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Reduced-Dimension Multiuser Detection
Yao Xie, Yonina C. Eldar, Andrea Goldsmith

Abstract—We present a reduced-dimension multiuser detector
(RD-MUD) structure for synchronous systemsthat significantly de-
creases the number of required correlation branches at the receiver
front-end, while still achieving performance similar to that of the
conventional matched-filter (MF) bank. RD-MUD exploits the fact
that, in some wireless systems, the number of active users may be
small relative to the total number of users in the system. Hence,
the ideas of analog compressed sensing may be used to reduce
the number of correlators. The correlating signals used by each
correlator are chosen as an appropriate linear combinationof the
users’ spreading waveforms. We derive the probability-of-symbol-
error when using two methods for recovery of active users andtheir
transmitted symbols: the reduced-dimension decorrelating (RDD)
detector, which combines subspace projection and thresholding
to determine active users and sign detection for data recovery,
and the reduced-dimension decision-feedback (RDDF) detector,
which combines decision-feedback matching pursuit for active
user detection and sign detection for data recovery. We derive
probability of error bounds for both detectors, and show that
the number of correlators needed to achieve a small probability-
of-symbol-error is on the order of the logarithm of the number
of users in the system. The theoretical performance resultsare
validated via numerical simulations.

I. I NTRODUCTION

Multiuser detection (MUD) is a classical problem in mul-
tiuser communications and signal processing (see, e.g., [1],
[2], [3] and the references therein.) In multiuser systems, the
users communicate simultaneously with a given receiver by
modulating information symbols onto their unique signature
waveforms. The received signal consists of a noisy version of
the superposition of the transmitted waveforms. MUD has to
detect the symbols of all users simultaneously.

Despite the large body of work on MUD, it is not yet widely
implemented in practice, largely due to its complexity and high-
precisionanalog-to-digital(A/D) requirements. The complexity
arises both in the A/D as well as in the digital signal processing
for data detection of each user. A conventional MUD structure
consists of a matched-filter (MF) bank front-end followed bya
linear or nonlinear digital multiuser detector. The MF-bank is
a set of correlators, each correlating the received signal with
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the signature waveform of a different user. The number of
correlators is therefore equal to the number of users. In a typical
communication system, there may be thousands of users. We
characterize the A/D complexity by the number of correlators at
the receiver front-end, and measure data detection complexity
by the number of real floating point operations required per
decision bit[4] from the MF-bank output.

Verdú, in the landmark paper [5], established the maximum
likelihood sequence estimator (MLSE) as the MUD detector
minimizing the probability-of-symbol-error for data detection.
However, the complexity-per-bit of MLSE is exponential in the
number of users when the signature waveforms are nonorthog-
onal. To address the complexity issue, otherlow-complexity
suboptimal detectors have been developed,including the non-
linear decision feedback (DF) detector [6] and linear detectors.
The non-linear DF detector is based on the idea of interference
cancellation, which decodes symbols iteratively by subtracting
the detected symbols of strong users first to facilitate detection
of weak users. The DF detector is a good compromise between
complexity and performance (see, e.g., [6]). We will therefore
analyze the DF detector below as an example of a nonlinear
digital detector, but in a reduced dimensional setting.

Linear detectors apply a linear transform to the receiver
front-end output and then detect each user separately. They
have lower complexity than nonlinear methods but also worse
performance.There are multiplelinear MUD techniques. The
single-user detector is the simplest linear detector,however it
suffers from user interference when signature waveforms are
nonorthogonal.A linear detector that eliminates user inference
is the decorrelating detector, which, for each user, projects the
received signal onto the subspace associated with the signature
waveform of that user. This projection amplifies noise when
the signature waveforms are nonorthogonal. The decorrelating
detector provides the best joint estimate of symbols and am-
plitudes in the absence of knowledge of the complete chan-
nel state information [4]. The Minimum Mean-Square-Error
(MMSE) detector takes into account both background noise
and interference, and hence to some extent mitigates the noise
amplification of the decorrelating detector in low and medium
SNR[6]. Because ofthe simplicity and interference elimination
capability of the decorrelating detector, we will focus on this
detector as an example of a linear detector in the reduced-
dimensional setting.

In many applications, the number of active users,K, can be
much smaller than the total number of users,N [7], [8]. This
analog signal sparsity allows the use of techniques from analog
compressed sensing [9], [10] in order to reduce the number of
correlators. While such sparsity has been exploited in various
detection settings, there is still a gap in applying these ideas
to the multiuser setting we consider here. Most existing work
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on exploiting compressed sensing [11], [12] for signal detection
assumes discrete signals and then applies compressed sensing
via matrix multiplication [8], [13], [14], [15], [16]. In contrast,
in multiuser detection thereceivedsignal is continuous. Another
complicating factorrelative to previous workis that here noise is
added in the analog domain prior toA/D conversion at the front-
end, which corresponds to the measurement stage in compressed
sensing. Therefore, A/D conversion will affect both signal and
noise. Due to the MFsat the front-end, the output noise vector is
in general colored. Furthermore, it cannot be whitened without
modifying the MF coefficient matrix, which corresponds to
the measurement matrix in compressed sensing. In the discrete
compressed sensing literature, it is usually assumed that white
noise is added after measurement.An exception is the work
of [17]. Finally, typically in compressed sensing the goal is to
reconstructa sparse signalfrom its samples, whereas in MUD
the goal is todetectboth active users and their symbols. To
meet the goal of MUD we therefore adapt algorithms from
compressed sensing for detection and develop results on the
probability-of-symbol-error rather than on the mean-squared
error (MSE).

In this work, we develop a low complexity MUD structure
which we call a reduced-dimension multiuser detector (RD-
MUD) exploiting analog signal sparsity, assuming symbol-rate
synchronization. The RD-MUD reduces the front-endreceiver
complexity by decreasing the number of correlators without
increasing the complexity of digital signal processing, while
still achieving performance similar to that of conventional
MUDs that are based on the MF-bank front-end. The RD-
MUD converts thereceivedanalog signal into a discreteoutput
by correlating it withM ≪ N correlating signals. We incor-
porate analog compressed sensing techniques [9] by forming
the correlating signals as linear combinations of the signature
waveforms via a (possibly complex) coefficient matrixA. The
RD-MUD output can thus be viewed as a projection of the
MF-bank output onto a lower dimensional detection subspace.
We then develop several digital detectors to detect both active
users and their transmitted symbols, by combining ideas from
compressed sensing and conventional MUD. We study two such
detectors in detail: the reduced-dimension decorrelating(RDD)
detector, a linear detector that combines subspace projection and
thresholding to determine active users with a sign detectorfor
data recovery [18], [19], and the reduced-dimension decision-
feedback (RDDF) detector, a nonlinear detector that combines
decision-feedback matching pursuit (DF-MP) [20], [21] for
active user detection with sign detection for data recoveryin
an iterative manner. DF-MP differs from conventional MP [20],
[21] in that in each iteration the binary-valued detected symbols,
rather than the real-valued estimates, are subtracted fromthe
received signal to form the residual used by the next iteration.

We provideprobability-of-symbol-errorperformancebounds
for these detection algorithms, using the coherence of the matrix
A in a non-asymptotic regime with a fixed number oftotal
users and active users. Based on these results, we develop
a lower bound on the number of correlatorsM needed to
attain a certainprobability-of-symbol-errorperformance. When
A is a random partial discrete Fourier transform matrix, theM

required by these two specific detectors is on the order oflogN
as compared toN correlators required for conventional MUD.
We validate these theoretical results via numerical examples.
Our analysis is closely related to [22]. However, [22] considers
estimation in white noise, which differs from our problem in
the aforementioned aspects. Our work also differs from prior
results on compressed sensing for MUD, such as Applebaum
et.al. [7] and Fletcher et.al. [8], [23], where aso-calledon-off
random access channel is considered. In these references, the
goal is to detect which users are active, and there is no need to
detect the transmitted symbols as we consider here. Neitherof
these works consider front-end complexity.

In this paper we focus on a synchronous MUD channel model
[4], where the transmission rate of all users is the same and their
symbol epochs are perfectly aligned. This user synchronization
can be achieved using GPS as well as distributed or centralized
synchronization schemes (see, e.g., [24], [25]). Such methods
are commonly used in cellular systems, ad-hoc networks, and
sensor networks to achieve synchronization. Part of the MUD
problem is signature sequence selection, for which there has
also been a large body of work (see, e.g., [26]). Here we do not
consider optimizing signature waveforms so that our results are
parameterized by the crosscorrelation properties of the signature
waveforms used in our design.

The rest of the paper is organized as follows. SectionII
discusses the system model and reviews conventional detectors
using the MF-bank front-end. SectionIII presents the RD-MUD
front-end and detectors. SectionIV contains the theoretical
performance guarantee of two RD-MUD detectors: the RDD
and RDDF detectors. SectionV validates the theoretical results
through numerical examples.

II. BACKGROUND

A. Notation

The notation we use is as follows. Vectors and matrices are
denoted by boldface lower-case and boldface upper-case letters,
respectively. The real and complex numbers are representedby
R andC, respectively. The real part of a scalarx is denoted as
ℜ[x], andx∗ is its conjugate. The set of indices of the nonzero
entries of a vectorx is called the support ofx. Given an index
setI, XI denotes the submatrix formed by the columns of a
matrixX indexed byI, andxI represents the subvector formed
by the entries indexed byI. The identity matrix is denoted
by I. The transpose, conjugate transpose, and inverse of a
matrixX are represented byX⊤, XH , andX−1, respectively,
and Xnm denotes itsnm th value. Theℓ2 norm is denoted
by ‖x‖ = (xHx)1/2, and the ℓ∞ norm of a vectorx is
given by‖x‖∞ = maxNn=1 |xn|. The minimum and maximum
eigenvalues of a positive-semidefinite matrixX are represented
by λmin(X) andλmax(X), respectively. The trace of a square
matrix X is denoted as tr(X). The notation diag{x1, . . . , xn}
denotes a diagonal matrix withx1, . . . , xn on its diagonal. We
useI to denote the identity matrix and1 to denote an all-one
vector.

The functionδnm is defined such thatδnm = 1 only when
n = m and otherwise is equal to 0. The sign function is defined
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assgn(x) = 1, if x > 0, sgn(x) = −1, if x < 0, and otherwise
is equal to 0. The expectation of a random variablex is denoted
as E{x} and the probability of an eventA is represented as
P (A). The union, intersection, and difference of two sets{A}
and{B} are denoted by{A}∪{B}, {A}∩{B}, and{A}/{B},
respectively. The complement of a set{A} is represented as
{A}c. The notationA ⊂ B means that setA is a subset of
B. The inner product (or crosscorrelation) between two real
analog signalsx(t) andy(t) in L2 is written as〈x(t), y(t)〉 =
1
T

∫ T

0
x(t)y(t)dt, over the symbol timeT . TheL2 norm ofx(t)

is ‖x(t)‖ = 〈x(t), x(t)〉1/2. Two signals are orthogonal if their
crosscorrelation is zero.

B. System Model

Consider asynchronousmultiuser system [1] with N users.
Each user is assigned a known unique signature waveform
from a setS = {sn(·) : [0, T ] → R, 1 ≤ n ≤ N}. Users
modulate their data by their signature waveforms. There are
K active users out ofN possible users transmitting to the
receiver. In our setting, we assume that active users modulate
their signature waveforms using Binary Phase Shift Keying
(BPSK) modulation with the symbol of usern denoted by
bn ∈ {1,−1}, for n ∈ I, whereI contains indices of all active
users. The amplitude of thenth user’s signal at the receiver
is given by rn, which is determined by the transmit power
and the wireless channel gain. For simplicity, we assumern’s
are real (but they can be negative), and known at the receiver.
The nonactive user can be viewed as transmitting with power
Pn = 0, or equivalently transmitting zeros:bn = 0, for n ∈ Ic.
The received signaly(t) is a superposition of the transmitted
signals from the active users, plus white Gaussian noisew(t)
with zero-mean and varianceσ2:

y(t) =

N
∑

n=1

rnbnsn(t) + w(t), t ∈ [0, T ], (1)

with bn ∈ {1,−1}, n ∈ I, andbn = 0, n ∈ Ic. The duration of
the data symbolT is referred to as the symbol time, which is
also equal to the inverse of the data rate for binary modulation.

We assume that the signature waveforms are linearly inde-
pendent. The crosscorrelations of the signature waveformsare
characterized by the Gram matrixG, defined as

[G]nℓ , 〈sn(t), sℓ(t)〉, 1 ≤ n, ℓ ≤ N. (2)

For convenience, we assume thatsn(t) has unit energy:
‖sn(t)‖ = 1 for all n so that [G]nn = 1. Due to our
assumption of linear independence of the signature waveforms,
G is invertible. In addition, the signatures typically have low
crosscorrelations, so that the magnitudes of the off-diagonal
elements ofG are much smaller than 1.

Our goal is to detect the set of active users, i.e. users with
indices inI, and their transmitted symbols{bn : n ∈ I}. In
practice the number of active usersK is typically much smaller
than the total number of usersN , which is a form ofanalog
signal sparsity. As we will show, this sparsity enables us to
reduce the number of correlators at the front-end and still be
able to achieve performance similar to that of a conventional

MUD using a bank of MFs. We will consider two scenarios: the
case whereK is known, and the case whereK is bounded but
unknown. The problem of estimatingK can be treated using
techniques such as those in [27].
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Fig. 1: Front-end of (a) conventional MUD using MF-bank, and
(b) RD-MUD.
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Fig. 2: The diagram of (a) linear detector, and (b) nonlinear
detector.

C. Conventional MUD

A conventional MUD detector has a MF-bank front-end
followed by a digital detector. We now review this architecture.

1) MF-bank front-end:For general single-user systems, the
MF multiplies the received signaly(t) with the single user
waveforms(t) and integrates over a symbol time. The MF-bank
is an extension of the MF for multiple users, and hasN MFs in
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parallel: thenth branch correlates the received signal with the
corresponding signature waveformsn(t), as illustrated in Fig.
1a. The output of the MF-bank is a set of sufficient statistics
for MUD when the amplitudesrn are known [1]. Using (1), the
outputof the MF-bank can be written as

z = GRb+ u, (3)

wherez = [z1, · · · , zN ]⊤, zn = 〈y(t), sn(t)〉, R ∈ RN×N is
a diagonal matrix with[R]nn = rn, b = [b1, · · · , bN ]⊤ and
u = [u1, · · · , uN ]⊤, whereun = 〈w(t), sn(t)〉. The vectoru is
Gaussian distributed with zero mean and covarianceE{uuH} =
σ2G (for derivation see [1]).

2) MF-bank detection:Conventional MUD detectors based
on the MF-bank output can be classified into two categories:
linear and nonlinear, as illustrated in Fig.2. In the literature, the
synchronous MUD model typically assumes all users are active,
i.e. bn ∈ {1,−1}, and hence the goal of the MUD detectors is
to detect all user symbols. The linear detector applies a linear
transformT to the MF-bank output (illustrated in Fig.2a):

Tz = TGRb+ Tu, (4)

and detects each user’s symbol separately using a sign detector:

b̂n = sgn(rn[Tz]n), 1 ≤ n ≤ N. (5)

Several commonly used linear detectors are the single-user
detector, the decorrelating detector and the minimum-mean-
square-error (MMSE) detector. The single-user detector [4] is
equivalent to choosingT = I in (4) and (5). By applying a
linear transformT = G−1 in (4), the decorrelating detector
can remove the user interference and recover symbols perfectly
in the absence of noise;however, it also amplifies noise when
G 6= I. The MMSE detector minimizes the MSE between
the linear transform of the MF-bank output and symbols, and
corresponds toT = (G+ σ2R−2)−1 in (4) [1].

Nonlinear detectors, on the other hand, detect symbols jointly
and (or) iteratively as illustrated in Fig.2b. Examples include
MLSE and the successive interference cancellation (SIC) detec-
tor [1]. The MLSE solves the following optimization problem:

max
bn∈{1,−1}

2yHRb− bHRGRb. (6)

However, when the signature waveforms are nonorthogonal this
optimization problem is exponentially complex in the number
of users [1]. The SIC detector first finds the active user with the
largest amplitude, detects its symbol, subtracts its effect from
the received signal, and iterates the above process using the
residual signal. AfterN iterations, the SIC detector determines
all users.

III. R EDUCED-DIMENSION MUD (RD-MUD)

The RD-MUD front-end, illustrated in Fig.1b, correlates the
received signaly(t) with a set of correlating signalshm(t),
m = 1, · · ·M , whereM is typically much smaller thanN . The
front-end output is processed by either a linear or nonlinear
detector to detect active users and their symbols;the design
of these detectors is adapted to take the analog sparsity into
account.

A. RD-MUD front-end

Design of the correlating signalshm(t) is key for RD-MUD
to reduce the number of correlators. To construct these signals,
we rely on the ideas introduced in [9] to construct multichannel
filters that samplestructuredanalog signals at sub-Nyquist rates.
Specifically, we use the biorthogonal signals with respect to
{sn(t)}, which are defined as:

ŝn(t) =

N
∑

ℓ=1

[G−1]nℓsℓ(t), 1 ≤ n ≤ N. (7)

These signals have the property that〈sn(t), ŝm(t)〉 = δnm, for
all n, m. Note that when{sn(t)} are orthogonal,G = I and
ŝn(t) = sn(t).

The RD-MUD front-end uses as its correlating signals the
functions

hm(t) =

N
∑

n=1

amnŝn(t), 1 ≤ m ≤ M, (8)

whereamn are (possibly complex) weighting coefficients. De-
fine a coefficient matrixA ∈ R

M×N with [A]mn , amn

and denote thenth column ofA as an , [a1n, · · · , aMn]
⊤,

n = 1, · · · , N . We normalize the columns ofA so that
‖an‖ = 1. The design of the correlating signals is equivalent to
the design ofA for a given{sn(t)}. Evidently, the performance
of RD-MUD will depend onA. We will use coherence as a
measure of the quality ofA, which is defined as:

µ , max
n6=ℓ

∣

∣aH
n aℓ

∣

∣ . (9)

As we will show later in SectionIV-A , it is desirable thatµ
is small to guarantee small probability-of-symbol-error. This
requirement also reflects a tradeoff in choosing how many cor-
relators to use in the RD-MUD front-end. With more correlators,
the coherence ofA can be lower and the performance of RD-
MUD improves.

Choosing the correlating signals (8) and using the receive
signal model (1), the output of themth correlator is given by:

ym = 〈hm(t), y(t)〉

=

〈

N
∑

n=1

amnŝn(t),
N
∑

ℓ=1

rℓbℓsℓ(t)

〉

+

〈

N
∑

n=1

amnŝn(t), w(t)

〉

=
N
∑

ℓ=1

rℓbℓ

N
∑

n=1

amn〈ŝn(t), sℓ(t)〉+ wm

=

N
∑

ℓ=1

amℓrℓbℓ + wm,

(10)

where the output noise is given by wm ,
∑N

n=1 amn 〈ŝn(t), w(t)〉. Denoting y = [y1, · · · , yM ]⊤

andw = [w1, · · · , wM ]⊤, we can express the RD-MUD output
(10) in vector form as

y = ARb+w, (11)
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where w is a Gaussian random vector with zero mean and
covarianceσ2AG−1AH (for derivation see [28], [29]). The
vectory can be viewed as a linear projection of the MF-bank
front-end output onto a lower dimensional subspace which we
call the detection subspace. Since there are at mostK active
users,b has at mostK non-zero entries. The idea of RD-MUD
is that when the original signal vectorb is sparse, with proper
choice of the matrixA, the detection performance forb based
on y of (11) in the detection subspace can be similar to the
performance based on the output of the MF-bank front-endz

of (3).

B. RD-MUD detection

We now discuss how to recoverb from the RD-MUD front-
end output using digital detectors. The model (11) for RD-MUD
has a similar form to the observation model in the compressed
sensing literature [13], [22], except that the noise in the RD-
MUD front-end output is colored. Hence, to recoverb, we
can combine ideas developed in the context of compressed
sensing and MUD. The linear detector for RD-MUD first
estimates active userŝI using support recovery techniques from
compressed sensing. Once the active users are estimated, wecan
write the RD-MUD front-end output model (11) as

y = AÎRÎbÎ +w, (12)

from which we can detectthe symbolsbÎ by applying a linear
transform toy. The nonlinear detector for RD-MUD detects
active users and their symbols jointly (and/or iteratively).

We will focus on recovery based on two algorithms: (1) the
RDD detector, a linear detector that uses subspace projection
along with thresholding [19], [13] to determine active users
and sign detection for data recovery; (2) the RDDF detector,
a nonlinear detector that combines decision-feedback matching
pursuit (DF-MP) for active user detection and sign detection
for data recovery. These two algorithms are summarized in
Algorithms 1 and2.

1) RDD detector: A natural strategy for detection is to
compute the inner productaHy and detect active users by
choosing indices corresponding to theK largest magnitudes
of these inner products:

Î = {n : if |ℜ[aH
n y]| is among the

K largest of|ℜ[aH
n y]|, n = 1, · · · , N}.

(13)

This corresponds to the thresholding support recovery algorithm
in compressed sensing (e.g. [13]). To detect symbols, we use
sign detection:

b̂n =

{

sgn
(

rnℜ[aH
n y]

)

, n ∈ Î;
0, n /∈ Î. (14)

In detecting active users (13) and their symbols (14), we take
the real parts of the inner products because the imaginary part
of aH

n y contains only noise and interference, since we assume
that symbolsbn and amplitudesrn are real and onlyA can
be complex. WhenK = N and M = N , the RDD detector
becomes the decorrelator in conventional MUD.

To compute the complexity-per-bit of the RDD detector
we note thatcomputing AHy requiresMN floating point

operations whenA is real (or 2MN operations whenA is
complex) for detection ofN log2 3 bits (since equivalently we
are detectingbn ∈ {−1, 0, 1}). Hence the complexity-per-
bit of RDD is proportional toM . Since M ≤ N in RD-
MUD, the complexity-per-bit of RDD (and other RD-MUD
linear detectors as well) islower thanthat of the conventional
decorrelatinglinear MUD detector. Furthermore, RDD and other
linear RD-MUD detectors require much lower complexity in the
analog front-end.

When the number of users is not known, we can replace Step
2 in Algorithm 1 by

Î = {n ∈ {1, . . . , N} : |ℜ[aH
n y]| > ξ}, (15)

where ξ > 0 is a chosen threshold. We refer to this method
as the RDD threshold (RDDt) detector. The RDDt detector is
related to the OST algorithm for model selection in [30]. The
choice of ξ depends onrn, σ2, M , N , µ and the maximum
eigenvalue ofG−1. Bounds onξ associated with error probabil-
ity bounds will be given in Theorem1. In SectionV we explore
numerical optimization ofξ, where we find that to achieve good
performance,ξ should increase withN or K, and decrease with
M .

Algorithm 1 RDD detector

1: Input : An M × N matrix A, a vectory ∈ CM and the
number of active usersK.

2: Detect active users: find̂I that contains indices of theK
largest|ℜ[aH

n y]|.
3: Detect symbols:̂bn = sgn(rnℜ[aH

n y]) for n ∈ Î, and
b̂n = 0 for n /∈ Î.

Algorithm 2 RDDF detector

1: Input : An M×N matrixA, a vectory ∈ CM and number
of active usersK.

2: Initialize: I(0) is empty,b(0) = 0, v(0) = y.
3: Iterate Steps 4 – 6 fork = 1, · · · ,K:
4: Detect active user:nk = argmaxn |ℜ[aH

n v(k−1)]|.
5: Detect symbol:b(k)n = sgn(rnk

ℜ[aH
nk
v(k−1)]), for n = nk,

andb(k)n = b
(k−1)
n for n 6= nk.

6: Update:I(k) = I(k−1) ∪ {nk},
andv(k) = y −ARb(k).

7: Output: Î = I(K), b̂ = b(K).

2) RDDF detector: The RDDF detector determines active
users and their corresponding symbols iteratively. It starts with
an empty set as the initial estimate for the set of active userI(0),
zeros as the estimated symbol vectorb(0) = 0, and the front-
end output as the residual vectorv(0) = y. Subsequently, in
each iterationk = 1, · · · ,K, the algorithm selects the column
an that is most highly correlated with the residualv(k−1) as
the detected active user in thekth iteration:

nk = argmax
n

∣

∣

∣ℜ[aH
n v(k−1)]

∣

∣

∣ , (16)
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which is then added to the active user setI(k) = I(k−1)∪{nk}.
The symbol for usernk is detected with other detected symbols
staying the same:

b(k)n =

{

sgn
(

rnk
ℜ[aH

nk
v(k−1)]

)

, n = nk;

b
(k−1)
n , n 6= nk.

(17)

The residual vector is then updated throughv(k) = y−ARb(k).
The residual vector represents the part ofb that has yet to be
detected by the algorithm along with noise. The iteration repeats
K times (as we will show, with high probability DF-MP never
detects the same active user twice), and finally the active user
set is given byÎ = I(K) with the symbol vector̂bn = b

(K)
n ,

n = 1, · · · , N . WhenK = N andM = N , the RDDF detector
becomes the successive interference cancelation technique in
the conventional MUD.

The complexity-per-bit of RDDF is proportional toKM .
SinceM ≤ N , this implies that the complexity for data detec-
tion of RDDF islower thanthat of the conventional DF detector
(the complexity-per-bit of the DF detector is proportionalto
KN ). Note that RDDF is similar to MP in compressed sensing
but with symbol detection.

We can modify the RDDF detector to account for an unknown
number of users by iterating only when the residual does not
contain any significant “component”, i.e., when‖AHv(k)‖∞ <
ǫ for some thresholdǫ > 0. We refer to this method as the
RDDF threshold (RDDFt) detector.The choice ofǫ depends on
rn, σ2, M , N , µ and the maximum eigenvalue ofG−1. As
with the thresholdξ, bounds onǫ to ensure given error proba-
bility bounds, and its numerical optimization, are presented in
Theorem1 and SectionV, respectively. As in the RDDt, here
we also found in numerical optimizations thatǫ should increase
with N or K, and decrease withM .

3) Noise whitening transform:The noise in the RD-MUD
output (11) is in general colored due to the matched filtering
at the front-end. We can whiten the noise by applying a linear
transform(AG−1AH)−1/2 before detecting active users and
symbols, as illustrated in Fig.3. The whitened output is given
by:

yw , (AG−1AH)−1/2y

= (AG−1AH)−1/2ARb+w0,
(18)

wherew0 is a Gaussian random vector with zero mean and
covariance matrixσ2I. If we define a new measurement matrix

Aw , (AG−1AH)−1/2A, (19)

then the RDD and RDDF detectorscan be applied by replacing
A with Aw andy with yw in (13), (14), (16) and (17). While
whitening the noise, the whitening transform also distortsthe
signal component.As we demonstrate via numerical examples
in SectionV-6, noise whitening is beneficial when the signature
waveforms highly correlated.

4) Other RD-MUD linear detectors:By combining ideas
developed in the context of compressed sensing and conven-
tional linear MUD detection, we can develop alternative linear
detectors in the reduced-dimension setting.

Reduced-dimension MMSE (RD-MMSE) detector:Similar to

!"#$%"&

'()*+&,*-&
y(t) .)/01&

23/+1*/*4&

5/*16(&)(&

.)*7/*16(&

"1+18+)(&

Fig. 3: A MUD detector with noise whitening transform.

the MMSE detector of the conventional MUD, a linear detector
based on the MMSE criterion can be derived for (12). The RD-
MMSE detector determines active users through the support
recovery method of (13), and then uses a linear transformM
that minimizesE{‖bÎ −My‖2} to estimate the symbols. Here
the expectation is with respect to the vector of transmitted
symbolsbÎ and the noise vectorw. Following the approach
for deriving the conventional MMSE detector [1], assuming
that bÎ is uncorrelated withw andE{bÎb

H
Î
} = I, we obtain

the linear transform for the reduced-dimension MMSE (RD-
MMSE) detector as(see AppendixA for details): M =
RÎA

H
Î
(AÎR

2
Î
AH

Î
+ σ2AG−1AH)−1. The symbols are then

determined as:

b̂n =

{

sgn(rnℜ{[My]n}), n ∈ Î;
0, n /∈ Î. (20)

Similarly, we can modify RDDF by replacing symbol detection
by (20) on the detected supportI(k) in each iteration.

Reduced-dimension least squares (RD-LS) detector:In the
reduced-dimensional model (12), the matrixAÎRÎ introduces
interference when we detect the symbols. Borrowing from the
idea of conventional MUD decorrelator, we can alleviate the
effect of interference using the method of least-squares, and es-
timate the symbols by solvinĝbÎ = argminx ‖y−AÎRÎx‖2.
We call this the reduced-dimension least squares (RD-LS)
detector. Sincesgn([b̂Î ]n) = sgn([R2

Î
b̂Î ]n), RD-LS detects

symbols by:

b̂n =

{

sgn

(

rnℜ
[

(AH
Î
AÎ)

−1AH
Î
y
]

n

)

, n ∈ Î;
0, n /∈ Î.

(21)

Similarly, we can modify RDDF by replacing symbol detection
by (21) on detected supportI(k) in each iteration.

5) Reduced-Dimension Maximum Likelihood (RD-ML)de-
tector: TheRD-ML detector finds the active users and symbols
by solving the following integer optimization problem:

max
bn∈{−1,0,1}

2yH(AG−1AH)−1ARb

− bHRAH(AG−1AH)−1ARb,
(22)

where bn = 0 corresponds to thenth user being inactive.
Similar to the conventional maximum likelihood detector,the
complexity-per-bit of the RD-ML is exponential in the number
of users. We therefore do not consider this algorithm further.

C. Choice ofA

In SectionsIII-B1 and III-B2 we have shown that both the
RDD and RDDF detectors are based on the inner products
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betweeny and the columns ofA. Since y consists ofan

corresponding to the active users plus noise,intuitively, for RDD
and RDDF to work well, the inner products between columns of
A, or its coherence as defined in (9), should be small. Several
commonly used random matrices in compressed sensing that
have small coherence with high probability are:

(1) Gaussian random matrices, where entriesanm are indepen-
dent and identically distributed (i.i.d.) with a zero mean
and unit variance Gaussian distribution, with columns
normalized to have unit norm;

(2) Randomly sampled rows of a unitary matrix. For instance,
the random partial discrete Fourier transform (DFT) ma-
trix, which is formed by randomly selecting rows of a DFT
matrix F : [F ]nm = ei

2π
N

nm and normalizing the columns
of the sub-matrix.

(3) Kerdock codes [31]: these codes have dimension restricted
to M × M2, whereM = 2m+1 with m an odd integer
greater than or equal to 3. They have very good coherence
properties, withµ = 1/

√
M which meets the Welch lower

bound on coherence. The Welch bound imposes a general
lower bound on the coherence of anyM × N matrix A

[32] leading toµ ' M−1/2, whenN is large relative to
M andN is much larger than 1.

Among these three possible matrix choices, the random
partial DFT matrix has some important properties that simplify
closed-form analysis in some cases. In practice, if we choose the
number of correlators equal to the number of users, i.e.M = N ,
then there is no dimension reduction, and the performance of
RD-MUD should equal that of the MF-bank. WhenM = N ,
the random partial DFT matrix becomes the DFT matrix with
the property thatAHA = I, i.e, aH

n am = δnm. In this case,
the set of statistics{aH

n y} that RDD and RDDF are based on
has the same distribution as the decorrelator output. To seethis,
write aH

n y = aH
n

(

∑N
m=1 amrmbm

)

+ aH
n w = rnbn + aH

n w,

whereaH
n w is a Gaussian random variable with zero mean and

covarianceσ2aH
n AG−1AHam = [G−1]nm. In contrast, the

Gaussian random matrix does not have this property.Therefore,
in this setting,the performance of RD-MUD using a Gaussian
random matrixA is worse than that using the random partial
DFT matrix. This is also validated in our numerical results in
SectionV-3. We will also see in SectionV-3 that Kerdock codes
outperform both random partial DFT and Gaussian random
matrices for a large number of users. This is due to their good
coherence properties. However, as discussed above, Kerdock
codes have restricted dimensions and are thus less flexible for
system design.

IV. PERFORMANCE OFRD-MUD

We now study the performance of RD-MUD with the RDD
and RDDF detectors.We begin by considering the case of a
single active user without noise as a motivating example.

A. Single Active User

When there is only one active user in the absence of noise,
the RDD detector can detect the correct active user and symbol

by using onlytwo correlators, ifevery twocolumns ofA are
linearly independent. Later we will also show this is a corollary
(Corollary 2) of the more general Theorem1.

Assume there is no noise and only one user with indexn0

is active. In this case,y(t) = rn0bn0sn0(t) andK = 1. In RD-
MUD, with two correlators, the RDD detector determines the
active user by finding

n̂0 = arg max
n=1,··· ,N

|a1n〈h1(t), y(t)〉+ a2n〈h2(t), y(t)〉|. (23)

From the Cauchy-Schwarz inequality,

|a1n〈h1(t), y(t)〉+ a2n〈h2(t), y(t)〉|2

≤ (a21n + a22n)
[

〈h1(t), y(t)〉2 + 〈h2(t), y(t)〉2
]

,
(24)

with equality if and only if amn = c〈hm(t), y(t)〉 =
camn0rn0bn0 = c(n0)amn0 for both m = 1, 2 with some con-
stantc(n0). If every twocolumns ofA are linearly independent,
we cannot have two indicesn such thatamn = c(n0)amn0 for
m = 1, 2. Also recall that the columns ofA are normalized,
a21n + a22n = ‖an‖2 = 1. Therefore, the maximum is achieved
only for n = n0 andc(n0) = 1, which detects the correct active
user. The detected symbol is also correct, since

b̂n0 = sgn(rn0 [a1n0〈y(t), h1(t)〉+ a2n0〈y(t), h2(t)〉])
= sgn(r2n0

bn0 [a
2
1n0

+ a22n0
]) = bn0 .

(25)

B. Noise Amplification of Subspace Projection

The projection onto the detection subspace amplifies the
variance of noise.When the RDD and RDDF detectors detect
the nth user, they are affected by a noise componentaH

n w.
Consider the special case with orthogonal signature waveforms,
i.e. G = I, andA chosen as the random partial DFT matrix.
In this case, the noise variance is given byσ2aH

n AAHan =
σ2(N/M), so that it is amplified by a factorN/M ≥ 1.
In general, with subspace projection, the noise variance is
amplified by a factor ofaH

n AG−1AHan [17]. Below we
capture this noise amplification more precisely by relatingthe
noise variance to the performance of the RD-MUD detectors.

C. Coherence Based Performance Guarantee

In this section, we present conditions under which the RDD
and RDDF detectors can successfully recover active users
and their symbols. The conditions depend onA through its
coherence and are parameterized by the crosscorrelations of
the signature waveforms through the properties of the matrix
G. Our performance measure is theprobability-of-symbol-error,
which is defined as theprobability that the set of active users
is detected incorrectly,or any of their symbols are detected
incorrectly:

Pe = P{Î 6= I}+ P{{Î = I} ∩ {b̂ 6= b}}. (26)

We will show in the proof of Theorem1 that the second term
of (26) is dominated by the first term when (13) and (16) are
used for active user detection. Define the largest and smallest
channel gains as

|rmax| , max
n

|rn|, |rmin| , min
n

|rn|. (27)
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Also define thekth largest channel gain as|r(k)|. Hence,
|rmax| = |r(1)| and |rmin| = |r(K)|. Our main result is the
following theorem:

Theorem 1. Let b ∈ RN×1 be an unknown deterministic
symbol vector,bn ∈ {−1, 1}, n ∈ I, and bn = 0, n ∈ Ic,
n = 1, · · · , N . Denote the RD-MUD front-end output by
y = ARb + w, whereA ∈ CM×N and G ∈ RN×N are
known,w is a Gaussian random vector with zero mean and
covarianceσ2AG−1AH andR = diag{r1, · · · , rN}. Let

τ , σ
√

2(1 + α) logN ·
√

λmax(G
−1) ·

√

max
n

(aH
n AAHan),

(28)
for a given constantα > 0.

1) Assume that the number of active usersK is known. If
the coherence (9) of A satisfies the following condition:

|rmin| − (2K − 1)µ|rmax| ≥ 2τ, (29)

for some constantα > 0, then the probability-of-symbol-
error (26) for the RDD detector is upper bounded by:

Pe ≤ N−α[π(1 + α) logN ]−1/2. (30)

2) AssumeK0 is an upper bound for the number of active
users. If the coherence (9) ofA satisfies (29) for K = K0,
and we choose a thresholdξ > 0 that satisfies

K0µ|rmax|+τ < ξ < |rmin|−(K0−1)µ|rmax|−τ, (31)

then the probability-of-symbol-error (26) for the RDDt
detector is upper bounded by the right-hand-side of (30).

3) Assume that the number of active usersK is known. If
the coherence (9) of A satisfies the following condition:

|rmin| − (2K − 1)µ|rmin| ≥ 2τ, (32)

for some constantα > 0, then the probability-of-symbol-
error (26) for the RDDF detector is upper bounded by
the right-hand-side of (30).

4) If the coherence (9) of A satisfies (32) and we choose a
thresholdǫ > 0 such that

τ < ǫ <
K
min
k=1

{|r(k)|[1− (K − k)µ]− τ}, (33)

then the probability-of-symbol-error (26) for the RDDFt
detector is upper bounded by the right-hand-side of (30).

Proof: See AppendixB.
The main idea of the proof is the following. We define an

event
G =

{

N
max
n=1

|aH
n w| < τ

}

(34)

for τ defined in (28), and prove thatG occurs with high
probability. This bounds the two-sided tail probability ofthe
noise. Then we show that under (29), wheneverG occurs, the
active users can be correctly detected. On the other hand, we
show that under a condition weaker than (29), wheneverG
occurs, the user data symbols can be correctly detected. A
similar but inductive approach is used to prove the performance
guarantee for the RDDF detector.

A special case of Theorem1 is whenAAH = (N/M)I,

maxn(a
H
n AAHan) = N/M andG = I. This is true whenA

is the random partial DFT matrix and the signature waveforms
are orthogonal. If we scaleσ2 by M/N , then the right hand
sides of (29) and (32) are identical to the corresponding quan-
tities in Theorem 4 of [22]. Hence,in this caseTheorem1 has
the same conditions as those of Theorem 4 in [22]. However,
Theorem 4 in [22] only guarantees detecting the correct sparsity
pattern ofb (equivalently, the correct active users), whereas
Theorem1 guarantees correct detection of not only the active
users but their symbols as well.Theorem1 is also applied to
more general colored noise.

Remarks:
(1) The term on the right hand side of (29) and (32) is

bounded by1 ≤ maxn(a
H
n AAHan) ≤ 1 + (N − 1)µ2.

(2) There is a noise phase-transition effect. Define the mini-
mum signal-to-noise ratio (SNR) as

SNRmin =
|rmin|2

σ2λmax(G
−1)

, (35)

whereλmax(G
−1) captures the noise amplification effect

in the subspace projection due to nonorthogonal signature
waveforms. Conditions (29) and (32) suggest that for the
RDD and RDDF detectors to havePe as small as (30),
we needat least

SNRmin > 8 logN. (36)

This means thatif the minimum SNR is not suffi-
ciently high, then these algorithms cannot attain small
probability-of-symbol-error. We illustrate this effect via
numerical examples in SectionV-5 (a similar effect can
be observed in standard MUD detectors).

(3) In Theorem1 the condition of having a small probability-
of-symbol-error for the RDDF detector is weaker than
for the RDD detector. Intuitively, the iterative approach
of decision feedback removes the effect ofstrong users
iteratively, which helps the detection of weaker users.

D. Bounding probability-of-symbol-error of RDD and RDDF

Theorem1 provides a condition on how smallµ has to be to
achieve a small probability-of-symbol-error.We can eliminate
the constantα and rewriteTheorem1 in an equivalent form that
gives explicit error bounds for the RDD and RDDF detectors.
Define

β1 ,
[1− (2K − 1)µ|rmax|/|rmin|]2

maxn(aH
n AAHan)

,

β2 ,
[1− (2K − 1)µ]2

maxn(aH
n AAHan)

.

(37)

For the RDD detector, we have already implicitly assumed that
1 − (2K − 1)µ|rmax|/|rmin| ≥ 0, since the right hand side of
(29) in Theorem1 is non-negative. For the same reason, for the
RDDF detector, we have assumed that1− (2K − 1)µ > 0. By
Remark (1)and (37), β1 ≤ 1 and β2 ≤ 1. We can prove the
following corollary from Theorem1 (see [28] for details):

Corollary 1. Under the setting of Theorem1, with the defini-
tions (35) and (37), the probability-of-symbol-error for the RDD
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detector is upper-bounded by

Pe,RDD ≤ 2N√
π

[

SNRmin

2
· β1

]−1/2

e−
1
4

SNRmin
2 ·β1 , (38)

with 1 − (2K − 1)µ|rmax|/|rmin| ≥ 0, and the probability-of-
symbol-error for the RDDF detector is upper bounded by

Pe,RDDF ≤ 2N√
π

[

SNRmin

2
· β2

]−1/2

· e− 1
4

SNRmin
2 β2 , (39)

with 1− (2K − 1)µ > 0.

For the decorrelating detector in conventional MUD, a com-
monly used performance measure is the probability of error of
each user [4], which is given by:

P{b̂n 6= bn} = Q

(

|rn|/(σ
√

[G−1]nn)

)

, (40)

where Q(x) =
∫∞

x (1/
√
2π)e−z2/2dz is the Gaussian tail

probability. Using (40) and the union bound, we obtain

Pe = P{b̂ 6= b} ≤
N
∑

n=1

P{b̂n 6= bn} ≤ NQ
(

√

SNRmin

)

≤ N

2
√
π

[

SNRmin

2

]−1/2

e−
SNRmin

2 , (41)

where we also used the fact that|rn|/[σ
√

[G−1]nn] ≥√
SNRmin andQ(x) is decreasing inx, as well as the bound

[1] Q(x) ≤ 1/(x
√
2π)e−x2/2. Since conventional MUD is not

concerned with active user detection and the errors are due to
symbol detection, it only makes sense to compare (41) to (38)
and (39) whenK = N andM = N . Under this setting,β1 = 1
and β2 = 1, and the bounds onPe (38) of RDD and (39)
of RDDF are larger than the bound (41) of the decorrelating
detector. This is because when deriving bounds for symbol
detection error in the proof of Theorem1, we consider the
probability of (34), which requires two-side tail-probability of
a Gaussian random variable. In contrast, in conventional MUD,
without active-user detection, only the one-sided tail probability
of the Gaussian random variableP{w > τ} is requiredbecause
we use binary modulation. Nevertheless, obtaining a tighter
bound for symbol detection error is not necessary in RD-MUD
because whenK < N , active user detection error dominates
symbol detection error.

By letting the noise varianceσ2 go to zero in (38) and (39)
for the RDD and RDDF detectors, we can derive the following
corollary from Theorem1 (a proof of this corollary for the RDD
detector has been given in SectionIV-A ).

Corollary 2. Under the setting of Theorem1, in the absence
of noise, the RDD detector can correctly detect the active users
and their symbols ifµ < |rmin|/[|rmax|(2K − 1)], and the
RDDF detector can correctly detect the active users and their
symbols ifµ < 1/(2K−1). In particular, if K = 1, withM = 2
correlators,Pe = 0 for the RDDF detector, and if furthermore
|rmax| = |rmin|, Pe = 0 for the RDD detector (which has also
been shown in SectionIV-A).

E. Lower Bound on the Number of Correlators

Theorem1 is stated for any matrixA. By substitution of the
expression for coherence of a givenA in terms of its dimensions
M and N into Theorem1, we can obtain a lower bound on
the smallest number of correlatorsM needed to achieve a
certain probability-of-symbol-error. Forexample, the coherence
of the random partial DFT matrix can be bounded in probability
(easily provableby the complex Hoeffding’s inequality [33]):

Lemma 1. Let A ∈ CM×N be a random partial DFT matrix.
Then the coherence ofA is bounded by

µ < [4(2 logN + c)/M ]
1/2

, (42)

with probability exceeding1− 2e−c, for some constantc > 0.

Lemma1 together with Theorem1 imply that for the partial
DFT matrix to attain a small probability-of-symbol-error,the
number of correlators needed by the RDD and RDDF detectors
is on the order oflogN . This is much smaller than that required
by the conventional MUD using a MF-bank, which is on the
order ofN .

Corollary 2 together with the Welch bound imply that, for
the RDD and RDDF detectors to have perfect detection, the
number of correlatorsM should be on the order of(2K −
1)2. In the compressed sensing literature, it is known that the
bounds obtained using the coherence property of a matrix have a
“quadratic bottleneck” [32]: the number of measurements is on
the order ofK2. Nevertheless, the coherence property is easy
to check for a given matrix, and it is a convenient measure
of the user interference level in the detection subspace as we
demonstrated in the proof of Theorem1.

V. NUMERICAL EXAMPLES

As an illustration of the performance of RD-MUD, we present
some numerical examples.We first generate105 partial random
DFT matrices and choose the matrix that has the smallest
coherence asA. Then using the fixedA, we obtain results
from 5× 105 Monte Carlo trials.For each trial, we generate a
Gaussian random noise vector and random bits:bn ∈ {−1, 1},
n ∈ I with probability 1/2. In this setting, the conventional
decorrelating detector hasPe equal to that of the RDD when
M = N .

1) Pe vs. M , as N increases:Fig. 6 shows thePe of the
RDD, RDDF, RDDt and RDDFt detectors as a function ofM ,
for fixed K = 2, and different values ofN . The amplitudes
rn = 1 for all n, the noise variance isσ2 = 0.005, andG = I,
which corresponds toSNRmin = 23dB. For each combination
of N and M , we numerically search to find the best values
for parametersξ and ǫ. The values ofξ range from 0.78 to
0.92, increase for largerN and decrease for largerM for
the RDDt detector. The values ofǫ range from 0.50 to 0.80,
increase for largerN and decrease for largerM for the RDDFt
detector.The RDD and RDDF detectors can achieve smallPe

for M much smaller thanN ; the RDDt and RDDFt have some
sacrifice in performance due to their lack of knowledge ofK.
This degradation becomes more pronounced for larger values
of N .



10

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

RDD and RDDt, K = 2

M: # of Correlators

P
e

 

 

N = 50
N = 100
N = 150
N = 200

(a) RDD and RDDt

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

RDDF and RDDFt, K = 2

M: # of Correlators

P
e

 

 

N = 50
N = 100
N = 150
N = 200

(b) RDDF and RDDFt

Fig. 4:Pe versusM for K = 2 and differentN . The amplitudes
rn = 1 for all n, the noise variance isσ2 = 0.005, andG = I,
which corresponds toSNRmin = 23dB. (a) RDD and RDDt,
where the solid lines correspond to RDD and the dashed lines
correspond to RDDt; and (b) RDDF and RDDFt, where the solid
lines correspond to RDDF and the dashed lines correspond to
RDDFt.

2) Pe vs M , as K increases:Fig. 5a demonstrates thePe

of the RDD, RDDF, RDDt, RDDFt detectors as a function of
M , for a fixedN = 100, and different values ofK. For each
combination ofM andK, we numerically search to find the
best values for the parametersξ and ǫ. Here ξ ranges from
0.68 to 0.80 andǫ ranges from 0.32 to 0.70.The amplitudes
rn = 1 for all n, the noise variance isσ2 = 0.005, andG = I,
which corresponds toSNRmin = 23dB. Clearly, the number of
correlators needed to obtain smallPe increases asK increases.

3) Comparison of random matricesA: We compare thePe

of the RDD and RDDF detectors when the Gaussian random
matrices, the random partial DFT matrices or the Kerdock
codes are use forA. In Fig. 6a, the Pe of the Gaussian
random matrix converges to a value much higher than that
of the partial DFT matrix, whenM increases toN . In this
example,N = 100, K = 6, the amplitudesrn = 1 for all
n, the noise variance isσ2 = 0.005, and G = I. In Fig.
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(b) RDDF and RDDFt

Fig. 5: Pe versusM for N = 100 and differentK. The
amplitudesrn = 1 for all n, the noise variance isσ2 = 0.005,
and G = I. (a) RDD and RDDt, where the solid lines
correspond to RDD and the dashed lines correspond to RDDt;
and (b) RDDF and RDDFt, where the solid lines correspond to
RDDF and the dashed lines correspond to RDDFt.

6b, Kerdock codes outperform both the partial DFT and the
Gaussian random matrices because of their good coherence
properties. This behavior can be explained as follows. For larger
N and relatively smallM , it becomes harder to select a partial
DFT matrix with small coherence by random search, whereas
the Kerdock codes can be efficiently constructed and they obtain
the Welch lower bound on coherence by design. For fixedN
andM , Kerdock codes can support a large number of active
users, as demonstrated in Fig.7. In this example, the coherence
of the Kerdock code isµ = 0.0312, which is much smaller
than the coherenceµ = 0.0480 obtained by choosing from105

random partial DFT matrices.Kerdock codes are tight frames
[34], [31] meaning thatG = N/MI so that no pre-whitening
is needed.

4) Pe vs. M , as SNR changes: Consider a case where
SNRmin changes by fixingG = I, rn = 1 for all n, and
varyingσ2. For comparison, we also consider the conventional
decorrelating detector, which corresponds to the RDD detector
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Fig. 6: (a): Pe versusM of the RDD and RDDF detectors
using random partial DFT versus Gaussian random matrices
for N = 100 andK = 6 (Kerdock codes require dimensions
of M = 2m for m = 4, 6, . . . and hence are not presented
here). (b)Pe versusK of the RDD and RDDF detectors using
Gaussian random matrices, random partial DFT matrices, and
Kerdock codes of size 16 by 256 (arbitrarily select 32 columns
for 32 users), forN = 32 andM = 16. In both examples, the
amplitudesrn = 1 for all n, the noise variance isσ2 = 0.005,
andG = I.

with M = N . AssumeN = 100 andK = 2. Note that there is
a noise phase-transition effect in Fig.5a, which is discussed in
the Remarks of SectionIV-C.

5) Near-far problem,G = I: To illustrate the performance
of the RDD and RDDF detectors in the presence of the near-
far problem, we choosern uniformly random from[1, 1.5] for
active users. AssumeN = 100, K = 2, σ2 = 0.005. In Fig. 9,
RDDF significantly outperforms RDD.

6) Pe vs.M , performance of the noise whitening transform:
Next we consider practical signature waveforms in CDMA
systems.There are many choices for signature sequences and
the Gold code is one that is commonly used [35]. For signature
sequences{snℓ}, the signature waveforms are generated by
sn(t) =

∑L−1
ℓ=0 snℓp(t− ℓTc), whereL is the sequence length,
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N = 2048, RDD
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N = 3072, RDD
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Fig. 7: Performance of RDD and RDDF detectors, when using
Kerdock codes forA with M = 1024, Pe versusK for various
N when amplitudesrn uniformly random in [1, 1.5],G = I

andσ2 = 0.005.

Tc ≪ T is the chip duration, and the sequences{snℓ} are mod-
ulated by unit-energy chip waveformp(t) with

∫

|p(t)|2dt = 1
and

∫

p(t− ℓTc)p(t− kTc)dt = 0, ℓ 6= k. For Gold codes, we
choosem = 10 (with lengthL = 210 − 1 = 1023 and 1025
possible codewords) [36]. We use100 Gold codes to support
N = 100 users. The Gram matrix of the Gold code is given by

G =
L+ 1

L
IN×N − 1

L
11⊤, (43)

which has two distinct eigenvalues. In this example,λ1 =
(N + 1)/N = 1.0010, λ2 = (L − N + 1)/L = 0.8768,
λmax(G

−1) = 1.1405 and hence the signature waveforms
are nearly orthogonal.We also consider a simulatedG =
Udiag{1/400, 2/400, · · · , 100/400}U⊤ for a randomly gener-
ated unitary matrixU ∈ R

100×100, and henceλmax(G
−1) =

400 which is much larger than that of the Gold codes.In Fig.
10a and Fig. 10b, when the signature waveforms are nearly
orthogonal, the noise whitening transform does not reducePe

much. Fig.10c and Fig.10b show that the performance of the
RDD and RDDF detectors can be significantly improved by
the noise whitening transform for largeM . We also verified
that using the noise whitening transform cannot achieve the
probability-of-error that is obtained with orthogonal signature
waveforms G = I. This is because the noise whitening
transform distorts the signal component.

7) Pe vs. M , RD-MUD linear detectors:To compare per-
formance of the RD-MUD linear detectors, we consider two
sets of schemes. The first are one-step methods: using (13)
for active user detection followed by symbol detection using
(14) (corresponds to RDD), (20) (corresponds to RD-MMSE),
or (21) (corresponds to RD-LS), respectively. The second set of
schemes detects active users and symbols iteratively:the RDDF
detector, the modified RDDF detector, modified by replacing the
symbol detection by the RD-LS detector (21) on the detected
support in each iterationI(k), and the modified RDDF detector,
modified by replacing the symbol detection by the MMSE
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Fig. 8: Performance of RDD and RDDF detectors whenrn = 1
for all n, G = I and variousσ2, where we denoteSNR =
10 log10(r

2
n/σ

2)dB. The dashed lines showPe for the conven-
tional decorrelating detectors at the correspondingSNR.

detector (20) on the detected support in each iterationI(k).
AssumeN = 100, K = 2, rn = 1 for all n, andσ2 = 0.005.
Again we consider Gold codes as defined in SectionV-6.
As showed by TableI, iterative methods including RDDF
outperform the one-step methods including RDD. However, the
difference between various symbol detection methods is very
small, since active user detection error dominates the symbol
detection error. By examining the conditional probability-of-
symbol-errorP{b̂ 6= b|Î = I}, in Fig. 11 we see that both
RD-LS and RD-MMSE detectors have an advantage over sign
detection.

VI. CONCLUSIONS ANDDISCUSSIONS

We have developed a reduced dimension multiuser detection
(RD-MUD) structure, assuming symbol-rate synchronization,
which decreases the number of correlators at the front-end of
a MUD receiver by exploiting the fact that the number of
active users is typically much smaller than the total number
of users in the system.The front-end of the RD-MUD is
motivated by analog CS and itprojects the received signal
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Fig. 9: Comparison of RDD and RDDF in the presence of near-
far problem, with amplitudesrn uniformly random in [1, 1.5],
N = 100, K = 2, σ2 = 0.005, andG = I. The solid lines
correspond to RDD and the dashed lines correspond to RDDF.
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= 0.01
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(c) SimulatedG, σ2
= 0.005
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Fig. 10: Comparison of RDD and RDDF detectors with and
without noise whitening whenN = 100, K = 2, amplitudesrn
uniformly random in [1, 1.5], and the following settings forG
andσ2: (a) Gold codes withλmax(G

−1) = 1.1405, σ2 = 0.005,
(b) same Gold codes as in (a) butσ2 = 0.01, (c) simulatedG
with λmax(G

−1) = 400, σ2 = 0.005, (d) same simulatedG as
in (c) butσ2 = 0.01.

onto a lower dimensional detection subspace by correlatingthe
received signal with a set of correlating signals. The correlating
signals are constructed as linear combinations of thesignature
waveforms using a coefficient matrixA, which determines the
performance of RD-MUD and is our key design parameter.
Based on the front-end output, RD-MUD detectors recover
active users and their symbols in the detection subspace.

We studied in detail two such detectors. The RDD detector,
which is a linear detector that combines subspace projection
along with thresholding for active user detection and RDDF
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Fig. 11: Comparison ofP{b̂ 6= b|Î = I} for RDD, RD-LS, and
RD-MMSE in the same setting as that in Fig.10a.

TABLE I: P{b̂ 6= b|Î = I} vs. M , N = 100, K = 2

M
Methods 5 9 18 37
RDD 0.9780 0.8400 0.3857 0.0342
RD-LS 0.9780 0.8400 0.3857 0.0342
RD-MMSE 0.9779 0.8400 0.3857 0.0342
RDDF 0.9527 0.6248 0.0905 0.0006
modified RDDF with
LS

0.9526 0.6247 0.0905 0.0006

modified RDDF with
MMSE

0.9526 0.6247 0.0905 0.0006

detector, which is a nonlinear detector that combines decision-
feedback matching pursuit for active user detection. We have
shown that to achieve a desired probability-of-symbol-error, the
number of correlators used by RD-MUD can be much smaller
than that used by conventional MUD, and the complexity-per-bit
of the RD-MUD detectors are not higher than their counterpart
in the conventional MUD setting. In particular, when the random
partial DFT matrix is used for the coefficient matrixA and
the RDD and RDDF detectors are used for detection, the RD-
MUD front-end requires a number of correlators proportional to
log of the number of users, whereas the conventional MF-bank
front-end requires a number of correlators equal to the number
of users in the system. We obtained theoretical performance
guarantees for the RDD and RDDF detectors in terms of the
coherence ofA, which are validated via numerical examples.

In contrast to other work exploiting compressed sensing tech-
niques for multiuser detection, our work has several distinctive
features: (1) we consider analog received multiuser signals;
(2) we consider front-end complexity, which is the number
of filters/correlators at the front-end to perform the analog-to-
discrete conversion; (3) the noise is added in the analog domain
prior to processing of the front-end, so that the output noise
vector can be colored due to front-end filtering; (4) we modify
several conventional compressed sensing estimation algorithms
to make them applicable for symbol detection and study their

probability-of-symbol-error performance.
Our results are based on binary modulation and can be

extended to higher order modulation with symbols taking more
possible values. In this case, however, the conditions to guaran-
tee correct symbol detection may be stronger than the conditions
to guarantee correct active user detection. We have also assumed
that the signature waveforms are given. Better performance
of RD-MUD might be obtained through joint optimization of
the signature waveforms and the coefficient matrixA. Our
results assume a synchronous channel model. Extending the
ideas of this work to asynchronous channels perhaps using the
methods developed in [37] for time-delay recovery from low-
rate samples, is a topic of future research.
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APPENDIX A
DERIVATION OF RD-MUD MMSE

Given the active user index setÎ obtained from (13), we de-
fineW = AÎR

2
Î
AH

Î
+σ2AG−1AH , andM̄ = RÎA

H
Î
W−1.

We want to show that̄M = argminM E{‖bÎ−My‖2}. Using
the same method for deriving the conventional MMSE detector
of the MF-bank [1], we assume thatbÎ has a distribution that
is uncorrelated with the noisew and thatE{bÎb

H
Î
} = I.

Based onÎ, we refer to the model (12), and write the MSE
asE{‖bÎ −My‖2} = tr(E{(bÎ −My)(bÎ −My)H}). Now
we expand

E{(bÎ −My)(bÎ −My)H}
= E{bÎb

H
Î
} − E{bÎyH}MH −ME{ybH

Î
}

+ME{yyH}MH

= I +M (AÎR
2
Î
AH

Î
+ σ2AG−1AH)MH

−RÎA
H
Î
MH −MAÎRÎ .

(44)

It can be verified thatMAÎRÎ = MWM̄
H

. Hence from
(44), we have

E{(bÎ −My)(bÎ −My)H}
= I +MWMH − M̄WMH −MWM̄

H

= I − M̄WM̄
H
+ (M − M̄)W (M − M̄ )H

= I −RÎA
H
Î
W−1AÎRÎ

+ (M − M̄)W (M − M̄)H .

(45)

Since W is a positive semidefinite matrix, the trace of the
second term in (45) is always nonnegative. Therefore, the matrix
M that minimizes the MSE isM̄ .

APPENDIX B
PROOF OFTHEOREM 1

The proof of Theorem1 for both the RDD and RDDF
detectors are closely related. We therefore begin by proving
several lemmas that are useful for both results.
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First, we prove that the random eventG defined in (34) occurs
with high probability, whereτ is defined in (28). Then we show
that whenG occurs, both algorithms can detect the active users
and their symbols. The proofs follow the arguments in [22] with
modifications to account for the fact thatw is colored noise,
and the error can also be caused by incorrect symbol detection.
However, as we will show, the error probability of active user
detection dominates the latter case.

Lemma 2. Suppose thatw is a Gaussian random vector with
zero mean and covarianceσ2AG−1AH . If N−(1+α)[π(1 +
α) logN ]−1/2 ≤ 1 for someα > 0, then the eventG of (34)
occurs with probability at least one minus (30).

Proof: The random variables{aH
n w}Nn=1 are jointly

Gaussian, with means equal to zero, variancesσ2
n equal to

σ2aH
n AG−1AHan. Define

τ̂ , σ[2(1+α) logN ]1/2 ·
[

max
n

(aH
n AG−1AHan)

]1/2

, (46)

and an event̂G ,
{

max1≤n≤N |aH
n w| < τ̂

}

. Using Sidak’s
lemma [38] , we have

P

{

Ĝ
}

= P
{

|aH
1 w| < τ̂, · · · , |aH

Nw| < τ̂
}

≥
N
∏

n=1

P{|aH
n w| < τ̂}.

(47)

SinceaH
n w is a Gaussian random variable with zero mean

and varianceσ2
n, the tail probability of the colored noise can

be written as

P{|aH
n w| < τ̂ ) = 1− 2Q

(

τ̂

σn

}

. (48)

Using the bound onQ(x): Q(x) ≤ (x
√
2π)−1e−x2/2,

(48) can be bounded asP{|aH
n w| < τ̂} ≥ 1 − ηn,

where ηn ,
√

2/π(σn/τ̂ )e
−τ̂2/(2σ2

n
). Define σmax ,

maxn σn = σ
[

maxn(a
H
n AG−1AHan)

]1/2

, ηmax ,
√

2/π(σmax/τ̂)e
−τ̂2/(2σ2

max). Since σmax/τ̂ = [2(1 +
α) logN ]−1/2 by the definition of τ̂ , we have ηmax =
√

2/π[2(1 + α) logN ]−1/2e−(1+α) logN . It is easy to show
that ηn increases asσn increases. Henceηn ≤ ηmax. When
ηmax ≤ 1, we can use the inequality(1−x)N ≥ 1−Nx when
x ≥ 0 and substitute the value ofηmax to write (47) as

P{Ĝ} ≥
N
∏

n=1

(1− ηn) ≥ (1 − ηmax)
N ≥ 1−Nηmax

= 1−N−α[π(1 + α) logN ]−1/2,

(49)

which holds for anyηmax ≤ 1 andN ≥ 1. Next we show that
τ̂ ≤ τ . Note that

aH
n AG−1AHan

≤ ‖AHan‖2λmax(G
−1)

≤ [max
n

(

aH
n AAHan

)

]λmax(G
−1).

(50)

From inequality (50) and definitions (28) for τ and (46) for τ̂ ,

we obtainτ̂ ≤ τ . Hence

P{G} = P{max
n

|aH
n w| < τ}

≥ P{max
n

|aH
n w| < τ̂} = P{Ĝ}.

(51)

Combining (49) and (51), we conclude thatP (G) is greater than
one minus the expression (30), as required.

The next lemma shows that, under appropriate conditions,
ranking the inner products betweenan and y is an effective
method of detecting the set of active users. The proof of
this lemma is adapted from Lemma 3 in [22] to account
for the fact that the signal vectory here can be complex
as A can be complex. Since the real part contains all the
useful information, to prove this lemma, we follow the proof
for Lemma 3 in [22] while using the following inequality
whenever needed:|ℜ[aH

n am]| ≤ |aH
n am| ≤ µ for n 6= m,

and |ℜ[aH
n w]| ≤ |aH

n w|. The proofs are omitted due to space
limitations. Details of the proof can be found in [28].

Lemma 3. Let b be a vector with supportI which consists of
K active users, and lety = ARb + w for a Gaussian noise
vector w with zero mean and covarianceAG−1AH . Define
|rmax| and |rmin| as in (27), and suppose that

|rmin| − (2K − 1)µ|rmax| ≥ 2τ. (52)

Then, if the eventG of (34) occurs, we haveminn∈I |ℜ[aH
n y]| >

maxn/∈I |ℜ[aH
n y]|. If, rather than (52), a weaker condition

holds:
|rmax| − (2K − 1)µ|rmax| ≥ 2τ. (53)

Then, if the event G of (34) occurs, we have
maxn∈I |ℜ[aH

n y]| > maxn/∈I |ℜ[aH
n y]|.

The following lemma demonstrates that the sign detector can
effectively detect transmitted symbols for the RDD and RDDF
detectors.This Lemma bounds the second term inPe that has
not been considered in [22].

Lemma 4. Let b be a vector withbn ∈ {1,−1}, for n ∈ I
and bn = 0 otherwise, and lety = ARb +w for a Gaussian
noise vectorw with zero mean and covarianceσ2AG−1AH .
Suppose that

|rmin| − (K − 1)µ|rmax| ≥ τ. (54)

Then, if the eventG occurs, we have

sgn(rnℜ[aH
n y]) = bn, n ∈ I. (55)

If, instead of (54), a weaker condition

|rmax|+ |rmin| − 2(K − 1)µ|rmax| ≥ 2τ (56)

holds, then under the eventG, we havesgn(rn1ℜ[aH
n1
y]) =

bn1 , for
n1 = argmax

n
|ℜ[aH

n y]|. (57)

Proof: To detect correctly, forbn = 1, ℜ[rnaH
n y] has to

be positive, and forbn = −1, ℜ[rnaH
n y] has to be negative.

First assumebn = 1. We expandℜ[rnaH
n y], find the lower-

bound and the condition such that the lower bound is positive.
Substituting in the expression fory, using the inequality that
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x+ y + z ≥ x− |y| − |z|, under the eventG, we obtain

ℜ[rnaH
n y]

= |rn|2 +
∑

m 6=n

bmrnrmℜ
[

aH
n am

]

+ rnℜ
[

aH
n w

]

≥ |rn||rmin| −
∑

m 6=n

|rn||rm||ℜ
[

aH
n am

]

|

− |rn||ℜ
[

aH
n w

]

|
> |rn| [|rmin| − (K − 1)µ|rmax| − τ ] .

(58)

From (58), ℜ[rnaH
n y] > 0 for n ∈ I if (54) holds andbn = 1.

Similarly, we can show forbn = −1, under eventG, if (54)
holds,ℜ[rnaH

n y] < 0. Hence if (54) holds we obtain (55).
Recall thatn0 is the index of the largest gain:|rn0 | = |rmax|.

Due to (57), we have

|ℜ[aH
n1
y]| ≥ |ℜ[aH

n0
y]|. (59)

We will show that under the eventG, once (56) holds, then
sgn(rn1ℜ[aH

n1
y]) 6= bn1 leads to a contradiction to (59). First

assumebn1 = 1. If b̂n1 = sgn(rn1ℜ[aH
n1
y]) 6= bn1 , then

b̂n1

= sgn



r2n1
+

∑

m 6=n1

bmrn1rmℜ
[

aH
n1
am

]

+ rn1ℜ
[

aH
n1
w
]





= −1.
(60)

So the expression inside thesgn operator of (60) must be
negative. Sincer2n1

> 0, we must have
∑

m 6=n1

bmrn1rmℜ
[

aH
n1
am

]

+ rn1ℜ
[

aH
n1
w
]

< 0. (61)

Multiplying the left-hand-side of (59) by |rn1 |, and using the
equality |x| · |y| = |xy|, we obtain

|rn1 ||ℜ[aH
n1
y]|

= |rn1 |

∣

∣

∣

∣

∣

∣

rn1 +
∑

m 6=n1

bmrmℜ[aH
n1
am] + ℜ[aH

n1
w]

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

r2n1
+

∑

m 6=n1

bmrn1rmℜ[aH
n1
am] + rn1ℜ[aH

n1
w]

∣

∣

∣

∣

∣

∣

.

(62)

Due to (60), the last line of (62) inside the| · | operator is
negative. Using the fact thatr2n1

> 0 and (61), and the identity
|x+y| = −(x+y) = |y|−x whenx+y < 0 andy < 0, under
the eventG, we obtain that

|rn1 ||ℜ[aH
n1
y]|

=

∣

∣

∣

∣

∣

∣

∑

m 6=n1

bmrn1rmℜ
[

aH
n1
am

]

+ rn1ℜ
[

aH
n1
w
]

∣

∣

∣

∣

∣

∣

− r2n1

< |rn1 |(K − 1)µ|rmax|+ |rn1 |τ − |rn1 ||rmin|
= |rn1 |[(K − 1)µ|rmax|+ τ − |rmin|].

(63)

On the other hand, multiply the right-hand-side of (59) by
|rn1 |. Similarly, using the equality|x| · |y| = |xy| and triangle

inequality, under the eventG, we obtain

|rn1 ||ℜ[aH
n0
y]|

=

∣

∣

∣

∣

∣

∣

rn1rn0bn0 +
∑

m 6=n0

bmrn1rmℜ
[

aH
n0
am

]

+ rn1ℜ
[

aH
n0
w
]

∣

∣

∣

∣

∣

∣

> |rn1 |[|rmax| − (K − 1)µ|rmax| − τ ].
(64)

Combining (63) and (64), we have that once (56) holds,
if bn1 = 1, then sgn(rn1ℜ[aH

n1
y]) = −1 leads to

|ℜ[aH
n1
y]| < |ℜ[aH

n0
y]|, which contradicts (59), and hence

sgn(rn1ℜ[aH
n1
y]) = 1. A similar argument can be made for

bn1 = −1, which completes the proof.

We are now ready to prove Theorem1. The proof for the
RDD detector is obtained by combining Lemmas2, 3 and 4.
Lemma2 ensures that the eventG occurs with probability at
least as high as one minus (30). WheneverG occurs, Lemma3
guarantees by using (13), that the RDD detector can correctly
detect active users under the condition (29), i.e. G ⊂ {Î = I}.
Finally, wheneverG occurs, Lemma4 guarantees that, based
on the correct support of active users, their transmitted symbols
can be detected correctly under the condition (54), i.e. G ⊂
{b̂n = bn, n ∈ I}. Clearly condition (54) is weaker than (29),
since (29) can be written as|rmin|−(K−1)µ|rmax| ≥ τ+(τ+
Kµ|rmax|) > τ , and hence if (29) holds then (54) also holds.
In summary, under condition (29), G ⊂ {Î = I} ∩ {b̂ = b},
and1−Pe = P ({Î = I}∩{b̂ = b}) ≥ P (G), which is greater
than one minus (30), which concludes the proof for the RDD
detector.

The proof for RDDt is similar to that for RDD detector and
inspired by the proof of Theorem 1 in [30]. Using similar
arguments to Lemma3, we can demonstrate that, when the
number of active usersK ≤ K0, whenG occurs,

min
n∈I

|R[aH
n y]| > |rmin| − (K − 1)µ|rmax| − τ

≥ |rmin| − (K0 − 1)µ|rmax| − τ,
(65)

and

max
n/∈I

|R[aH
n y]| < Kµ|rmax|+ τ ≤ K0µ|rmax|+ τ. (66)

If (52) holds forK = K0, we can choose a thresholdξ such
thatK0µ|rmax|+ τ < ξ < |rmin| − (K0 − 1)µ|rmax| − τ . Then
minn∈I |R[aH

n y]| > ξ andmaxn/∈I |R[aH
n y]| < ξ, and hence

for such ξ the RDDt detector can correctly detect the active
users with high probability. Since when (52) holds, (54) is true,
from Lemma4 we know the symbol can be correctly detected
with high probability as well.

We now prove the performance guarantee for the RDDF
detector adopting the technique used in proving Theorem 4
in [22]. First we show that wheneverG occurs, the RDDF
detector correctly detects an active user in the first iteration,
which follows from Lemmas2 and 3. Note that (32) implies
(53), and therefore, by Lemma3, we have that by choosing
the largest|ℜ[aH

n y]|, the RDDF detector can detect a correct
user in the setI. Second, we show that wheneverG occurs,
the RDDF detector correctly detects the transmitted symbolof
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this active user. Note that (32) also implies (56), since (32)
can be written as|rmin| ≥ 2τ/[1− (2K − 1)µ], which implies
|rmax| ≥ 2τ/[1−(2K−1)µ], and hence|rmax|+|rmin|−2(K−
1)µ|rmax| ≥ 2τ [1−2(K−1)µ]/[1− (2K−1)µ]+ |rmin| > 2τ ,
since [1 − 2(K − 1)µ]/[1 − (2K − 1)µ] ≥ 1. Therefore, by
Lemma 4, using a sign detector, we can detect the symbol
correctly. Consequently, the first step of the RDDF detector
correctly detect the active user and its symbol, i.e.G ⊂ {I(1) ⊂
I, b(1)n1 = bn1}.

The proof now continues by induction. Suppose we are
currently in thekth iteration of the RDDF detector,1 ≤ k ≤ K,
and assume thatk − 1 correct users and their symbols have
been detected in all thek− 1 previous steps. Thekth step is to
detect the user with the largest|ℜ[aH

n v(k−1)]|. Using the same
notations as those in SectionIII-B2 and by definition ofv(k−1),
we have

v(k−1) = AR(b− b(k−1)) +w = ARx(k−1) +w, (67)

wherex(k−1) , b− b(k−1). This vector has supportI/I(k−1)

and has at mostK − k + 1 non-zero elements, sinceb(k−1)

contains correct symbols at the correct locations for(k − 1)

active users, i.e.b(k−1)
n = bn, for n ∈ I(k−1). This v(k−1) is a

noisy measurement of the vectorARx(k−1). The data model
in (67) for the kth iteration is identical to the data model in
the first iteration withb replaced byx(k−1) (with a smaller
sparsityK − k + 1 rather thanK), I replaced byI/I(k−1),
and y replaced byv(k−1). Let |r(k)max| , maxn∈I/I(k−1) |rn|.
By assumption,k− 1 active users with largest gains have been
correctly detected in the firstk− 1 rounds, and hence|r(k)max| =
|r(k)|. Since

|r(k)| ≥ |rmin|, (68)

we have that under condition (32) this model (67) also sat-
isfies the requirement (53). Consequently, by Lemma3, we
have that under the eventG, maxn∈I/I(k−1) |ℜ[aH

n v(k−1)]| >
maxn∈(I/I(k−1))c |ℜ[aH

n v(k−1)]|. Therefore, in thekth itera-
tion, the RDDF detector can detect an active user correctly,
i.e. G ⊂ {I(k) ⊂ I}, and no index of active users that has
been detected before will be chosen again. On the other hand,
since (32) can be written as|rmin| ≥ 2τ/[1 − (2K − 1)µ],
from (68) this implies |r(k)| ≥ 2τ/[1 − (2K − 1)µ], and
hence |r(k)| − (2K − 1)µ|r(k)| ≥ 2τ , and consequently
|r(k)|− (2K−2)µ|r(k)|+ |rmin| ≥ 2τ . Consequently, condition
(56) is true for (67). Then by Lemma4, we have that under the
eventG, sgn(rnk

ℜ[aH
nk
v(k−1)]) = bnk

, i.e. G ⊂ {b(k)nk
= bnk

}.
By induction, since no active users will be detected twice, it
follows that the firstK steps of the RDDF detector can detect
all active users and their symbols, i.e.

G ⊂ ∪K
k=1{I(k) ⊂ I, b(k)nk

= bnk
}

= {I(K) = I, b(K)
n = bn, n ∈ I(K)}.

(69)

Note that condition (53) is weaker than (32), since (32) can be
written as|rmin|[1−(2K−1)µ] ≥ 2τ , which implies|rmax|[1−
(2K−1)µ] ≥ 2τ . This further implies|rmax|[1−2(K−1)µ]+
|rmin| ≥ 2τ , since1−2(K−1)µ ≥ 1−(2K−1)µ and|rmin| ≥
0. Consequently, under condition (32), from (69), G ⊂ {Î =

I} ∩ {b̂ = b}, and1 − Pe = P{{Î = I} ∩ {b̂ = b}} ≥ P{G}
which is greater than one minus (30), which concludes the proof
for the RDDF detector.

The proof for RDDFt follows the above proof for RDDF
with one more step. Note that when we have correctly detected
all active users inK rounds, from (67) the residualvK =
w contains only noise. Hence, whenG occurs,‖AHvK‖∞ =
‖AHw‖∞ = max1≤n≤N |aH

n w| < τ , from Lemma2. On the
other hand, in thek-th round,k = 1, . . . ,K, from (67), we
have that whenG occurs

‖AHv(k−1)‖∞

= max
1≤n≤N

∣

∣

∣

∣

∣

∣

∑

m∈I/I(k−1)

rmbmaH
n am + aH

n w

∣

∣

∣

∣

∣

∣

(70)

> |r(k)max| − (K − k)µ|r(k)max| − τ > 0. (71)

The expression in (71) is positive, when (32) holds (recall that
(32) is also required to detect correct active users): because
when |rmin| − (2K − 1)µ|rmin| > 2τ , since |r(k)| ≥ |rmin|,
|r(k)| − (2K − 1)µ|r(k)| > 2τ , and hence|r(k)| − (2K − 2k−
1)µ|r(k)| > 2τ ≥ 0. Therefore when (32) holds, we can choose
ǫ < minK

k=1{|r(k)|[1− (K − k)µ]− τ} < rmin − τ . Therefore,
under the condition (32), whenG occurs, we can chooseτ <
ǫ < minK

k=1{|r(k)|[1−(K−k)µ]|−τ}, so that‖AHv(k−1)‖∞ >
ǫ, k = 1, . . . ,K, and‖AHv(K)‖∞ < ǫ. Finally, using similar
arguments as for RDDF that (32) guarantees (56), RDDFt can
also correctly detect the symbols with high probability.

This completes the proof of Theorem1.
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