
A Chunk Caching Location and Searching Scheme in

Content Centric Networking

Yang Li, Tao Lin, Hui Tang

High Performance Network Laboratory

Institute of Acoustics, Chinese Academy of Sciences

Beijing, China

{liy, lint, tangh}@hpnl.ac.cn

Peng Sun

School of Control Science and Engineering

Shandong University

Jinan, China

sunpengsdu@gmail.com

Abstract—Content Centric Networking (CCN) is a new network

infrastructure around content dissemination and retrieval, shift

from host addresses to named data. Each CCN router has a cache

to store the chunks passed by it. Therefore the caching strategy

about chunk placement can greatly affect the whole CCN

performance. This paper proposes an implicit coordinate chunk

caching location and searching scheme (CLS) in CCN

hierarchical infrastructure. In CLS, there is at most one copy of a

chunk cached on the path between a server and a leaf router.

This copy is pulled down one level towards the leaf router by a

request or pushed up one level towards the server by the cache

eviction. Thus, it is possible to store more diverse contents in the

whole CCN and improve the network performance. Plus, in order

to reduce the server workload and file download time, a caching

trail of chunk is created to direct the following request where to

find the chunk. Extensive test-bed experiments have been

performed to evaluate the proposed scheme in terms of a wide

range of performance metrics. The results show that the

proposed scheme outperforms existing algorithms.

Keywords-CCN; chunk; caching location; searching

I. INTRODUCTION

With the spread of the information-centric services, the
need for a content-aware infrastructure has been addressed to a
certain extent through various solutions like CDN, P2P and
HTTP proxies, deployed on top of the current Internet. In
parallel, significant research projects have been funded in the
recent years focusing on the definition of novel infrastructure
for the future Internet (e.g. US NSF GENI). It is generally
accepted that named data, instead of its physical location, is the
central element of routing in the future Internet. Content
Centric Networking (CCN) [1], one of the predominant
proposals, radically changed data transfer by pushing content
storage and delivery through name at network layer itself.

Chunk-level caching is a distinctive feature of CCN
infrastructure and plays a fundamental role on system
performance. Recently, there are two chunk-level caching
analytical models proposed to evaluate data transfer in CCN
using markov chains [2] and markov modulated rate process
[3]. Furthermore, an analytical model of bandwidth and storage
sharing is provided in [4] to guide a tradeoff between user
performance and limited network resources. In addition, some
experimental evaluations of storage management in CCN are

presented in [5]. All the above related works, however, do not
explore any optimal caching management strategies. Actually,
dynamically placing the chunks in suitable intermediate nodes
is an important and challenging task.

The optimal object placement algorithm needs the caches’
coordination along the download path to the clients, which can
be divided into two main types: explicit and implicit. With
explicit coordination, caches share their state and additional
information with each other [6, 7]. Using this information, each
cache determines what to cache, when to do so and what to
drop. In [6], the object placement problem is formulated as an
optimization problem and the optimal locations to cache the
object are obtained using additional information such as access
patterns and content popularity. In addition, a Filter algorithm
presented in [7], which aims at finding fundamental design
principles for hierarchical caches, makes local caching
decisions based on the document request frequency at the leaf
cache which received the original request. However, the main
cost of these explicit schemes is the additional communication
overhead needed for coordination as well as coordination
algorithms that can be quite complex and sophisticated.

Implicit coordination, on the other hand, removes the need
for such elaborate reporting protocols. Instead, it relies on local
cache management policies, as well as the relative position of
each cache in the network, to achieve good performance [8-11].
Therefore, implicit coordination is more applicable than the
explicit coordination. This is the reason why we focus on the
implicit coordination scheme in this paper. Currently, it is not
optimal to cache the download chunk at all intermediate routers
in CCN. The implicit schemes in [10, 11], however, still have
some problems. For example, placing the copy of a chunk at
few routers may cause the other clients long download time,
which will be discussed in details in the next section.

This paper proposes an implicit coordinate chunk caching
location and searching scheme (CLS) in CCN hierarchical
infrastructure. The hit chunk at level l is pushed down to the l-1
level cache towards the clients, and the evicted chunk at level l
is pushed back to the l+1 level cache. Thus, there is always one
and at most one copy of a chunk cached on the whole path
between a server and a leaf router. Furthermore, a trail storing
the chunk caching history is set up during the chunk cached up
and down, which is used to definitely direct the following
chunk search.

The main contributions of this paper are:

 We propose an implicit coordinate chunk placement
scheme to improve the CCN cache efficiency.

 We provide a chunk searching policy based on the
caching trail. At the best of our knowledge, this is the
first scheme proposed by considering both caching
strategy and request routing together.

 We evaluate the effectiveness of the CLS scheme by
extensive test-bed experiments. The results show that
our scheme outperforms existing schemes.

The remainder of this paper is organized as follows: Section
II presents the background and relevant problems analysis, and
then the proposed CLS scheme is described in detail in Section
III. Scheme evaluation through test-bed results are presented in
Section IV. Finally, Section V offers some concluding remarks.

II. BACKGROUND

This section covers the introduction of CCN，three implicit

coordinate caching schemes, and relevant problems analysis.

A. CCN

It is generally recognized that the CCN has the following
four main characteristics [4]: (1) named objects segmented in
uniquely identified chunks; (2) receiver-driven chunk-based
transport protocol; (3) routers with in-network per-chunk
storage capabilities; (4) name-based routing and forwarding
primitives. Here we give a simple CCN description as follows.

 There are two CCN packet types, Interest and Data. Data is
transmitted only in response to an Interest. The CCN router has
three main data structures: the Forwarding Information Base
(FIB), Content Store (CS) and Pending Interest Table (PIT).
The FIB which is created based on the CCN name routing
protocol, is used to forward Interest packets toward potential
source(s). The CS caches the chunks passed by it according to
the cache strategy. The PIT keeps track of Interests forwarded
upstream toward content source(s) so that returned Data can be
sent downstream to its original requester(s). The caching policy
in the CCN is called whole course caching, which means a
copy of the requested chunk is cached in all intermediate
routers between hit point and requesting client.

B. Breadcrumbs

An implicit, transparent and best-effort approach towards
caching, called Breadcrumbs, is proposed in [9] to provide a
simple content caching and searching. The whole course
caching is also used in Breadcrumbs, like CCN. A trail for the
purpose of storing routing history is created and maintained
indefinitely at each router as the file is downloaded. Thus, the
following request for the same file may be routed downstream
towards the clients directing by such trail, instead of upstream
towards the sources. Accordingly, a time thresholds is used in
this scheme to judge whether searching downstream or not.
Such downstream request routing approach may reduce the
server workload and file download time if the file is found
downstream. However, the request may also suffer missing
downstream if the file is evicted at each router.

C. LCD and MCD

A simple implicit coordinate caching scheme is called
Leave Copy Down (LCD) [10]: under LCD a new copy of the
requested document is cached only at the l-1 level cache, i.e.,
the one that resides immediately below the location of the hit
on the path to the requesting client. Another scheme is called
Move Copy Down (MCD) [10]: similar to LCD with the
difference that a hit at level l moves the requested document to
the underlay cache. The operation of the above mentioned
schemes are illustrated in Fig. 1.

Interest Data

A

B

C

A

B

C

A

B

C

hit

miss

miss

copy

copy

hit

miss

miss

copy
hit

miss

miss

move

CCN/Breadcrumbs LCD MCD

Figure 1. The cache operation of CCN, LCD and MCD.

According to the simulation results in [11], LCD performed
better than MCD under the tree topologies in fact that LCD has
one more copy to serve other clients connected to other
branches. Furthermore, the simulation results also showed the
LCD was superior to the CCN and the Filter algorithm.

D. Problem Analysis

Comparing to whole course caching, LCD and MCD have
the merits of being able to avoid the amplification of
replacement errors and achieve the cache exclusivity [10].
Replacement errors occur when a less popular object causes
the eviction of a more popular one. Leaving a copy in all the
intermediate caches is, in effect, leading to the amplification of
replacement errors. Cache exclusivity is achieved though
reducing the unnecessary repetitious caching of the same
objects at multiple levels.

On the other hand, whole course caching, like CCN, places
copies at all the intermediate routers to achieve the following
two goals: (1) have a nearby copy to service other clients
connected to other branches that do not have a copy of the
document; (2) have a “backup” copy for the requesting client in
case its leaf copy is evicted from the leaf cache. LCD and
MCD cannot achieve the two goals.

The request routing policy in Breadcrumbs is able to
resolve the above contradiction to a certain degree. However,
the Breadcrumbs still suffers a miss risk during searching
downstream. In addition, the Breadcrumbs only focus on the
searching algorithm without considering the chunk placement
strategy. Therefore, this paper proposes an implicit coordinate
CLS scheme to address the above contradiction by sharing
some resemblance with MCD and Breadcrumbs.

III. PROPOSED SCHEME

This section describes the proposed CLS scheme in details
under CCN hierarchical infrastructure.

A. Main Operation

The key idea of CLS is that a hit at level l pulls the
requested chunk down to the under level CS. And an eviction
at level l pushes the banished chunk back to the upper level CS.
Meanwhile, a caching trail is created along the download path
to assist chunk search. The details are as follows:

A

B E

C D F

S

(C1,null,null,1)

A

B E

C D F

S

(C1,null,B,1)

(C1,A,null,2)

A

B E

C D F

S

(C1,null,B,1)

(C1,A,C,2)

(C1,B,null,3)

(a) Caching pull-down after

the first request

A

B E

C D F

S

(C1,null,B,1)

(C1,A,null,2)

Interest Data

(b) Caching pull-down after

the second request

(c) Caching pull-down after

the third request

(d) Caching return-back

to the upper level

R

hit

hit

hit

eviction

Figure 2. An example of the CLS scheme operation.

1) Caching pull-down to the under level: under CLS the

hit chunk at level l is pulled down to the l-1 level CS, the same

operation as MCD. This requires that the requested chunk be

deleted from the CS (moved to the bottom of the stack) where

the hit occurred. No deletion of course takes place when the hit

occurs at the server. CLS requires multiple requests to bring a

chunk to a leaf router, with each request advancing a new copy

of the chunk one hop closer to the client, as shown in Fig. 2 (a)-

(c). Thus, there is at most only one copy of the chunk is cached

on the path between a server and a leaf router.
The idea behind Caching pull-down is to avoid the

amplification of replacement errors and achieve the cache
exclusivity as mentioned above.

2) Caching return-back to the upper level: when a chunk

is evicted from a CS at level l due to replacement, for example

LRU, the CLS scheme forces its caching at level l+1with a

Flag R, as shown in Fig. 2 (d). The Flag R will be explained in

next subsection. Accordingly, a least requested chunk may be

pushed back up and up, till to the server. Except returning back

to the server, the CLS ensures that there is always one copy of

the chunk cached on the path between a server and a leaf router.
Thus, the assurance of existence of such one copy is able to

direct the following Interest right to the cached router, instead
of the server, consequently leading to a reduction on server

workload and download time. The searching policy is
explained as follows.

3) Searching policy according to the trail: A caching trail

is created at each router along the download path in CLS. Each

trail is a 4-tuple entry (ID, in, out, h), indexed by a global

unique chunk ID, containing the following information: (1)

Face of incoming router from which the chunk arrived, in; (2)

Face(s) of outgoing router(s) to which the chunk was pushed

down, out; (3) The number of hops from the server to this

router, h. Each router modifies the PIT for the purpose of

storing the trail information of previously cached chunks.
The key difference of trails between CLS and Breadcrumbs

is that the CLS trail is created at the time the chunk is cached,
not passed by. An example of the trail creating procedure is
illustrated in Fig. 2. When the first Interest pulls the chunk to A
from server, a trail is created at A as (C1, null, null, 1), as
shown in Fig. 2 (a). The null value of in means that the chunk
is arrived from server, and the null value of out means that the
chunk is cached locally without being pushed down. The value
of h, carried in the Data chunk, increases one after advancing
one hop. Then, with the second Interest, the chunk is pushed
down to B. So the trail at A is modified to (C1, null, B, 1),
while the trail at B is created as (C1, A, null, 2) (see Fig. 2 (b)).
Accordingly, the third Interest changes the trails at A, B and C
as shown in Fig. 2 (c). On the other hand, the trail will be
deleted if the chunk is evicted by replacement (see Fig. 2 (d)).
In such a case, the trail at B is also modified to (C1, A, null, 2)
after caching the evicted chunk with Flag R.

A

B E

C D F

S

(C1,null,B,1)

(C1,A,(C,D),2)

(C1,B,null,3)

(a) Request from node D

A

B E

C D F

S

(C1,null,(B,E),1)

(C1,A,C,2)

(C1,B,null,3)

(C1,A,null,2)

(C1,B,null,3)

Interest Data

(b) Request from node F

h≥Hth

h＜Hth

hit

hit

1 1

0 0

1

1

0

Figure 3. An example of the searching policy according to the trail (Hth =2).

Therefore, the existence of a trail at a router means that
there is a copy of such chunk cached on it or downstream,
which is able to be used to direct the following Interest. An
obvious question is in which direction to search a chunk:
upstream to the server or downstream to the cached copy. Here,
a simple policy is provided by comparing the number of the
hops (h) with a predefined threshold (Hth). It is reasonable to
set the value of Hth as the half of the number of hops from the
server to the leaf router according to the ISP practical situation,
which is out of the scope of this paper. Then, an intermediate
router would forward an Interest downstream according to
trails, instead of upstream according to FIB, if-and-only-if h is
not less than the Hth. An example of this searching policy is
showed in Fig. 3 where Hth is defined to be 2. Consequently, in
order to search the same chunk (C1), the router B forwards the
Interest from D downstream (see Fig. 3 (a)), while the router A
forwards the Interest from F upstream (see Fig. 3 (b)).

It is obvious that the CLS is superior to Breadcrumbs in
that the CLS can ensure successful finding a chunk if search
downstream, and save cache space by deleting a trail on time.

B. Special Cases

In addition, there are some special cases should be
explained in order to ensure the CLS works correctly. To
achieve the cache exclusive, it requires that the CLS cache only
one copy of one chunk on the path between a server and a leaf
router. This is the design principle for following special cases.

Before describing the details, let’s first illustrate the Flag R.
In CLS, each Data is added a Flag R, which is used to identify
the chunk state. More precisely, the value of R is set to 1 when
a chunk is hit and modified to 0 after it is cached, as shown in
Fig. 3. When a chunk is evicted, the value of R is set to 2.

R =?

has trail?

1) not cache

2) send out

1) cache

2) R=0

3) h=hchunk+1

4) send out

5) create trail

multiple

out?

1) not cache

2) h=min(htrail,hchunk+1)

3) send out

4) update trail

1) cache

2) R=0

3) update trail

1) not cache

2) discard

3) h=min(htrail,hchunk+1)

4) update trail

 (download)

1 (hit)

2 (eviction)

Y

N (caching pull-down)

Y

N

A. Main Operation B. Special Cases

0

(caching return-back)

Figure 4. The operation of a router in CLS scheme when receiving a Data.

One special case occurs when the router who has a trail
receives a chunk with R=1, which differs from the above
caching pull-down in that the chunk is sent out immediately
without caching, as shown in bottom right of the Fig. 4. An
example of such case is illustrated in Fig. 3 (a), where the
router B sends the hit chunk to the D without caching, ensuring
only one copy of the chunk on path S-A-B-C and path S-A-B-
D. Accordingly, the router B should update their trails by
adding the D in the out. Plus, the value of h should be set to the
smaller one between that in the trail and that derived from the
received chunk (h=min(htrail,hchunk+1)). As shown in this
example, when receiving a chunk with hchunk=3 from C, the
router B, who has a trail with htrail=2, sets the value of h=2 to its
trail and the chunk. Furthermore, it should be pointed out that a
hit chunk is not deleted from CS if it is sent out to the previous
incoming face in according to the trail, like C in Fig. 3 (a).

Another special case occurs when an evicted chunk is
pushed back to a router who has a trail with multiple out faces.
The operation in this case is different from the above caching
return-back in that the receiver just discards the chunk without
caching, as shown in top right of the Fig. 4. An example of this
case is shown in Fig. 5, where the router B deletes the evicted
chunk (R=2) since its out value indicates that there is one copy
of the chunk cached on one path passed B (S-A-B-D). As a
result, the router B updates its trail by deleting C from out faces.

A

B E

C D F

S

(C1,null,B,1)

(C1,A,(C,D),2)

(C1,B,null,3)

(a) Chunk evicted at C

A

B E

C D F

S

(C1,null,B,1)

(C1,A,D,2)

(C1,B,null,3)

(b) Chunk discarded at B

(C1,B,null,3)

2

eviction

Figure 5. The router B operation upon receiving evited chunk when B has

two outgoing routers.

IV. SCHEME EVALUATION

A. Experimental Results

Extensive test-bed experiments have been performed to
compare the CLS with existing schemes, CCN and LCD. The
experimental evaluation is performed on our modified version
of CCNx prototype [13], where the topology is the same as that
shown in Fig. 2. We consider 100 files, equally partitioned into
100 classes of average size 50 KB, and the chunk size is
4kBytes. In order to build fairly realistic network condition, the
content popularity distribution is assumed to be Zipf(α) with α=
0.3 or 0.9. Values of α close to 1 indicate that few distinct
contents attract the majority of the requests while values close
to 0 indicate almost uniform document popularities [13]. Users
are connected to leaf router and generate the content request
according to a Poisson process of intensity λ= 5 req/s [14]. All
routers are equipped with an LRU CS, the total size of these
CSs ranged from 10% to 50% of the whole contents.

Figure 6. Hit ratio vs. cache size.

Figure 7. Hit distance vs. cache size.

Fig. 6 plots the average hit ratio of all the routers curves as
a function of cache size for different caching schemes. The hit
ratio is defined as the ratio of the number of Interest served by
the caches to the total number of Interests arrived at the cache.
The CLS scheme improves the chunk hit ratio over the other
schemes. For example, at cache size 20% (α= 0.9), the hit ratios

are 14.28%, 14.43%, 15.4% for CCN, LCD, CLS respectively.
This also implies substantial load reduction at the content
servers. Fig. 7 shows the average hit distance under each
scheme, where the hit distance is measured in number hops
from the client to the hit cache. The lower the average hit
distance, the better the performance. The CLS scheme reduces
the hit distance (about 12%) compared to the other schemes.
This is not surprising because the CLS can reduce the
replacement error and achieves cache exclusivity through
keeping only one copy of the chunk cached on the path.

Figure 8. Download time vs. cache size.

Figure 9. Bandwidth consumption vs. cache size.

Fig. 8 depicts the download time. By using the searching
policy proposed in this paper, the CLS scheme slightly reduces
the download time over the other schemes. By contrast, the
CCN and LCD introduce about 50 ms more than that in CLS
because some chunks may be found downstream in CLS.
Finally, we examine the load on the network links. Fig. 9
shows the average network traffic (measured in byte*hops)
required to satisfy a request. From these figures, it can be
clearly seen that the CLS scheme results in much lower load on
the network links than the other schemes.

In addition, the results reveals that the CLS only provides a
little better performance than the LCD and CCN. The reason is
that all results are derived from a three-level test-bed, which
has a limitation to reflect the superiority of the CLS schemes.
Furthermore, it can be clearly seen from all the above
experimental results that the scenario of α= 0.9 show a better
performance than that of α= 0.3 for all three schemes. This is
because the benefits of such cache-and-forward architectures
are more obvious when majority clients require few contents.

B. Discussion

It should be pointed that the CLS achieves the above merits
at a cost of maintaining trails and keeping the faces information
of the neighboring caches at each router. In addition, the CLS
still has some limitations which are the focus of our future
work. For instance, the above searching policy in the CLS

cannot ensure the chunk be found at the nearest cache point to
the client sometimes. The reason is that an intermediate router
cannot judge who is close, the cached copy or server, according
to the trail. Moreover, it is worth validating the CLS
performance in a large architecture with many levels, such as
10 levels. It may be more preferable to place more than one
copy with large interval on the download path in that case.

V. CONCLUSION

This paper proposed an implicit coordinate chunk
placement strategy and a simple Interest searching policy in
CCN hierarchical infrastructure. Through ensuring only one
copy of one chunk on a path, the CLS scheme could reduce
replacement errors and achieve the cache exclusivity. With a
simple searching policy, the CLS scheme could reduce the
server workload and file download time. The experimental
results showed that the CLS scheme effectively increases hit
ratio and reduces hit distance, download time and bandwidth
consumption compared to the existing caching algorithms.

ACKNOWLEDGMENT

This work is supported by the National Science &
Technology Major Project of China (No. 2011ZX03002-001-
01) -- The research on the mobile Internet architecture, and the
National Nature Science Foundation of China (No. 61100178
and No. 11161140319).

REFERENCES

[1] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and R.
Braynard, “Networking named content,” in Proc. of ACM CoNEXT’ 09.

[2] I. Psaras, R. G. Clegg, R. Landa, W. K. Chai, and G. Pavlou, “Modelling
and Evaluation of CCN-Caching Trees,” in Proc. IFIP Networking,
Valencia, Spain, 9-13 May 2011.

[3] G. Caro_glio, M. Gallo, L. Muscariello, and D. Perino, “Modeling data
transfer in content centric networking,” in Proc. of 23rd International
Teletraffic Congress, 2011 (ITC23).

[4] G. Carofiglio, L. Muscariello, and M. Gallo, “Bandwidth and storage
sharing performance in information centric networking,” in ACM
Sigcomm Workshop on Information-Centric Networking (ICN), 2011.

[5] G. Caroglio, V. Gehlen, and D. Perino, “Experimental evaluation of
storage management in content-centric networking,” in Proc. of IEEE
ICC, 2011.

[6] H. Che, Z. Wang, and Y. Tung, “Analysis and Design of Hierarchical
Web Caching Systems,” in INFOCOM, 2001, pp. 1416-1424.

[7] X. Tang, S. T. Chanson, “Coordinated En-Route Web Caching,” in IEEE
Transactions on Computers, Vol. 51, No. 6, pp. 595-607, 2002.

[8] S. Borst, V. Gupta, and A. Walid, “Distributed Caching Algorithms for
Content Distribution Networks,” in INFOCOM, 2010.

[9] E. J. Rosensweig, and J. Kurose, “Breadcrumbs: Efficient, Best-
Effort Content Location in Cache Networks,” in INFOCOM, 2009.

[10] N. Laoutaris, H. Che, and I. Stavrakakis, “The LCD interconnection of
LRU caches and its analysis,” Performance Evaluation, 2006, 609−634.

[11] N. Laoutaris, S. Syntila, and I. Stavrakakis, “Meta algorithms for
hierarchical web caches,” in IEEE IPCCC, Phoenix, Arizona, Apr. 2004.

[12] http://www.ccnx.org/

[13] L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
caching and zipf-like distributions: Evidence and implications,” in
INFOCOM, 1999, pp. 126–134.

[14] E. Chlebus and J. Brazier, “Nonstationary poisson modeling of web
browsing session arrivals,”in Information Processing Letters, vol. 102,
no. 5, pp. 187 – 190, 2007.

