities; (4) name-based routing and forwarding 
primitives. Here we give a simple CCN description as follows.  

 There are two CCN packet types, Interest and Data. Data is 
transmitted only in response to an Interest. The CCN router has 
three main data structures: the Forwarding Information Base 
(FIB), Content Store (CS) and Pending Interest Table (PIT). 
The FIB which is created based on the CCN name routing 
protocol, is used to forward Interest packets toward potential 
source(s). The CS caches the chunks passed by it according to 
the cache strategy. The PIT keeps track of Interests forwarded 
upstream toward content source(s) so that returned Data can be 
sent downstream to its original requester(s). The caching policy 
in the CCN is called whole course caching, which means a 
copy of the requested chunk is cached in all intermediate 
routers between hit point and requesting client.  

B. Breadcrumbs 

An implicit, transparent and best-effort approach towards 
caching, called Breadcrumbs, is proposed in [9] to provide a 
simple content caching and searching. The whole course 
caching is also used in Breadcrumbs, like CCN. A trail for the 
purpose of storing routing history is created and maintained 
indefinitely at each router as the file is downloaded. Thus, the 
following request for the same file may be routed downstream 
towards the clients directing by such trail, instead of upstream 
towards the sources. Accordingly, a time thresholds is used in 
this scheme to judge whether searching downstream or not. 
Such downstream request routing approach may reduce the 
server workload and file download time if the file is found 
downstream. However, the request may also suffer missing 
downstream if the file is evicted at each router.  

C. LCD and MCD 

A simple implicit coordinate caching scheme is called 
Leave Copy Down (LCD) [10]: under LCD a new copy of the 
requested document is cached only at the l-1 level cache, i.e., 
the one that resides immediately below the location of the hit 
on the path to the requesting client. Another scheme is called 
Move Copy Down (MCD) [10]: similar to LCD with the 
difference that a hit at level l moves the requested document to 
the underlay cache. The operation of the above mentioned 
schemes are illustrated in Fig. 1. 
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Figure 1.  The cache operation of CCN, LCD and MCD. 

According to the simulation results in [11], LCD performed 
better than MCD under the tree topologies in fact that LCD has 
one more copy to serve other clients connected to other 
branches. Furthermore, the simulation results also showed the 
LCD was superior to the CCN and the Filter algorithm.  

D. Problem Analysis 

Comparing to whole course caching, LCD and MCD have 
the merits of being able to avoid the amplification of 
replacement errors and achieve the cache exclusivity [10]. 
Replacement errors occur when a less popular object causes 
the eviction of a more popular one. Leaving a copy in all the 
intermediate caches is, in effect, leading to the amplification of 
replacement errors. Cache exclusivity is achieved though 
reducing the unnecessary repetitious caching of the same 
objects at multiple levels.  

On the other hand, whole course caching, like CCN, places 
copies at all the intermediate routers to achieve the following 
two goals: (1) have a nearby copy to service other clients 
connected to other branches that do not have a copy of the 
document; (2) have a “backup” copy for the requesting client in 
case its leaf copy is evicted from the leaf cache. LCD and 
MCD cannot achieve the two goals. 

The request routing policy in Breadcrumbs is able to 
resolve the above contradiction to a certain degree. However, 
the Breadcrumbs still suffers a miss risk during searching 
downstream.  In addition, the Breadcrumbs only focus on the 
searching algorithm without considering the chunk placement 
strategy. Therefore, this paper proposes an implicit coordinate 
CLS scheme to address the above contradiction by sharing 
some resemblance with MCD and Breadcrumbs. 

III. PROPOSED SCHEME 

This section describes the proposed CLS scheme in details 
under CCN hierarchical infrastructure. 



A. Main Operation 

The key idea of CLS is that a hit at level l pulls the 
requested chunk down to the under level CS. And an eviction 
at level l pushes the banished chunk back to the upper level CS. 
Meanwhile, a caching trail is created along the download path 
to assist chunk search. The details are as follows: 
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Figure 2.  An example of the CLS scheme operation. 

1) Caching pull-down to the under level: under CLS the 

hit chunk at level l is pulled down to the l-1 level CS, the same 

operation as MCD. This requires that the requested chunk be 

deleted from the CS (moved to the bottom of the stack) where 

the hit occurred. No deletion of course takes place when the hit 

occurs at the server. CLS requires multiple requests to bring a 

chunk to a leaf router, with each request advancing a new copy 

of the chunk one hop closer to the client, as shown in Fig. 2 (a)-

(c). Thus, there is at most only one copy of the chunk is cached 

on the path between a server and a leaf router.   
The idea behind Caching pull-down is to avoid the 

amplification of replacement errors and achieve the cache 
exclusivity as mentioned above. 

2) Caching return-back to the upper level: when a chunk 

is evicted from a CS at level l due to replacement, for example 

LRU, the CLS scheme forces its caching at level l+1with a 

Flag R, as shown in Fig. 2 (d). The Flag R will be explained in 

next subsection. Accordingly, a least requested chunk may be 

pushed back up and up, till to the server. Except returning back 

to the server, the CLS ensures that there is always one copy of 

the chunk cached on the path between a server and a leaf router.  
Thus, the assurance of existence of such one copy is able to 

direct the following Interest right to the cached router, instead 
of the server, consequently leading to a reduction on server 

workload and download time. The searching policy is 
explained as follows. 

3) Searching policy according to the trail: A caching trail 

is created at each router along the download path in CLS. Each 

trail is a 4-tuple entry (ID, in, out, h), indexed by a global 

unique chunk ID, containing the following information: (1) 

Face of incoming router from which the chunk arrived, in; (2) 

Face(s) of outgoing router(s) to which the chunk was pushed 

down, out; (3) The number of hops from the server to this 

router, h. Each router modifies the PIT for the purpose of 

storing the trail information of previously cached chunks. 
The key difference of trails between CLS and Breadcrumbs 

is that the CLS trail is created at the time the chunk is cached, 
not passed by. An example of the trail creating procedure is 
illustrated in Fig. 2. When the first Interest pulls the chunk to A 
from server, a trail is created at A as (C1, null, null, 1), as 
shown in Fig. 2 (a). The null value of in means that the chunk 
is arrived from server, and the null value of out means that the 
chunk is cached locally without being pushed down. The value 
of h, carried in the Data chunk, increases one after advancing 
one hop. Then, with the second Interest, the chunk is pushed 
down to B. So the trail at A is modified to (C1, null, B, 1), 
while the trail at B is created as (C1, A, null, 2) (see Fig. 2 (b)). 
Accordingly, the third Interest changes the trails at A, B and C 
as shown in Fig. 2 (c). On the other hand, the trail will be 
deleted if the chunk is evicted by replacement (see Fig. 2 (d)). 
In such a case, the trail at B is also modified to (C1, A, null, 2) 
after caching the evicted chunk with Flag R.  
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Figure 3.  An example of the searching policy according to the trail (Hth =2). 

Therefore, the existence of a trail at a router means that 
there is a copy of such chunk cached on it or downstream, 
which is able to be used to direct the following Interest. An 
obvious question is in which direction to search a chunk: 
upstream to the server or downstream to the cached copy. Here, 
a simple policy is provided by comparing the number of the 
hops (h) with a predefined threshold (Hth). It is reasonable to 
set the value of Hth as the half of the number of hops from the 
server to the leaf router according to the ISP practical situation, 
which is out of the scope of this paper. Then, an intermediate 
router would forward an Interest downstream according to 
trails, instead of upstream according to FIB, if-and-only-if h is 
not less than the Hth. An example of this searching policy is 
showed in Fig. 3 where Hth is defined to be 2. Consequently, in 
order to search the same chunk (C1), the router B forwards the 
Interest from D downstream (see Fig. 3 (a)), while the router A 
forwards the Interest from F upstream (see Fig. 3 (b)). 



It is obvious that the CLS is superior to Breadcrumbs in 
that the CLS can ensure successful finding a chunk if search 
downstream, and save cache space by deleting a trail on time.  

B. Special Cases 

In addition, there are some special cases should be 
explained in order to ensure the CLS works correctly. To 
achieve the cache exclusive, it requires that the CLS cache only 
one copy of one chunk on the path between a server and a leaf 
router. This is the design principle for following special cases. 

Before describing the details, let’s first illustrate the Flag R. 
In CLS, each Data is added a Flag R, which is used to identify 
the chunk state. More precisely, the value of R is set to 1 when 
a chunk is hit and modified to 0 after it is cached, as shown in 
Fig. 3. When a chunk is evicted, the value of R is set to 2. 
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Figure 4.  The operation of a router in CLS scheme when receiving a Data. 

One special case occurs when the router who has a trail 
receives a chunk with R=1, which differs from the above 
caching pull-down in that the chunk is sent out immediately 
without caching, as shown in bottom right of the Fig. 4. An 
example of such case is illustrated in Fig. 3 (a), where the 
router B sends the hit chunk to the D without caching, ensuring 
only one copy of the chunk on path S-A-B-C and path S-A-B-
D. Accordingly, the router B should update their trails by 
adding the D in the out. Plus, the value of h should be set to the 
smaller one between that in the trail and that derived from the 
received chunk (h=min(htrail,hchunk+1)). As shown in this 
example, when receiving a chunk with hchunk=3 from C, the 
router B, who has a trail with htrail=2, sets the value of h=2 to its 
trail and the chunk. Furthermore, it should be pointed out that a 
hit chunk is not deleted from CS if it is sent out to the previous 
incoming face in according to the trail, like C in Fig. 3 (a). 

Another special case occurs when an evicted chunk is 
pushed back to a router who has a trail with multiple out faces. 
The operation in this case is different from the above caching 
return-back in that the receiver just discards the chunk without 
caching, as shown in top right of the Fig. 4. An example of this 
case is shown in Fig. 5, where the router B deletes the evicted 
chunk (R=2) since its out value indicates that there is one copy 
of the chunk cached on one path passed B (S-A-B-D). As a 
result, the router B updates its trail by deleting C from out faces. 
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Figure 5.  The router B operation upon receiving evited chunk when B has 

two outgoing routers. 

IV. SCHEME EVALUATION 

A. Experimental Results 

Extensive test-bed experiments have been performed to 
compare the CLS with existing schemes, CCN and LCD. The 
experimental evaluation is performed on our modified version 
of CCNx prototype [13], where the topology is the same as that 
shown in Fig. 2. We consider 100 files, equally partitioned into 
100 classes of average size 50 KB, and the chunk size is 
4kBytes. In order to build fairly realistic network condition, the 
content popularity distribution is assumed to be Zipf(α) with α= 
0.3 or 0.9. Values of α close to 1 indicate that few distinct 
contents attract the majority of the requests while values close 
to 0 indicate almost uniform document popularities [13]. Users 
are connected to leaf router and generate the content request 
according to a Poisson process of intensity λ= 5 req/s [14]. All 
routers are equipped with an LRU CS, the total size of these 
CSs ranged from 10% to 50% of the whole contents.  

    

Figure 6.  Hit ratio vs. cache size. 

    
Figure 7.  Hit distance vs. cache size. 

Fig. 6 plots the average hit ratio of all the routers curves as 
a function of cache size for different caching schemes. The hit 
ratio is defined as the ratio of the number of Interest served by 
the caches to the total number of Interests arrived at the cache. 
The CLS scheme improves the chunk hit ratio over the other 
schemes. For example, at cache size 20% (α= 0.9), the hit ratios 



are 14.28%, 14.43%, 15.4% for CCN, LCD, CLS respectively. 
This also implies substantial load reduction at the content 
servers. Fig. 7 shows the average hit distance under each 
scheme, where the hit distance is measured in number hops 
from the client to the hit cache. The lower the average hit 
distance, the better the performance. The CLS scheme reduces 
the hit distance (about 12%) compared to the other schemes. 
This is not surprising because the CLS can reduce the 
replacement error and achieves cache exclusivity through 
keeping only one copy of the chunk cached on the path.  

    
Figure 8.  Download time vs. cache size. 

    
Figure 9.  Bandwidth consumption vs. cache size. 

Fig. 8 depicts the download time. By using the searching 
policy proposed in this paper, the CLS scheme slightly reduces 
the download time over the other schemes. By contrast, the 
CCN and LCD introduce about 50 ms more than that in CLS 
because some chunks may be found downstream in CLS. 
Finally, we examine the load on the network links. Fig. 9 
shows the average network traffic (measured in byte*hops) 
required to satisfy a request. From these figures, it can be 
clearly seen that the CLS scheme results in much lower load on 
the network links than the other schemes.  

In addition, the results reveals that the CLS only provides a 
little better performance than the LCD and CCN. The reason is 
that all results are derived from a three-level test-bed, which 
has a limitation to reflect the superiority of the CLS schemes. 
Furthermore, it can be clearly seen from all the above 
experimental results that the scenario of α= 0.9 show a better 
performance than that of α= 0.3 for all three schemes. This is 
because the benefits of such cache-and-forward architectures 
are more obvious when majority clients require few contents. 

B. Discussion 

It should be pointed that the CLS achieves the above merits 
at a cost of maintaining trails and keeping the faces information 
of the neighboring caches at each router. In addition, the CLS 
still has some limitations which are the focus of our future 
work. For instance, the above searching policy in the CLS 

cannot ensure the chunk be found at the nearest cache point to 
the client sometimes. The reason is that an intermediate router 
cannot judge who is close, the cached copy or server, according 
to the trail. Moreover, it is worth validating the CLS 
performance in a large architecture with many levels, such as 
10 levels. It may be more preferable to place more than one 
copy with large interval on the download path in that case. 

V. CONCLUSION 

This paper proposed an implicit coordinate chunk 
placement strategy and a simple Interest searching policy in 
CCN hierarchical infrastructure. Through ensuring only one 
copy of one chunk on a path, the CLS scheme could reduce 
replacement errors and achieve the cache exclusivity. With a 
simple searching policy, the CLS scheme could reduce the 
server workload and file download time. The experimental 
results showed that the CLS scheme effectively increases hit 
ratio and reduces hit distance, download time and bandwidth 
consumption compared to the existing caching algorithms.  
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