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Reduced-Dimension Multiuser Detection

Yao Xie,

Abstract—We present a reduced-dimension multiuser detector
(RD-MUD) structure for synchronous systemghat significantly de-
creases the number of required correlation branches at theeceiver
front-end, while still achieving performance similar to that of the
conventional matched-filter (MF) bank. RD-MUD exploits the fact
that, in some wireless systems, the number of active users mae
small relative to the total number of users in the system. Hece,
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the signature waveform of a different user. The number of
correlators is therefore equal to the number of users. Iipiaay
communication system, there may be thousands of users. We
characterize the A/D complexity by the number of correlatr

the receiver front-end, and measure data detection coityplex
by the number of real floating point operations required per

the ideas of analog compressed sensing may be used to reducgecision bit[4] from the MF-bank output.

the number of correlators. The correlating signals used by ach
correlator are chosen as an appropriate linear combinationof the
users’ spreading waveforms. We derive the probability-ofsymbol-
error when using two methods for recovery of active users antheir
transmitted symbols: the reduced-dimension decorrelatig (RDD)
detector, which combines subspace projection and threshading
to determine active users and sign detection for data recovg
and the reduced-dimension decision-feedback (RDDF) detex,
which combines decision-feedback matching pursuit for adéte
user detection and sign detection for data recovery. We dere
probability of error bounds for both detectors, and show that
the number of correlators needed to achieve a small probahtly-
of-symbol-error is on the order of the logarithm of the number
of users in the system. The theoretical performance resultsre
validated via numerical simulations.

I. INTRODUCTION

Verd(, in the landmark papeb]} established the maximum
likelihood sequence estimator (MLSE) as the MUD detector
minimizing the probability-of-symbol-error for data det®n.
However, the complexity-per-bit of MLSE is exponential fret
number of users when the signature waveforms are nonorthog-
onal. To address the complexity issue, otHew-complexity
suboptimal detectors have been developediuding the non-
linear decision feedback (DF) detectdi][and linear detectors
The non-linear DF detector is based on the idea of interteren
cancellation, which decodes symbols iteratively by sudtitng
the detected symbols of strong users first to facilitate aiete
of weak users. The DF detector is a good compromise between
complexity and performance (see, e.@])[ We will therefore
analyze the DF detector below as an example of a nonlinear
digital detector, but in a reduced dimensional setting.

Multiuser detection (MUD) is a classical problem in mul- Linear detectors apply a linear transform to the receiver
tiuser communications and signal processing (see, ely., [front-end output and then detect each user separalédigy
[2], [3] and the references therein.) In multiuser systems, thave lower complexity than nonlinear methods but also worse

users communicate simultaneously with a given receiver

pgrformanceThere are multipldinear MUD techniques. The

modulating information symbols onto their unique signatursingle-user detector is the simplest linear detedtowyever it
waveforms. The received signal consists of a noisy version suffers from user interference when signature wavefornes ar
the superposition of the transmitted waveforms. MUD has tmnorthogonalA linear detector that eliminates user inference

detect the symbols of all users simultaneously.

is the decorrelating detector, which, for each user, ptejdwe

Despite the large body of work on MUD, it is not yet widelyreceived signal onto the subspace associated with thetsigna

implemented in practice, largely due to its complexity aighh waveform of that user. This projection amplifies noise when
precisionanalog-to-digital{A/D) requirements. The complexity the signature waveforms are nonorthogonal. The decamglat
arises both in the A/D as well as in the digital signal protess detector provides the best joint estimate of symbols and am-
for data detection of each user. A conventional MUD struetuplitudes in the absence of knowledge of the complete chan-
consists of a matched-filter (MF) bank front-end followeday nel state information4]. The Minimum Mean-Square-Error
linear or nonlinear digital multiuser detector. The MF-kdsa (MMSE) detector takes into account both background noise

a set of correlators, each correlating the received sigritd wand interference, and hence to some extent mitigates thse noi
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amplification of the decorrelating detector in low and mediu
SNR[6]. Because ofhe simplicity and interference elimination
capability of the decorrelating detector, we will focus on this
detector as an example of a linear detector in the reduced-
dimensional setting.

In many applications, the number of active usdfs,can be
much smaller than the total number of useks[7], [8]. This
analog signal sparsity allows the use of techniques fronlogna
compressed sensing][ [1]] in order to reduce the number of
correlators. While such sparsity has been exploited inouari
detection settings, there is still a gap in applying thes=asd
to the multiuser setting we consider here. Most existingkwor
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on exploiting compressed sensindl], [17] for signal detection required by these two specific detectors is on the ordésgV
assumes discrete signals and then applies compressedgeras compared tdV correlators required for conventional MUD.
via matrix multiplication B], [13], [14], [15], [16]. In contrast, We validate these theoretical results via numerical exampl
in multiuser detection theeceivedsignal is continuous. Another Our analysis is closely related ta7j]. However, PZ] considers
complicating factorelative to previous worlks that here noise is estimation in white noise, which differs from our problem in
added in the analog domain priorAdD conversion at the front- the aforementioned aspects. Our work also differs fromrprio
end, which corresponds to the measurement stage in coradresssults on compressed sensing for MUD, such as Applebaum
sensing Therefore, A/D conversion will affect both signal ancet.al. [/] and Fletcher et.al.g], [23], where aso-calledon-off
noise. Due to the MFat the front-endthe output noise vector is random access channel is considered. In these referehees, t
in general colored. Furthermore, it cannot be whitenedauith goal is to detect which users are active, and there is no meed t
modifying the MF coefficient matrix, which corresponds taletect the transmitted symbols as we consider here. Neaither
the measurement matrix in compressed sensing. In the tlisctbese works consider front-end complexity.
compressed sensing literature, it is usually assumed thaéw In this paper we focus on a synchronous MUD channel model
noise is added after measuremefih exception is the work [4], where the transmission rate of all users is the same arird the
of [17]. Finally, typically in compressed sensing the goal is teymbol epochs are perfectly aligned. This user synchrtiniza
reconstructa sparse signdrom its sampleswhereas in MUD can be achieved using GPS as well as distributed or cerdaliz
the goal is todetectboth active users and their symbols. Teynchronization schemes (see, e.G4][[25]). Such methods
meet the goal of MUD we therefore adapt algorithms frorare commonly used in cellular systems, ad-hoc networks, and
compressed sensing for detection and develop results on $kasor networks to achieve synchronization. Part of the MUD
probability-of-symbol-error rather than on the mean-sqda problem is signature sequence selection, for which these ha
error (MSE). also been a large body of work (see, e.gf]]. Here we do not
In this work, we develop a low complexity MUD structureconsider optimizing signature waveforms so that our resar
which we call a reduced-dimension multiuser detector (RParameterized by the crosscorrelation properties of teasire
MUD) exploiting analog signal sparsity, assuming symlaier waveforms used in our design.
synchronization. The RD-MUD reduces the front-aedeiver =~ The rest of the paper is organized as follows. Section
complexity by decreasing the number of correlators withodiscusses the system model and reviews conventional degect
increasing the complexity of digital signal processing,ilevh using the MF-bank front-end. Sectidih presents the RD-MUD
still achieving performance similar to that of conventibndront-end and detectors. Sectidi contains the theoretical
MUDs that are based on the MF-bank front-end. The R@performance guarantee of two RD-MUD detectors: the RDD
MUD converts thereceivedanalog signal into a discretmutput and RDDF detectors. Section validates the theoretical results
by correlating it withM < N correlating signals. We incor- through numerical examples.
porate analog compressed sensing technigée®y forming
the correlating signals as linear combinations of the gigea Il. BACKGROUND
waveforms via a (possibly complex) coefficient matex The )
RD-MUD output can thus be viewed as a projection of th@- Notation
MF-bank output onto a lower dimensional detection subspaceThe notation we use is as follows. Vectors and matrices are
We then develop several digital detectors to detect botiveactdenoted by boldface lower-case and boldface upper-caseslet
users and their transmitted symbols, by combining ideas fraespectively. The real and complex numbers are represégted
compressed sensing and conventional MUD. We study two suehand C, respectively. The real part of a scalais denoted as
detectors in detail: the reduced-dimension decorreldfRigD) R[z], andz* is its conjugate. The set of indices of the nonzero
detector, a linear detector that combines subspace pimjeantd entries of a vector is called the support of. Given an index
thresholding to determine active users with a sign detéfctor setZ, X; denotes the submatrix formed by the columns of a
data recovery g, [19], and the reduced-dimension decisionmatrix X indexed byZ, andz 7 represents the subvector formed
feedback (RDDF) detector, a nonlinear detector that coashirby the entries indexed b§. The identity matrix is denoted
decision-feedback matching pursuit (DF-MP)C[, [21] for by I. The transpose, conjugate transpose, and inverse of a
active user detection with sign detection for data recovery matrix X are represented b ', X, and X !, respectively,
an iterative manner. DF-MP differs from conventional MRP][ and X,,,,, denotes itsnm th value. Thels norm is denoted
[21]in that in each iteration the binary-valued detected syisboby ||z|| = (z”2)'/?, and the/,, norm of a vectorz is
rather than the real-valued estimates, are subtracted fhem given by ||z, = max?_; |z,|. The minimum and maximum
received signal to form the residual used by the next itenati eigenvalues of a positive-semidefinite matXxare represented
We provideprobability-of-symbol-erroperformanceébounds by Ay (X) and Aax (X)), respectively. The trace of a square
for these detection algorithms, using the coherence of titeixn matrix X is denoted as (IX'). The notation diafe,...,z,}
A in a non-asymptotic regime with a fixed number total denotes a diagonal matrix withy, ..., z, on its diagonal. We
users and active users. Based on these results, we develepl to denote the identity matrix antito denote an all-one
a lower bound on the number of correlatak$ needed to vector.
attain a certairprobability-of-symbol-erroperformance. When  The functioné,,,, is defined such thai,,, = 1 only when
A is a random partial discrete Fourier transform matrix, Atie n = m and otherwise is equal to 0. The sign function is defined



assgn(z) = 1, if > 0, sgn(z) = —1, if z < 0, and otherwise MUD using a bank of MFs. We will consider two scenarios: the
is equal to 0. The expectation of a random variable denoted case wherds is known, and the case whef¢ is bounded but
asE{z} and the probability of an event is represented as unknown. The problem of estimating can be treated using
P(A). The union, intersection, and difference of two sgts} techniques such as those in].

and{B} are denoted by A}U{B}, {A}n{B}, and{A}/{B},
respectively. The complement of a st} is represented as
{A}c. The notationA C B means that sefl is a subset of
B. The inner product(or crosscorrelatiof between two real ¥
analog signals:(¢t) andy(t) in Ly is written as{x(t), y(t)) = 5i(7)
%fOT x(t)y(t)dt, over the symbol tim&". The L, norm of z(t) y(t)——-*(?—*
is ||z (t)|| = (x(t), z(t))'/2. Two signals are orthogonal if their a(1)
crosscorrelation is zero. ’

B. System Model

Consider asynchronousnultiuser system1]] with N users.
Each user is assigned a known unique signature waveform (@)
from a setS = {s,(-) : [0,7] = R,1 < n < N}. Users
modulate their data by their signature waveforms. There are
K active users out ofNV possible users transmitting to the
receiver. In our setting, we assume that active users mtalula
their signature waveforms using Binary Phase Shift Keying
(BPSK) modulation with the symbol of user denoted by
b, € {1,—-1}, for n € Z, whereZ contains indices of all active
users. The amplitude of theth user’s signal at the receiver
is given by r,, which is determined by the transmit power
and the wireless channel gain. For simplicity, we assuiie (b)
are real (but they can be negative), and known at the receiver
The nonactive user can be viewed as transmitting with poweig. 1: Front-end of (a) conventional MUD using MF-bank, and
P, = 0, or equivalently transmitting zeros;, = 0, for n € Z¢.  (b) RD-MUD.
The received signaj(t) is a superposition of the transmitted
signals from the active users, plus white Gaussian naigg
with zero-mean and varianee’:

N
Active User
— Front-end Linear Symbol
y(t) Z ’f'nbnSn (t) + w(t)’ te [0’ T]7 (1) Output |$ Transform j SUppért j Detection $
n=1 Detection
with b,, € {1, -1}, n € Z, andb,, = 0, n € Z¢. The duration of
the data symbol is referred to as the symbol time, which is @)
also equal to the inverse of the data rate for binary modarati
We assume that the signature waveforms are linearly inde- Joint (and/or
pendent. The crosscorrelations of the signature wavefamas Fg’;‘ttpi:d [> L'fgfg::)sﬁgsl i}
characterized by the Gram matn¥, defined as Detection

(b)
For convenience, we assume that(t) has unit energy:

[sn(t)]| = 1 for all n so that[G]., = 1. Due to our fig 2: The diagram of (a) linear detector, and (b) nonlinear
assumption of linear independence of the signature wavefor yetector.
G is invertible. In addition, the signatures typically hawavl
crosscorrelations, so that the magnitudes of the off-diagjo
elements oG are much smaller than 1. ]

Our goal is to detect the set of active users, i.e. users wih Conventional MUD
indices inZ, and their transmitted symbol®,, : n € Z}. In A conventional MUD detector has a MF-bank front-end
practice the number of active usdisis typically much smaller followed by a digital detector. We now review this architeet
than the total number of users, which is a form ofanalog 1) MF-bank front-end:For general single-user systems, the
signal sparsity As we will show, this sparsity enables us tdMF multiplies the received signaj(¢) with the single user
reduce the number of correlators at the front-end and <till lvaveforms(t) and integrates over a symbol time. The MF-bank
able to achieve performance similar to that of a conventioria an extension of the MF for multiple users, and ha$/Fs in



parallel: thenth branch correlates the received signal with th&. RD-MUD front-end
corresponding signature wavefors(t), as illustrated in Fig. ) ) ] ]
1a The output of the MF-bank is a set of sufficient statistics D€Sign of the correlating signals,, (?) is key for RD-MUD

for MUD when the amplitudes, are known []. Using (1), the to reduce the number of correlators. To construct theseaksign
outputof the MF-bank can be written as ’ we rely on the ideas introduced if][to construct multichannel

filters that samplstructurecanalog signals at sub-Nyquist rates.
z=GRb+ u, (3) Specifically, we use the biorthogonal signals with respect t
{sn(t)}, which are defined as:

wherez = [z1,--- ,zn] T, 20 = (y(t),s,(t)), R € RN*N is

a diagonal matrix with[R},,,, = r,, b = [b1,---,bx]' and N

w=[u1, - ,un]", whereu, = (w(t),s,(t)). The vectoru is $n(t) =[G Mnese(t), 1<n<N. (7
Gaussian distributed with zero mean and covaridiieeu } = =1

o*G (for derivation see T]). These signals have the property thag (), $p, (£)) = dnm, for

2) MF-bank detection:Conventional MUD detectors basedall n, m. Note that when{s,,(t)} are orthogonalG = I and
on the MF-bank output can be classified into two categories;(t) = s,,(t).
linear and nonlinear, as illustrated in F&y.In the literature, the  The RD-MUD front-end uses as its correlating signals the
synchronous MUD model typically assumes all users areectiyynctions
i.e. b, € {1,—1}, and hence the goal of the MUD detectors is N
to detect all user symbols. The linear detector applies ealin B (t) = Z Amnén (), 1<m< M, 8)
transformT to the MF-bank output (illustrated in Figa): — -

Tz=TGRb+ Tu, (4) wherea,,, are (possibly complex) weighting coefficients. De-
, . _ fine a coefficient matrixA € RM*N with (Al 2 amn
and detects each user’'s symbol separately using a S|grt(niete%nd denote thexth column of A asa, 2 [ain, -, anm]
by, = sgn(r,[Tz],), 1<n<N. ) n =1, ,N. We normalize the columns oA so that
. ) |la,|| = 1. The design of the correlating signals is equivalent to
Several commonly used linear detectors are the single-uggs design ofA for a given{s, (t)}. Evidently, the performance
detector, the decorrelating detector and the minimum-meg} RpD-MUD will depend onA. We will use coherence as a
square-error (MMSE) detector. The single-user detecibpis] measure of the quality oft, which is defined as:
equivalent to choosin@” = I in (4) and 6). By applying a
linear transformT = G~! in (4), the decorrelating detector = I}ﬁﬂafad- 9)
can remove the user interference and recover symbols ggrfec _ _ _ o ]
in the absence of noistowever, it also amplifies noise wher*S We Will show later in SectionV-A, it is desirable thaj
G # I. The MMSE detector minimizes the MSE betweel? small to guarantee small probability-of-symbol-errdrhis

the linear transform of the MF-bank output and symbols, afgduirement also reflects a tradeoff in choosing how many cor
corresponds td” = (G + 0>R~2)~" in (4) [1]. relators to use in the RD-MUD front-end. With more correfafo

Nonlinear detectors, on the other hand, detect symbolgjoint€ coherence oA can be lower and the performance of RD-

and (or) iteratively as illustrated in Figb. Examples include MUD improves. o _ _
MLSE and the successive interference cancellation (Si@ocde Choosing the correlating signal§)(and using the receive
tor [1]. The MLSE solves the following optimization problem:signal model {), the output of thenth correlator is given by:

max 2y” Rb — b RGRb. (6) Ym = (hm (1), y(t))
bn€{1,~1} N N
However, when the signature waveforms are nonorthogoisal th = < AmnSn(t), Z wae(t)>
optimization problem is exponentially complex in the numbe n=1 =1
of users []. The SIC detector first finds the active user with the N .
largest amplitude, detects its symbol, subtracts its effiem + Zamnsn(t)vw(t) (10)
the received signal, and iterates the above process useng th ;:1 N
residual signal. AfterV iterations, the SIC detector determines .
all users. =D 1be Y A (5n(t), se(t)) + wim
=1 n=1
N
I1l. REDUCED-DIMENSION MUD (RD-MUD) _ Zammbz T W,
The RD-MUD front-end, illustrated in Figlb, correlates the =1
received signaly(t) W|th a set of correlating signals,,, (t), where the output noise is given by w,, 2
m =1,--- M, whereM is typically much smaller thatv. The N o (Ga(0),w(t). Denoting y — [y, »yn]”
_ . . . . n=1 %Ymn n 9 . - ) )
front-end output is processed by either a linear or noniin w=[wy, - ,wa]T, we can express the RD-MUD output

detector to detect active users and their symbthis; design
of these detectors is adapted to take the analog sparsdy i
account. y=ARb+ w, (11)

$11t0) in vector form as



where w is a Gaussian random vector with zero mean araperations whenA is real (or 2M N operations whenA is
covariances? AG ' A" (for derivation see €], [29). The complex) for detection ofV log, 3 bits (since equivalently we
vectory can be viewed as a linear projection of the MF-banare detectingb,, € {—1,0,1}). Hence the complexity-per-
front-end output onto a lower dimensional subspace which & of RDD is proportional toM. Since M < N in RD-
call the detection subspaceSince there are at mod¢t active MUD, the complexity-per-bit of RDD (and other RD-MUD
users,b has at mos#{ non-zero entries. The idea of RD-MUDIinear detectors as well) iwer thanthat of the conventional
is that when the original signal vectéris sparse, with proper decorrelatindinear MUD detector. Furthermore, RDD and other
choice of the matrixA4, the detection performance férbased linear RD-MUD detectors require much lower complexity ie th
on y of (11) in the detection subspace can be similar to thenalog front-end.

performance based on the output of the MF-bank front-end When the number of users is not known, we can replace Step
of (3). 2 in Algorithm 1 by

B. RD-MUD detection I={ne{l,...,N}: |Rlay] > ¢}, (15)

We now discuss how to recovérfrom the RD-MUD front- here ¢ ~  is a chosen threshold. We refer to this method
end output using digital detectors. The model)(for RD-MUD 45 the RDD threshold (RDDt) detector. The RDDt detector is
has a similar form to the observation model in the compressgfated to the OST algorithm for model selection ]} The
sensing literaturelf3], [27], except that the noise in the RD-.hpice of¢ depends onr,, o2, M, N, u and the maximum
MUD front-end output is colored. Hence, to recover we  gjgenvalue ofz . Bounds or¢ associated with error probabil-
can combine ideas developed in the context of compressg(lhounds will be given in Theorer In SectionV we explore
sensing and MUD The linear detector for RD-MUD first nymerical optimization of, where we find that to achieve good

estimates active use¥susing support recovery techniques fro"berformanceg should increase wittV or &, and decrease with
compressed sensing. Once the active users are estimatednwe, ;-

write the RD-MUD front-end output model () as

y=A;R;b; +w, (12) Algorithm 1 RDD detector

from which we can detedhe symbolsh, by applying a linear 1 Input: An M x N matrix A, a vectory € C* and the
transform toy. The nonlinear detector for RD-MUD detects ~Number of active user&’. o
We will focus on recovery based on two algorithms: (1) the largest/R[a)/y]|. X
RDD detector, a linear detector that uses subspace prajecti 3: Detect symbolsd,, = sgn(r,R[a//y]) for n € Z, and
along with thresholding 9], [13] to determine active users  bn =0 forn ¢ 7.
and sign detection for data recovery; (2) the RDDF detector,
a nonlinear detector that combines decision-feedbackhimagc
pursuit (DF-MP) for active user detection and sign detectia i
for data recovery. These two algorithms are summarized Agorithm 2 RDDF detector
Algorithms 1 and 2. 1: Input: An M x N matrix A, a vectory € CM and number
1) RDD detector: A natural strategy for detection is t0  of active userss’.
compute the inner produaty and detect active users by Initialize: 7O is empty,b(o) =0, v = y.
choosing indices corresponding to tlé largest magnitudes lterate Steps 4 —6 fok =1, , K:
of these inner products: Detect active usen;, = arg max,, [R[av*=1]).
Z={n: if |Rlally] is among the Detect symbolt;” = sgn(r,, Ra;] v"~1]), forn = ny,
H (13) andb™ = bV for n £ ny.
K largest of|R[a;,y]|, n=1,--- ,N}. n n - k
Update:Z(*) = 7(:=1 U {n,},
This corresponds to the thresholding support recoveryrilgo andv® =y — ARD™.
in compressed sensing (e.g.7). To detect symbols, we use 7. output:Z = 7(5), b = b%),
sign detection:

. H 7.
by = { Sgn(rngg[an yl) . Z;? (14)  2) RDDF detector: The RDDF detector determines active
’ ’ users and their corresponding symbols iteratively. lttstaith
In detecting active userd§) and their symbolsi(4), we take an empty set as the initial estimate for the set of active Tiser
the real parts of the inner products because the imaginaty pgros as the estimated symbol vechd? = 0, and the front-
of a!ly contains only noise and interference, since we assugd output as the residual vectof?) = y. Subsequently, in
that symbolsb,, and amplitudes-, are real and onlyA can each iterationk = 1,--- , K, the algorithm selects the column
be complex. When' = N and M = N, the RDD detector g, that is most highly correlated with the residusf—") as
becomes the decorrelator in conventional MUD. the detected active user in th¢h iteration:
To compute the complexity-per-bit of the RDD detector

we note thatcomputing Ay requires M N floating point N = argmax %[afv(k_l)] , (16)

@




which is then added to the active user &Y = Z(-—1 U{n,}.

The symbol for usen,, is detected with other detected symbols
staying the same: . Linear or
e o)—| £ Ly e LY worineor
pt) — sgn (Tnk%[agkv(kil)]) y =N (17) g Detector
n (k—1)
bn, , n =% ng.
The residual vector is then updated throughl = y— AR Fig. 3: A MUD detector with noise whitening transform.

The residual vector represents the partbahat has yet to be

detected by the algorithm along with noise. The iteratiqpesds

K times (as we will show, with high probability DF-MP nevetthe MMSE detector of the conventional MUD, a linear detector

detects the same active user twice), and finaIIyAthe actiee upased on the MMSE criterion can be derived fbP)( The RD-

set is given byZ = Z(%) with the symbol vectob,, = b, MMSE detector determines active users through the support

n=1,---,N.WhenK = N andM = N, the RDDF detector recovery method of1(3), and then uses a linear transfofd

becomes the successive interference cancelation te@miu that minimizesE{||b; — My||*} to estimate the symbolsiere

the conventional MUD. the expectation is with respect to the vector of transmitted
The complexity-per-bit of RDDF is proportional t&'M/. symbolsb; and the noise vectow. Following the approach

Since M < N, this implies that the complexity for data detecfor deriving the conventional MMSE detectoi]] assuming

tion of RDDF islower thanthat of the conventional DF detectorthat b, is uncorrelated withw and E{bibg} = I, we obtain

(the complexity-per-bit of the DF detector is proportiortal the linear transform for the reduced-dimension MMSE (RD-

K N). Note that RDDF is similar to MP in compressed sensinglMSE) detector as(see AppendixA for details) M =

but with symbol detection. R;AY(A;RZAY + 62AG™"A™)~1. The symbols are then
We can modify the RDDF detector to account for an unknowgetermined as:

number of users by iterating only when the residual does not R sen(r. RIIM nei:

contain any significant “component”, i.e., whéd 7 v®) ||, < bn = { gn(rn é[ yln): n ¢ 7 (20)

e for some threshold > 0. We refer to this method as the
RDDF threshold (RDDFt) detectdFhe choice ok depends on Similarly, we can modify RDDF by replacing symbol detection
ny 02, M, N, 1 and the maximum eigenvalue @ ~'. As by (20) on the detected suppaft*) in each iteration.

with the thresholdt, bounds ore to ensure given error proba- Reduced-dimension least squares (RD-LS) detedtoithe
bility bounds, and its numerical optimization, are presdnn reduced-dimensional model3), the matrix A; R; introduces
Theoreml and SectionV, respectively. As in the RDDt, hereinterference when we detect the symbols. Borrowing from the
we also found in numerical optimizations thashould increase idea of conventional MUD decorrelator, we can alleviate the
with N or K, and decrease with/. effect of interference using the method of least-squares ea-

3) Noise whitening transformThe noise in the RD-MUD timate the symbols by solvinly; = argmin, ||y — Az Rz .
output (L1) is in general colored due to the matched filtering/e call this the reAduced-d|menS|02nA least squares (RD-LS)
at the front-end. We can whiten the noise by applying a lineftector. Sincesgn([bz].) = sgn([R3bz].), RD-LS detects
transform (AG~"A")~1/2 pefore detecting active users angymbols by:

E})//fnbols, as illustrated in Fig. The whitened output is given p { sgn (Tn% [(AgAi)*lAgyL) Cne %; o
Yy £ (AGTIAT) 2y - o e .
— (AG'A")V2ARD + w (18) Similarly, we can modify RDDF by replacing symbol detection
- 0 by (21) on detected suppof*) in each iteration.
where w, is a Gaussian random vector with zero mean and5) Reduced-Dimension Maximum Likelihood (RD-Mig§-
covariance matrix2I. If we define a new measurement matrixector: The RD-ML detector finds the active users and symbols
by solving the following integer optimization problem:

A, 2 (AGTAT)1/24, (19)
_ _ max 2y (AGT'A")"1ARD
then the RDD and RDDF detectozan be applied by replacing bn€{-1,0,1} (22)
A with A,, andy with y,, in (13), (14), (16) and (7). While —b"RAT(AG'AT)"L ARD,

whitening the noise, the whitening transform also distoines here b — d heth being | .
signal componentAs we demonstrate via numerical exampleg ere b, = 0 corresponds to theith user being Inactive.

in SectionV-6, noise whitening is beneficial when the signatur imilar t_o the cqnventlonal maximum I|keI|h_00(_j detectdre
waveforms highly correlated. complexity-per-bit of the RD-ML is exponential in the nurmmbe

4) Other RD-MUD linear detectorsBy combining ideas of users. We therefore do not consider this algorithm furthe

developed in the context of compressed sensing and conven-

tional linear MUD detection, we can develop alternativeetin C. Choice ofA

detectors in the reduced-dimension setting. In SectionsllI-B1 and|ll-B2 we have shown that both the
Reduced-dimension MMSE (RD-MMSE) detec&milar to RDD and RDDF detectors are based on the inner products



betweeny and the columns ofA. Since y consists ofa,, by using onlytwo correlators, ifevery twocolumns of A are
corresponding to the active users plus naiseiitively, for RDD  linearly independent. Later we will also show this is a clagl
and RDDF to work well, the inner products between columns ¢€orollary 2) of the more general Theorefn

A, or its coherence as defined i8),(should be small. Several Assume there is no noise and only one user with indgx
commonly used random matrices in compressed sensing tisaactive. In this casey(t) = 7,,bn,5n,(t) and K = 1. In RD-
have small coherence with high probability are: MUD, with two correlators, the RDD detector determines the

(1) Gaussian random matrices, where entiigs are indepen- active user by finding

dent and identically distributed (i.i.d.) with a zero mean , _ B (8). (1)) + o (). u(t 23
and unit variance Gaussian distribution, with columns argn:ql-,z-l-)-(,N|a1"< 10, y(8)) + azaha(t) y(1)]. (23)

normalized to have unit norm; From the Cauchy-Schwarz inequality,
(2) Randomly sampled rows of a unitary matrix. For instance, )
the random partial discrete Fourier transform (DFT) ma- |a1n (R (1), y(8)) + azn(ha(t), y(1))] (24)

trix, which is formed by randomly selecting rows of a DFT < (al, + a3,) [(hi(t), y(£))> + (ha(t), y(t))?],
matrix F: [F]”’". = ¢~ ™™ and normalizing the cqumnsWith equality if and only if apme = c(hm(t),y(t)) —
of the sub-matrlx.. . . . ClmngTnobng = ¢(ng)amn, for bothm = 1,2 with some con-
(8) Kerdock C()Qdesfil]. these C?Sff h"flve dimension _restnctegfantc(no). If every twocolumns ofA are linearly independent,
to M x M*, where M = 2 with m an odd integer we cannot have two indices such thata,,,, = ¢(ng)amn, for
greater than or equal to 3. They have very good coherenﬂ%e: 1,2. Also recall that the columns oft are normalized,

properties, withy = 1/+/M which meets the Welch lower 2 +al, — |lan|? = 1. Therefore, the maximum is achieved

Iboundbon cgheretrt:ce. Trr:e Welch ]E)ound |r?\gosef_ajene forn = ng ande(ng) = 1, which detects the correct active
ower bound on the conerence o aM AV matrix user. The detected symbol is also correct, since
[37] leading top 2 M~%/2, when N is large relative to

M and N is much larger than 1. by = SEN(T1g [a1ny (Y (L), h1 (1)) + aon, (y(t), ha(t))])

Among these three possible matrix choices, the random = sgn(r7 by,[ai,, + a3,,]) = bn,-
partial DFT matrix has some important properties that siiypl
closed-form analysis in some cases. In practice, if we ahtits B. Noise Amplification of Subspace Projection

number of correlators equal to the number of usersMe= N, The projection onto the detection subspace amplifies the

then there is no dimension reduction, and the performancev(glfriance of noiseWhen the RDD and RDDE detectors detect
RD-MUD should equal that of the MF-bank. Whed = N,

h q ol DET b he DFT “Y» the nth user, they are affected by a noise componefit.
the random partia " mat_rlx %comes the matnx WItE onsider the special case with orthogonal signature wawvefo
the property thatA™ A = I, i.e, a,; a,, = dnm. In this case,

h t statisticaf v th q based i.e. G = I, and A chosen as the random partial DFT matrix.
the set of statistic§a;; y} that RDD and RDDF are based on, s case, the noise variance is given &fa? AA" a, —

has the same distribution as the decorrelator output. Tthige o2(N/M), so that it is amplified by a factoN/M > 1.

write a/ly = a;f (Zﬁiﬂ amrmbm) +affw=rby +affw, general, with subspace projection, the noise variance is
wherea’w is a Gaussian random variable with zero mean aranplified by a factor ofa,’;fAGflAHan [17). Below we
covariances?a’ AG* A" a,, = [G'],... In contrast, the capture this noise amplification more precisely by relating
Gaussian random matrix does not have this prop&tgrefore, noise variance to the performance of the RD-MUD detectors.
in this setting,the performance of RD-MUD using a Gaussian

random matrixA is worse than that using the random partiat  coherence Based Performance Guarantee
DFT matrix. This is also validated in our numerical resutts i . . . :
. . . . In this section, we present conditions under which the RDD
SectionV-3. We will also see in Sectiok-3 that Kerdock codes .
and RDDF detectors can successfully recover active users

outperform both random partial DFT and Gaussian random

matrices for a large number of users. This is due to their goggd their symbols. The conditions depend dnthrough its

; . coherence and are parameterized by the crosscorrelations o
coherence properties. However, as discussed above, Kerdoc

. . : : e signature waveforms through the properties of the matri
codes have restricted dimensions and are thus less flexible . -
system design. . Our performance measure is fh@bability-of-symbol-errgr

which is defined as thprobability that the set of active users

is detected incorrectlypr any of their symbols are detected
V. PERFORMANCE OFRD-MUD incorrectly:

We now study the performance of RD-MUD with the RDD _ myA - A
and RDDF detectorsWe begin by considering the case of a Pe=PL# I} + PH{Z =1} 0 {b # b}} (26)
single active user without noise as a motivating example  We will show in the proof of Theoreni that the second term
of (26) is dominated by the first term whed3) and (L6) are
used for active user detection. Define the largest and sshalle

_ _ _ _channel gains as
When there is only one active user in the absence of noise,

AN A .
the RDD detector can detect the correct active user and dymbo |rmax| = max rnl, [rmin| = mmin |rnl- (27)

(25)

A. Single Active User



Also define thekth largest channel gain ag(*)|. Hence, max,(a’AA"a,)= N/M andG = I. This is true whenA
[rmax] = [rM] and |rmin| = |#%)|. Our main result is the is the random partial DFT matrix and the signature waveforms
following theorem: are orthogonal. If we scale? by M/N, then the right hand
sides of 29) and @2) are identical to the corresponding quan-
tities in Theorem 4 ofJZ]. Hence,in this caseTheoreml has

the same conditions as those of Theorem 4Z#.[However,

Theorem 1. Let b € R¥*! pe an unknown deterministic
symbol vectorp, € {-1,1}, n € Z, and b, = 0, n € Z¢,

n = 1,---,N. Denote the RD-MUD front-end output by. : . .
y = ARb + w, where A ¢ CM*N and G € RV*N are Theorem 4 in £7] only guarantees detecting the correct sparsity

. ) . ttern ofb (equivalently, the correct active users), whereas
known,w is a Gaussian random vector with zero mean an@ﬁeoreml uarantees correct detection of not only the active
covariances?AG ' A" and R = diag{ry,---,rn}. Let 9 y

users but their symbols as weltheorem1 is also applied to

720201+ a)loghN - //\max(G_l) . \/max(af{AAHan), more general colored noise.

Remarks:
_ (28) (1) The term on the right hand side 09 and @2) is
for a given constant > 0. _ _ bounded byl < max, (af AA"a,) <1+ (N —1)u2
1) Assume that the number of active uséfsis known. If  (2) There is a noise phase-transition effect. Define the -mini
the coherenced) of A satisfies the following condition: mum signal-to-noise ratio (SNR) as
|Tn1in| - (2K - 1)H|Tmax| > 27, (29) SNR... — |7‘mim|2 (35)
min — 1\
for some constant > 0, then the probability-of-symbol- 0% Amax(G™)
error (26) for the RDD detector is upper bounded by: where,...(G ') captures the noise amplification effect
P. < N~[r(1 + a)log N],l/Q. (30) in the subspace projection due to nonorthogonal signature

waveforms. Conditions2Q) and @2) suggest that for the
2) AssumekK is an upper bound for the number of active RDD and RDDF detectors to have as small as 30),
users. If the coherencé@) of A satisfies29) for K = Ko, we needat least

and we choose a threshofd> 0 that satisfies SNRy.5, > 8 log V. (36)

K max min_K_l mx_731 . : .. . .
0ifTmae| +7 < € < [rmin] = (Ko = 1)ptlrmax| =7, (31) This means thatf the minimum SNR is not suffi-

then the probability-of-symbol-error2¢) for the RDDt ciently high, then these algorithms cannot attain small
detector is upper bounded by the right-hand-side3) ( probability-of-symbol-error. We illustrate this effectav
3) Assume that the number of active uséfsis known. If numerical examples in Section5 (a similar effect can
the coherence9) of A satisfies the following condition: be observed in standard MUD detectors).
3) In Theoreml the condition of having a small probability-
[Tmin| — (2K — 1) pt|rmin| > 27, (32) © of-symbol-error for the RDDF det%ctor is vF\)/eaker tr?an
for some constant > 0, then the probability-of-symbol- for the RDD detector. Intuitively, the iterative approach
error (26) for the RDDF detector is upper bounded by of decision feedback removes the effectabfong users
the right-hand-side of30). iteratively, which helps the detection of weaker users.
4) If the coherence9) of A satisfies $2) and we choose a
thresholde > 0 such that D. Bounding probability-of-symbol-error of RDD and RDDF
K Theoreml provides a condition on how small has to be to
T<e€e< %121{1“7’ 1= (K = k)u] =7}, (33)  achieve a small probability-of-symbol-errafle can eliminate

the constantv and rewriteTheoreml in an equivalent form that

then the probability-of-symbol-erro¢) for the RDDFt gives explicit error bounds for the RDD and RDDF detectors.

detector is upper bounded by the right-hand-side3d) (

Define
Proof: See Appendi8. ] o [1= (2K = 1)ptlrmasl/|Fmin]2
The main idea of the proof is the following. We define an pr = T A AT )
event maxn(a;; AA" ay) (37)
2
G = {mj\zfmx|afw| < 7'} (34) B, & [1—-(@2K-1)y _
n=t max, (e AA" a,)

for 7 defined in 28), and prove thatG occurs with high
probability. This bounds the two-sided tail probability thfe
noise. Then we show that undet9j, wheneverg occurs, the
active users can be correctly detected. On the other hand,
show that under a condition weaker thaZg), wheneverg
occurs, the user data symbols can be correctly detected
similar but inductive approach is used to prove the perforcea
guarantee for the RDDF detector. Corollary 1. Under the setting of Theorer with the defini-
A special case of Theorerh is when AA = (N/M)I, tions (35) and (37), the probability-of-symbol-error for the RDD

For the RDD detector, we have already implicitly assumed tha
1 — (2K — 1)p|rmax|/|mmin| > 0, since the right hand side of
29) in Theoreml is non-negative. For the same reason, for the
DF detector, we have assumed that (2K — 1)u > 0. By
Remark (1)and @7), 51 < 1 and 3y < 1. We can prove the
following corollary from Theoreni (see pPd] for details):



detector is upper-bounded by E. Lower Bound on the Number of Correlators

b IN |:SNRmin P }1/2 1 S Theoreml is stated for any matrixA. By substitution of the
e 1 e

,RDD < ﬁ 5 o (38) expression for coherence of a givenin terms of its dimensions
M and N into Theoreml, we can obtain a lower bound on
with 1 — (2K — 1)p|rmax|/|rmin| = 0, and the probability-of- the smallest number of correlators needed to achieve a
symbol-error for the RDDF detector is upper bounded by  certain probability-of-symbol-error. F@xample, the coherence
9N [SNRuui, 2 G of th_e random partial DFT matrix can b_e boqnded in probapbilit
P. rppr < ﬁ [ 5 -[32} ce”7 2P (39) (easily provabldyy the complex Hoeffding’s inequality3[]):

Lemma 1. Let A € CM*¥N be a random partial DFT matrix.

with 1 — (2K = 1)p > 0. Then the coherence of is bounded by

For the decorrelating detector in ponventional !\/_IUD, a com- 1< [4(210g N + c)/M]l/Q, (42)
monly used performance measure is the probability of erfor o
each user4], which is given by: with probability exceeding — 2e¢~¢, for some constant > 0.

- [~ Lemmal together with Theorem imply that for the partial
— 1
P{bn #bn} = Q ('rnV(U G ]"”)) ' (40) DFT matrix to attain a small probability-of-symbol-errahe
- Y _ ~ number of correlators needed by the RDD and RDDF detectors
where Q(z) = ["(1/v2m)e™*/?dz is the Gaussian tail js on the order ofog N. This is much smaller than that required

probability. Using ¢0) and the union bound, we obtain by the conventional MUD using a MF-bank, which is on the
N order of N.
Po=P{b#b} <> P{b, #by} < NQ (\/SNRmin) Corollary 2 together with the Welch bound imply that, for
n=1 the RDD and RDDF detectors to have perfect detection, the
N [SNRuin1 Y%  ssmg number of correlators\/ should be on the order o2K —
< m { B } € 2 (41) 1)2. In the compressed sensing literature, it is known that the

bounds obtained using the coherence property of a matrix dav

where we also used the fact thét,|/[c\/[G '|nn] > “quadratic bottleneck”37]: the number of measurements. is on
VSNRmim and Q(z) is decreasing in:, as well as the bound the order of K2. Neverthelgss, the _cqherence prqperty is easy
[1] Q(z) < 1/(zv27)e~*"/2. Since conventional MUD is not to check for_ a given matrix, :_;md it is a convenient measure
” eo[ the user interference level in the detection subspaceeas w

concerned with active user detection and the errors areau ;
demonstrated in the proof of Theorein

symbol detection, it only makes sense to compdd@ (o (38)
and B9 whenK = N andM = N. Under this setting3; = 1
and 5, = 1, and the bounds o, (38) of RDD and @9) V. NUMERICAL EXAMPLES

of RDDF are larger than the bound1] of the decorrelating  ag an illustration of the performance of RD-MUD, we present
detector. This is because when deriving bounds for symhQine numerical exampledle first generate0® partial random
detection error in the proof of Theorey we consider the pET matrices and choose the matrix that has the smallest
probability of 34), which requires two-side tail-probability of .oherence asA. Then using the fixedd, we obtain results

a Gaussian random variable. In contrast, in conventionaDMU¢om 5 % 10° Monte Carlo trials.For each trial, we generate a
without active-user detection, only the one-sided taibiility  G5yssian random noise vector and random bitsc (~1,1},

of the Gaussian random varialit¢w > 7} is requirecbecause ,, « 7 with probability 1/2. In this setting, the conventional

we use binary modulationNevertheless, obtaining a tighterdecorrelating detector haB, equal to that of the RDD when
bound for symbol detection error is not necessary in RD-MUR; _ n7.

because whed{ < N, active user detection error dominates 1) P, vs. M, as N increases:Fig. 6 shows theP, of the

symbol detection error. RDD, RDDF, RDDt and RDDFt detectors as a functionidf

By letting the noise variance? go to zero in 88) and @9) for fixed K = 2, and different values ofV. The amplitudes
for the RDD and RDDF detectors, we can derive the following, = 1 for all n, the noise variance is? = 0.005, andG = I,
corollary from Theoreni (a proof of this corollary for the RDD which corresponds t&NR,;, = 23dB. For each combination
detector has been given in SectibhA). of N and M, we numerically search to find the best values

for parameters and e. The values of¢ range from 0.78 to

Corollary 2. Under the setting of Theorery in the absence 0.92, increase for large’N and decrease for largek/ for
of noise, the RDD detector can correctly detect the actierais the RDDt detector. The values efrange from 0.50 to 0.80,
and their symbols ifu < [rmin|/[|7max|(2K — 1)], and the increase for largeNV and decrease for largéd for the RDDFt
RDDF detector can correctly detect the active users and thejetector.The RDD and RDDF detectors can achieve snill
symbols ify < 1/(2K—1). In particular, if K = 1, with M =2 for A much smaller thaV'; the RDDt and RDDFt have some
correlators, P, = 0 for the RDDF detector, and if furthermore gacrifice in performance due to their lack of knowledgeiaf
["max| = [rmin|, Pe = 0 for the RDD detector (which has alsoThis degradation becomes more pronounced for larger values
been shown in Sectidiv-A). of N.
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Fig. 4: P, versusM for K = 2 and differentN. The amplitudes Fig. 5: P. versusM for N = 100 and differentK. The

rn, = 1 for all n, the noise variance is?> = 0.005, andG = I, amplitudesr, = 1 for all n, the noise variance is? = 0.005,
which corresponds t&NR,;, = 23dB. (a) RDD and RDDt, and G = I. (a) RDD and RDDt, where the solid lines
where the solid lines correspond to RDD and the dashed linesrespond to RDD and the dashed lines correspond to RDDt;
correspond to RDDt; and (b) RDDF and RDDFt, where the solahd (b) RDDF and RDDFt, where the solid lines correspond to
lines correspond to RDDF and the dashed lines correspondRDDF and the dashed lines correspond to RDDFt.

RDDFt.

6b, Kerdock codes outperform both the partial DFT and the

2) P. vs M, as K increases:Fig. 5a demonstrates thé, Gaussian random matrices because of their good coherence
of the RDD, RDDF, RDDt, RDDFt detectors as a function oproperties. This behavior can be explained as follows. &ayer
M, for a fixed N = 100, and different values of{. For each N and relatively smallM/, it becomes harder to select a partial
combination of M and K, we numerically search to find theDFT matrix with small coherence by random search, whereas
best values for the parametegsand ¢. Here £ ranges from the Kerdock codes can be efficiently constructed and thegimbt
0.68 to 0.80 and ranges from 0.32 to 0.70Che amplitudes the Welch lower bound on coherence by design. For fikéd
rn, = 1 for all n, the noise variance is?> = 0.005, andG = I, and M, Kerdock codes can support a large number of active
which corresponds t8NR,,,;;;, = 23dB. Clearly, the number of users, as demonstrated in Fig.In this example, the coherence
correlators needed to obtain sm&ll increases a¥ increases. of the Kerdock code ig: = 0.0312, which is much smaller

3) Comparison of random matriced: We compare the®, than the coherencge = 0.0480 obtained by choosing from0>
of the RDD and RDDF detectors when the Gaussian randeandom partial DFT matriceerdock codes are tight frames
matrices, the random partial DFT matrices or the Kerdodk4], [31] meaning thatG = N/M1I so that no pre-whitening
codes are use for. In Fig. 6a the P, of the Gaussian is needed.
random matrix converges to a value much higher than that4) P. vs. M, as SNR changes: Consider a case where
of the partial DFT matrix, when\/ increases toN. In this SNR,,;, changes by fixingG = I, r, = 1 for all n, and
example,N = 100, K = 6, the amplitudes,, = 1 for all varyingo?. For comparison, we also consider the conventional
n, the noise variance is? = 0.005, and G = I. In Fig. decorrelating detector, which corresponds to the RDD detec



11
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(a) DFT vs. Gaussian

M=16,N=32

Fig. 7: Performance of RDD and RDDF detectors, when using
Kerdock codes forAd with M = 1024, P, versusK for various

N when amplitudes,, uniformly random in [1, 1.5]G =T
ando? = 0.005.

T. < T is the chip duration, and the sequen¢es,;} are mod-
- ulated by unit-energy chip waveforp{t) with [ |p(t)|?dt = 1

[-=-Rand | DFT,

E-EZQdZQ EZ::; BE; EBBF and [ p(t — ¢T,)p(t — kKT.)dt = 0, ¢ # k. For Gold codes, we

—e—Gaussian, RDD choosem = 10 (with length L = 2'° — 1 = 1023 and 1025
= -Gaussian, RDDF

X i e Kerdock. RDD possible codewords)3f]. We use100 Gold codes to support
A i) s -Kerdock, RDDF N =100 users. The Gram matrix of the Gold code is given by
10 bt
0 2 4 6 8 10 L+1 1
K: number of active users G = %INXN — leT’ (43)

(b) DFT vs. Gaussian vs. Kerdock ) o ) ]
which has two distinct eigenvalues. In this example, =

Fig. 6: (a): P. versusM of the RDD and RDDF detectors(N + 1)/N = 1.0010, Ao = (L — N + 1)/L = 0.8768,
using random partial DFT versus Gaussian random matricks.<(G~') = 1.1405 and hence the signature waveforms
for N = 100 and K = 6 (Kerdock codes require dimensiongare nearly orthogonalMWe also consider a simulate@ =
of M = 2™ for m = 4,6,... and hence are not presented/diag{1,/400,2/400, ---,100/400}U " for a randomly gener-
here). (b)P. versusK of the RDD and RDDF detectors usingated unitary matrixJ € R19¥190 and hencé\m.(G™') =
Gaussian random matrices, random partial DFT matrices, af) which is much larger than that of the Gold codbsFig.
Kerdock codes of size 16 by 256 (arbitrarily select 32 colamiOa and Fig. 10b when the signature waveforms are nearly
for 32 users), forV = 32 and M = 16. In both examples, the orthogonal, the noise whitening transform does not redbce
amplitudesr,, = 1 for all n, the noise variance i8> = 0.005, much. Fig.10c and Fig.10b show that the performance of the
andG =1. RDD and RDDF detectors can be significantly improved by
the noise whitening transform for largk/. We also verified
that using the noise whitening transform cannot achieve the
with M = N. AssumeN = 100 and X = 2. Note that there is probability-of-error that is obtained with orthogonal ségure
a noise phase-transition effect in Figg, which is discussed in waveforms G = 1. This is because the noise whitening
the Remarks of Sectioh/-C. transform distorts the signal component.

5) Near-far problemG = I: To illustrate the performance 7) P. vs. M, RD-MUD linear detectors:To compare per-
of the RDD and RDDF detectors in the presence of the neéwrmance of the RD-MUD linear detectors, we consider two
far problem, we choose, uniformly random from[1,1.5] for sets of schemes. The first are one-step methods: udiflg (
active users. Assum& = 100, K = 2, o2 = 0.005. In Fig. 9, for active user detection followed by symbol detection gsin
RDDF significantly outperforms RDD. (14) (corresponds to RDD),20) (corresponds to RD-MMSE),

6) P. vs.M, performance of the noise whitening transformor (21) (corresponds to RD-LS), respectively. The second set of
Next we consider practical signature waveforms in CDMAchemes detects active users and symbols iteratitredyR DDF
systems.There are many choices for signature sequences atetector, the modified RDDF detector, modified by replacimy t
the Gold code is one that is commonly uséé][ For signature symbol detection by the RD-LS detectdt]lj on the detected
sequenceys,¢}, the signature waveforms are generated tsupport in each iteratiof*), and the modified RDDF detector,
sn(t) = Ze;ol snep(t — £T,), whereL is the sequence length,modified by replacing the symbol detection by the MMSE
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10% far problem, with amplitudes,, uniformly random in [1, 1.5],
N = 100, K = 2, 02 = 0.005, and G = I. The solid lines
correspond to RDD and the dashed lines correspond to RDDF.
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Fig. 8: Performance of RDD and RDDF detectors whgn= 1
for all n, G = I and variouss?, where we denot&SNR =

10log, (2 /o?)dB. The dashed lines sho. for the conven- S - N -

tional decorrelating detectors at the correspon@htR. R g [ ) s G
* P om0 * 2 B O
(c) SimulatedG, o2 = 0.005 (d) Simulated@, ¢2 = 0.01

detector 20) on the detected support in each iteratidft).
AssumeN = 100, K = 2, r,, = 1 for all n, ando? = 0.005. Fig. 10: Comparison of RDD and RDDF detectors with and
Again we consider Gold codes as defined in Sectih. Without noise whitening wheV = 100, K = 2, amplitudes-,,
As showed by Tablel, iterative methods including RDDF uniformly random in [1, 1.5], and the following settings fGf
outperform the one-step methods including RDD. However, tRndo?: (2) Gold codes withh,.. (G~ ') = 1.1405, 0% = 0.005,
difference between various symbol detection methods iy veép) same Gold codes as in (a) bet = 0.01, (c) simulatedG
small, since active user detection error dominates the eymM/ith Amax(G™") = 400, 0 = 0.005, (d) same simulated? as
detection error. By examining the conditional probabitify in (¢) buto® = 0.01.
symbol-errorP{b # b|Z = I}, in Fig. 11 we see that both
RD-LS and RD-MMSE detectors have an advantage over sign
detection. onto a lower dimensional detection subspace by correldtiag
received signal with a set of correlating signals. The datirgg
VI. CONCLUSIONS ANDDISCUSSIONS signals are constructed as linear combinations ofsigaature
We have developed a reduced dimension multiuser detectisaveforms using a coefficient matriA, which determines the
(RD-MUD) structure, assuming symbol-rate synchronizatioperformance of RD-MUD and is our key design parameter.
which decreases the number of correlators at the front-éndBaised on the front-end output, RD-MUD detectors recover
a MUD receiver by exploiting the fact that the number ofictive users and their symbols in the detection subspace.
active users is typically much smaller than the total numberWe studied in detail two such detectors. The RDD detector,
of users in the systemThe front-end of the RD-MUD is which is a linear detector that combines subspace projectio
motivated by analog CS and firojects the received signalalong with thresholding for active user detection and RDDF
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probability-of-symbol-error performance.

Our results are based on binary modulation and can be
extended to higher order modulation with symbols takingenor
possible values. In this case, however, the conditions &vagu
tee correct symbol detection may be stronger than the dondit
to guarantee correct active user detection. We have alsonass
that the signature waveforms are given. Better performance
of RD-MUD might be obtained through joint optimization of
the signature waveforms and the coefficient matdx Our
results assume a synchronous channel model. Extending the
ideas of this work to asynchronous channels perhaps useng th
methods developed in3f] for time-delay recovery from low-

Conditional Probability of Error

107° B & . :
5 10 15 20 rate samples, is a topic of future research.
M: # of Correlators
Fig. 11: Comparison dP{B # b|Z = I} for RDD, RD-LS, and ACKNOWLEDGMENT
RD-MMSE in the same setting as that in FitDa The authors would like to thank Robert Calderbank and
. A Lorne Applebaum for providing helpful suggestions with the
TABLE I: P{b#b|Z =7} vs. M, N =100, K =2 numerical example regarding Kerdock codes.
M APPENDIX A
Methods 5 9 18 37 DERIVATION OF RD-MUD MMSE
EBDLS 88;28 82282 8222; 8833; Given the active user index s&tobtained from 13), we de-
- . . . . ; A P2 AH | 2 41 gH r _ . AHp 1
RD-MMSE 05779 0.8400 03857 00342 \e oy ozHiAr tomAG AT anaM = By Ao W
: : . : We want to show thaMl = arg minps E{[|b; — My||°}. Using
RDD_F_ i 0.9527 0.6248 0.0905 0.0006 the same method for deriving the conventional MMSE detector
modified RDDF with| 0.9526 0.6247 0.0905 0.0006 of the MF-bank [], we assume thah; has a distribution that
LS _ _ is uncorrelated with the noisev and thatE{bibg} = I
modified RDDF with| 0.9526 0.6247 0.0905 0.0006 Based onf, we refer to the modell@), and write the MSE
MMSE asE{[[b; — My||?} = tr(E{(b; — My)(b; — My)™"}). Now
we expand

detector, which is a nonlinear detector that combines detis EA(b; ~ My)(b; - My)''}
: > H H H
feedback matching pursuit for active user detection. Weehav = E{b;b7} — E{b;y"}M" — ME{yb]}
shown that to achieve a desired probability-of-symbobethe + ME{yy"} M (44)
number of correlators used by RD-MUD can be much smaller =TI+ M(AiRQjAg + 02 AG AT M
than that used by conventional MUD, and the complexity{mer- CRAYMY _ MA-R.
of the RD-MUD detectors are not higher than their countdrpar °7z T
in the conventional MUD setting. In particular, when thedam ifi R — v
partial DFT matrix is used for the coefficient matrit and I;f;ar\;vgeh;/\?émed hat Ay Ry = MW Hence from
the RDD and RDDF detectors are used for detection, the RE)- ' -
MUD front-end requires a number of correlators proportlidoa E{(b; — My)(b; — My)"}
log of the number of users, whereas the conventional MF-bank — 1+ pwMP — Mw MY — Mmw Y
front-end requires a number of correlators equal to the rrmb _ _ o - _
of users in the system. We obtained theoretical performance — I-MWM" + (M- M)W (M - M)" (45)
guarantees for the RDD and RDDF detectors in terms of the =1 — RjAQW_lAin
coherence ofA, which are validated via numerical examples. + (M — M)W (M — M)".

In contrast to other work exploiting compressed sensinig-tec ) . o i
niques for multiuser detection, our work has several disitre Since W is a po§|t|ve semidefinite _matrlx, the trace of th_e
features: (1) we consider analog received multiuser ssigna?econd ter_m_ ”1.45) is ahways n_opnegatlve.Therefore,the matrix
(2) we consider front-end complexity, which is the numbet! that minimizes the MSE is\/.
of filters/correlators at the front-end to perform the agatio-
discrete conversion; (3) the noise is added in the analogatom APPENDIXB
prior to processing of the front-end, so that the output eois PROOF OFTHEOREM 1
vector can be colored due to front-end filtering; (4) we mpdif The proof of Theoreml for both the RDD and RDDF
several conventional compressed sensing estimationitdgwr detectors are closely related. We therefore begin by pgovin
to make them applicable for symbol detection and study theieveral lemmas that are useful for both results.



First, we prove that the random evéhtlefined in 84) occurs
with high probability, wherer is defined in 28). Then we show

that wheng occurs, both algorithms can detect the active users

and their symbols. The proofs follow the argumentsif] jwith
modifications to account for the fact that is colored noise,
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we obtain7 < 7. Hence

P{G} = P{max|aw| < 7}
o (51)
> P{m;;ix|an w| < 7} =P{G}.

and the error can also be caused by incorrect symbol detectigombining ¢9) and 61), we conclude thaP’(gG) is greater than

However, as we will show, the error probability of active useone minus the expressio(), as required.

detection dominates the latter case.

|
The next lemma shows that, under appropriate conditions,
ranking the inner products betweer), andy is an effective

Lemma 2. Suppose thatv is a Gaussian random vector W|thmeth0d of detecting the set of active users. The prOOf of

zero mean and covariance’?’ AG*AY . If N-0+)[r(1 +
a)log N]~1/2 < 1 for somea > 0, then the eveng of (34)
occurs with probability at least one minusQ).

Proof: The random variables{aZw}Y_, are jointly
Gaussian, with means equal to zero, varianegsequal to
2all AG A" a,. Define

1/2
72 g2(14a)log N]V/2. [max(afAG_lAHan)} , (46)
and an event; 2 {maxi<,<n |afw| < 7} . Using Sidak’s

lemma [38] , we have
P{Q} :P{|a{lw| < Ty ,|a]HVw| <%}
N (47)

> H P{la7w| < 7}.

n=1

Sincealw is a Gaussian random variable with zero mean
and variancer2, the tail probability of the colored noise Carhen  if

be written as

P{law| < #) =1-2Q <l} (48)
On
Using the bound onQ(z): Q(z) < (xv2m) le /2
(48) can be bounded a®{|al! w| < TF =1 =y,
where 5, 2 \/2/m(on/7)e 7 /270, Define opmax 2
1/2
max, o, = o |max,(alAG~ 1AHan)} T
V2T (Omax/F)e " /2 Since omax/F = [2(1 +

a)log N|='/2 by the definition of 7, we have 7nyax
V2/7[2(1 + ) log N|~1/2¢~(+e)loe N |t s easy to show
that n,, increases a%,, increases. Hence,, < Nu.x. When

Nmax < 1, we can use the inequalitt — )Y > 1 — Nz when

x > 0 and substitute the value of, .. to write (47) as

Q ZH 1_77n 2
:1—N (1 + o) log N| /2,

which holds for anyn,.x < 1 and N > 1. Next we show that
7 < 7. Note that

a’AG 'A"a,
< HAHanHQ/\maX(G_l)
< [max (afAAHan)])\maX(Gfl).

1 - nmdx) 2 1- Nnmax

(49)

(50)

From inequality $0) and definitions Z8) for = and @6) for 7,

this lemma is adapted from Lemma 3 irZ] to account
for the fact that the signal vectoy here can be complex
as A can be complex. Since the real part contains all the
useful information, to prove this lemma, we follow the proof
for Lemma 3 in P7] while using the following inequality
whenever needed®R[a’la,,]| < |afa,,| < p for n # m,
and |R[aw]| < |afw|. The proofs are omitted due to space
limitations. Details of the proof can be found iGd).

Lemma 3. Letb be a vector with supporf which consists of
K active users, and ley = ARb + w for a Gaussian noise
vector w with zero mean and covariancdG ' A" . Define
|"max| @nd |rmin| @s in @7), and suppose that

[Pmin] — (2K — 1) p|rmax| > 27. (52)

Then, if the everd of (34) occurs, we havenin, <7 [R[a y]| >
max,¢7 |R[ay]|. If, rather than 62), a weaker condition
holds:

[Pmax| — (2K — 1) p|rmax| > 27

the event G of (34
maxnez [Ra)y]| > max, ¢z [Rlajy]l.

(53)

occurs, we have

The following lemma demonstrates that the sign detector can
effectively detect transmitted symbols for the RDD and RDDF
detectorsThis Lemma bounds the second termiy that has
not been considered i f].

Lemma 4. Let b be a vector withb,, € {1,—1}, forn € T

and b,, = 0 otherwise, and ley = ARb + w for a Gaussian
noise vectorw with zero mean and covariane€ AG A,

Suppose that

[rmin| = (K = Dpfrmax| = 7. (54)

Then, if the eveng occurs, we have
sgn(r,Ra y]) = b, nel. (55)

If, instead of b4), a weaker condition
[rmax| + |rmin| = 2(K = D)pfrmax| > 27 (56)

holds, then under the evegt, we havesgn(r,, RlaZ y]) =
by, , for
n = argmax IR[ay]). (57)
Proof: To detect correctly, fob,, = 1, R[r,a’y] has to
be positive, and fob,, = —1, R[r,,a’y] has to be negative.
First assumeé,, = 1. We expandR[r,a’y], find the lower-
bound and the condition such that the lower bound is positive
Substituting in the expression fay, using the inequality that
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x+y+z>x— |yl —|z], under the eveng, we obtain inequality, under the ever, we obtain

Rrnayy] (7 |1 R[ary]|
= |r* + b rnrm® | a,, @ | + R ffw
g;n [ ] (@ w] = |7y "rg by + Z b Tn, TR [a an] R [agow]
m#ng
> || [rmin| — |70 |7 || [arlziam] | (58)
'rnz;én > [, [[7max| — (K = D)pfrmax| — 7].
64
el ]| bini d h h h(ld)
> | [Irmin] = (K — 1)pt|rmax| — 7] - ~ Combining 63 and ©4), we }?ve that once5¢) holds,
if b, = 1, then sgn(r,, R[a, y]) = -1 leads to
From (8), R[rya;y] > 0 for n € T if (54) holds andb, = 1. |Ra y]| < |R[aZ y]|, which contradicts §9), and hence
Similarly, we can show fob,, = —1, under event, if (54)  sgn(r,,, R[aZ y]) = 1. A similar argument can be made for
holds, R[r,a y] < 0. Hence if 64) holds we obtain §5). b,, = —1, which completes the proof.
Recall thatn is the index of the largest gaif,,,| = |"max]|- m
Due to 67), we have We are now ready to prove Theorem The proof for the
|§R[afiy]| > Iﬁ[af{)y]l- (59) RDD detector is obtained by combining Lemmas3 and 4.

Lemma2 ensures that the evegt occurs with probability at
We will show that under the everf, once £6) holds, then least as high as one minu30j. Wheneverg occurs, Lemma
sgn(ry, Rlall y) 7# b, leads to a contradiction td§). First guarantees by usind ), that the RDD detector can correctly
assume,,, = 1. If b,, = sgn(ry, Rla y]) # by, then detect active users under the conditi@9)( i.e. G C {Z = T}.
. Finally, wheneverG occurs, Lemma4 guarantees that, based
bn, on the correct support of active users, their transmitteasyls
can be detected correctly under the conditiéd)(i.e. G C
=sgn|r2 + Z bty TR (@ @] + 70, R [@ w] {by = b,,n € I}. Clearly condition $4) is weaker thanZ9),
m#n, since @9) can be written agryin| — (K — 1) p|rmax| > 7+ (7 +
- 1 K p|rmax|) > 7, and hence if29) holds then §4) also holds.
(60) In summary, under conditior2g), G C {Z =7} n{b = b},
L andl — P, = P{Z =Z}n{b=b}) > P(G), which is greater
So the expression inside thegn operator of §0) must be 35 one minus30), which concludes the proof for the RDD
negative. Slncef2 > 0, we must have detector.
The proof for RDDt is similar to that for RDD detector and
inspired by the proof of Theorem 1 in3(]. Using similar
arguments to Lemm&, we can demonstrate that, when the

Multiplying the left-hand-side off9) by |r,, |, and using the number of active user& < K,, wheng occurs,
equality [z| - |y| = |zy|, we obtain

Z b Ty Tm R a am} +7’m§R[a w] < 0. (61)

m#ni

min|R[afy]| > |Tmin] — (K — 1)) rmax| — 7
7, [ R[] ]| net (65)
> |Tmin| - (KO - 1)H|Tma><| - T,

= ruul [rns + Y bmrmRlall an] + Rlal w] and

" 2 g Rlaffy]] < Kplrmasd + 7 < Korlras] +7. (60
= |rm + D bmrnrmRlar an] + o, Ra w]]. If (52) holds for K = K,, we can choose a threshofdsuch
mEm that Kop|rmax| +7 < & < [rmin| — (Ko — 1) t|rmax| — 7. Then

mingez [Rlaf y]] > ¢ andmax, ¢7 |Rlaf y]| < &, and hence
for such¢ the RDDt detector can correctly detect the active
users with high probability. Since wheh2) holds, 64) is true,
from Lemma4 we know the symbol can be correctly detected
with high probability as well.

Due to 60), the last line of §62) inside the| - | operator is
negative. Using the fact thaﬁ1 > 0 and 1), and the identity
lz+y| = —(x+vy) =|y| —2 whenz+y < 0 andy < 0, under
the eventg, we obtain that

|7, || Rar o]l We now prove the performance guarantee for the RDDF
detector adopting the technique used in proving Theorem 4
Z by TR (@l @] + 10, R (@l w] | — 12, in [27). First we show that wheneve§ occurs, the RDDF
m#n, (63)  detector correctly detects an active user in the first i@nat

which follows from Lemmas2 and 3. Note that 82) implies

(53), and therefore, by Lemma, we have that by choosing
= [, ([0 = Dptlrmas] + 7 = |rania]- the largestR[a’ y]|, the RDDF detector can detect a correct
On the other hand, multiply the right-hand-side 8B)Y by user in the sefZ. Second, we show that whenewgroccurs,

|rn, |- Similarly, using the equalityz| - |y| = |xy| and triangle the RDDF detector correctly detects the transmitted syrobol

< g (K = Dl rmax| + |70y [T = |70y [[7min|
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this active user. Note thaB®) also implies §6), since 82) Z} N {b= b}, andl — P, = P{{Z = Z} N {b = b}} > P{G}

can be written a$ry,in| > 27/[1 — (2K — 1)u], which implies which is greater than one minudQ), which concludes the proof

["max| > 27/[1— (2K —1)u], and henceérmax |+ [rmin| —2(K —  for the RDDF detector.

Dp|rmax] = 27[1—2(K = 1)pu]/[1— (2K — 1) u] 4 |rmin| > 27, The proof for RDDFt follows the above proof for RDDF

since [l — 2(K — 1)u]/[1 — (2K — 1)pu] > 1. Therefore, by with one more step. Note that when we have correctly detected

Lemma4, using a sign detector, we can detect the symball active users inK rounds, from 67) the residualv® =

correctly. Consequently, the first step of the RDDF detectar contains only noise. Hence, whéhoccurs,|| A" v¥ ||, =

correctly detect the active user and its symbol,Ge: {Z) ¢ ||A%w||o = maxi<, <y |afw| < 7, from Lemma2. On the

7z, bﬁlll) =bp, } other hand, in thé:-th round,k = 1,..., K, from (67), we
have that whergj occurs

The proof now continues by induction. Suppose we are

currently in thekth iteration of the RDDF detectol, < k < K, HAH”(kfl)Hoo

and assume that — 1 correct users and their symbols have

been detected in all the— 1 previous steps. Thkth step is to = | max, Z rmbmata, +aflw|  (70)
detect the user with the largedt[a’’v(*~1]|. Using the same = |mez/zoem

notations as those in Sectitih-B2 and by definition ofy*~1), > B = (K = k)ulr$ ] —7>0. (71)
we have

(h—1) (k-1 (h-1) The expression in7(l) is positive, when 32) holds (recall that
v =AR(Mb-b""")+w=ARx +w, (67) (32) is also required to detect correct active users): because

wherez*~1) £ b — 5"~V This vector has suppot/Z(-1  WHeN [rmin| — (2K — Dplrau| > 27, since [r®)] > |ryl,

and has at mosk — k + 1 non-zero elements, sindg*~% |r(k)|(;)(2K — Dplr™] > 27, and hencdr®)| — (2K — 2k —
contains correct symbols at the correct locations (for— 1) Dplr . |K> 27 % 0. Therefore when3?2) holds, we can choose
(k-1) e <minf_ {|r®|[1 — (K —k)u] — 7} < 7min — 7. Therefore,

active users, i.eby, ' =b,, forn e Z¢:-Y Thisv* 1 js a |
noisy measurement of the vectekRx(*~1). The data model under the condition3z), when g occurs, we can choose <
e <mint_ {|r®|[1-(K—k)u]|—7}, so that| AT v+ =1 >

in (67) for the kth iteration is identical to the data model mey k=1 .. K, and| AT < c. Finally, using similar

the first iteration withb replaced byxz(*~1) (with a smaller
. B (k—1)  arguments as for RDDF tha8%) guarantees5(), RDDFt can
sparsity K — k + 1 rather thank), T replaced byZ/1 " also correctly detect the symbols with high probability.

(k—1) (k) | &
andy replaced byv™™ . Let [rmax| = max,egzo- |rn). This completes the proof of Theorei
By assumptionk — 1 active users with largest gains have been

correctly detected in the firét— 1 rounds, and henckﬁff@ =
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