
Secure Distributed Top-k Aggregation
Kristjan V. Jonsson∗, Karl Palmskog† and Ymir Vigfusson∗
∗School of Computer Science, Reykjavik University, Iceland

†School of Computer Science and Communication, KTH Royal Institute of Technology, Sweden

Abstract—In-network aggregation is an efficient and scalable
distributed approach to global state approximation. However,
security remains an open problem in such systems, especially
when we consider dynamic network effects, such as mobility,
packet loss and churn. In this paper, we consider the resilience of
the top-k aggregate to manipulation by active insider adversaries.
Unfortunately, this versatile aggregation function is inherently
insecure. We propose a simple, low-overhead solution which
leverages the principles of trusted systems. The solution we
propose is generally applicable, even to the challenging problem
of securing distributed aggregation in a dynamic network.

Index Terms—Distributed systems, secure in-network aggrega-
tion, top-k aggregation, trusted systems

I. INTRODUCTION

Aggregating local inputs in a distributed system to approx-
imate the global state is an important and powerful technique
[1]. One can achieve sub-linear scalability properties when the
aggregate is computed in-network by a network of cooperating
nodes [1]–[7]. Here, we focus on the TOP−K distributed aggre-
gation function which has numerous applications in sensor
networks [8], [9], distributed databases [10] and distributed
systems [1], [11], [12]. Our work is motivated by applications
that include decentralized web site ranking and meta-data
search in information networks [13].

It has been shown that many useful aggregation functions
can be trivially manipulated by corrupt insiders [14]; we ex-
tend these results to the top-k aggregate. The problem becomes
even harder when considering the cooperative processing in
distributed aggregation systems, since powerful attacks against
the data integrity can be carried out stealthily [15] by a small
subset of corrupt nodes.

Previous approaches to secure distributed aggregation gen-
erally use expensive security protocols or place severe re-
strictions on the types of networks and services they support
[15]–[20]. By contrast, we propose a simple, modular and
low-overhead technique, using established principles of trusted
systems [21], [22] to perform distributed aggregation in a
secure fashion while preserving the scalability properties of
the underlying aggregation protocol.

Unlike the previous work, we propose to limit the opportu-
nity for adversaries to influence the aggregate computation a
priori. To this end, we define an overlay composed of trusted
modules and communications protocols. Trusted modules are
trusted data sources, such as trusted sensors [23], and trusted
aggregators, for which trust is established by verification
of interfaces and functionality, followed by attestation of
correctness by a trusted entity.

The trusted overlay is embedded in a distributed aggregation
system of untrusted nodes. All nodes which contribute to
a trusted system must host at least a trusted data source,
while those which perform in-network aggregation must host a
trusted aggregator. The trusted modules operate in a symbiotic
relationship with their otherwise untrusted host, providing only
those services necessary to enable trustworthy aggregation,
while depending on the untrusted hosts for essential services,
such as node discovery, networking and inter-process commu-
nications.

The mechanism of combining trusted modules and proto-
cols is simple and allows us to claim rather strong security
guarantees while at the same time maintaining low overhead.
Moreover, our approach is unique in that it applies in the
general case of distributed aggregation, that is, to arbitrary
aggregate data types and functions, as well as to dynamic
networked systems.

II. SYSTEM MODEL

Network model. We consider a distributed system of ag-
gregation nodes that propagate queries and compute aggregate
results cooperatively in-network over an aggregation overlay
formed over some arbitrary communications graph. Each node
may contribute local input or state. Various overlay topologies
and aggregation protocols may be used; we restrict our atten-
tion to spanning-tree overlays, and thus a family of tree-based
protocols [3]–[5].

Aggregation model. We consider two distinct
distributed query models: one-shot queries [3] and
continuous aggregation [5]. One-shot queries are
essentially a variant of the broadcast-convergecast
protocol [24]: a querier initiates the protocol by
broadcasting a query message to its nearest neighbors.
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Fig. 1. Aggregation node c receives
updates ma and mb from children a
and b. Local inputs are ia, ib and ic.

The query propagates
outward in the network
graph until it reaches the
leaves, at which point the
aggregate computation
begins by a convergecast of
partial results towards the
querier. Each aggregation
node v applies a function
f(Iv;m1, . . . ,mx) over its
local input Iv (if any) and
update messages received
from contributing peers,
as shown in Figure 1. Finally, the querier produces the



aggregate result by combining the received partial aggregates.
Continuous aggregation proceeds in a similar manner. The
participating nodes autonomously issue updates according to
some schedule or in response to an event, such as a threshold
crossings [25]. Updates are aggregated in-network as in the
one-shot case.
Aggregation function: Our security mechanisms can in princi-
ple be applied to any data type and aggregation function. We
focus on TOP−K−WEIGHTED, a variant of the TOP−K function [10].
The inputs are vectors a = [a1, . . . , ak], where aj = (j, w,d)
is a tuple consisting of data item identifier j, weight w and
optional meta-data d. The vector a is ordered by decreasing
weight. The local function executing on node v merges local
observations av with partial aggregates a

|k|
1 , . . . ,a

|k|
x received

from contributing peers. A sub-aggregation function, such as
SUM, MIN or MAX, is applied to weights in tuples when merg-
ing vectors, after which an ordering operation is performed,
resulting in a new partial aggregate a′. Finally a message
mi = 〈TRUNCk(a′)〉 is sent to the parent in the aggregation
tree.

Adversarial model. All aggregation nodes, except the
querier (the root of the aggregation tree), as well as all com-
munications links in the aggregation overlay are considered
inherently untrusted. The querier is implicitly trusted because
it is both the originator of the query and the consumer of the
information produced.

Our focus is on the integrity properties of the
TOP−K−WEIGHTED aggregation function. We consider an
active stealthy insider adversary [15], which corrupts
some fraction t ∈ [0, 1) of the node population. Corrupt
nodes may attempt to modify either local observations or
partial aggregates as well as dropping update messages,
but attempt to do so while evading detection. We will not
discuss availability attacks (jamming or denial-of-service
attacks) because they contradict the objectives of our stealthy
adversary. In the same vein, we disregard attacks against
node discovery and routing.

III. APPLICATIONS OF TOP−K−WEIGHTED

Secure TOP−K−WEIGHTED computation is motivated by the
two following examples.

A. Secure Queries in the Network of Information

The Network of Information (NetInf) [26] is a recent
network architecture that differs from current device-centric
networks in that each piece of information, called an Informa-
tion Object (IO), can be retrieved without direct knowledge
of its location. The problem of scalable meta-data directed
search for IOs has previously been addressed using scalable
one-shot and continuous aggregation on tree overlays [13],
but without considering security issues. Meta-data directed
search can be viewed as a special case of TOP−K−WEIGHTED

queries. To implement such searches, one can use the low-
churn Dictionary Nodes (DN) which implement the name
resolution system and routing infrastructure in NetInf using
multiple-level Distributed Hash Tables (DHT). Continuous

aggregation can be used as a form of publish/subscribe system
since meta-data and content of IOs can be updated over time.

The integrity of IOs – content authenticity and accuracy of
meta-data such as creation time – can be guaranteed given a
trusted Certificate Authority (CA). However, DNs are expected
run in different Autonomous Systems and thus may only have
their own CA signing each IO, with DN operators potentially
acting maliciously. As adapted to the network model, nodes
are DNs in an overlay which is precomputed by a separate
protocol. Local inputs are IOs matching the given query that
are located at the DN, along with a measure of how close the
match was, as provided by the local name resolution system.
The root of the tree overlay can then trust the authenticity
of the aggregated matches by trusting the devices at each
DN that verify the signature for each relevant IO before
passing it upwards in the tree. Assuming that the DHT of
each DN is not corrupted and that the top-k relevant IOs can
be retrieved securely, trusted communication channels ensure
that only relevant IOs are propagated, even in the presence of
adversaries.

B. Trustworthy Assessment of Web Site Popularity

Web site popularity ranking is an important metric for
operators, not least because it attracts advertising revenue.
Currently, such statistics are gathered by clicktrackers – a
notoriously privacy-invasive mechanism [27].

Let us consider an alternative based on distributed top-k
aggregation. We build a cooperative network of domains, each
of which contributes one aggregation node, equipped with a
secure flow monitor (sensor) and an aggregator. Web usage
statistics are aggregated per domain by the flow monitor and
a global ranking of the top-k sites computed in near-real-time
using distributed aggregation.

The goals of the cooperating organizations are sometimes
in conflict, implying that some parties may have an incentive
to manipulate the ranking. To address this issue, we insist that
monitoring and aggregation takes place with the assistance of
trusted devices. Using a trusted flow monitor to collect Web
usage statistics protects user privacy, while trusted aggregation
ensures a trustworthy global ranking.

IV. THE SECURITY OF TOP-k

We have argued that the top-k aggregate has useful appli-
cations, but the question of security remains: can we trust our
results? Let us consider (informally) the integrity properties
of the TOP−K−WEIGHTED function as a basis for the subsequent
discussion.

We begin by examining manipulation of local inputs in
Wagner’s single aggregator model [14] in which several cor-
ruptible contributors submit their local state to a single ag-
gregator. We decompose the local function into its elementary
components:

a′ = TRUNCk(SORT(MERGE(a1, . . . ,ax)))

Let us first consider the MERGE function, assuming a summa-
tion operation: for contributions au and av , the computing



Fig. 2. Aggregation node schematic. Trusted modules and channels are shown
with bold outlines. The untrusted local process is indicated by the cogwheel
symbol.

node sets weight wk = wiu+wjv, where IDk = IDiu = IDjv.
By extension of Wagner’s result for SUM [14], we conclude that
a merge function based on summation is inherently insecure.
The same applies for several other common functions, such as
MIN and MAX. The outcome of the outer two functions depends
on the computed weights. Hence, their results are trivially
influenced via an insecure merge function. We conclude that
TOP−K−WEIGHTED must be considered as insecure in Wagner’s
model as the MERGE function w.r.t. the ordering, and hence
top-k ranked data.

Now, we extend the model to the case where the aggregator
is untrusted, as is the case in the single aggregator model of
Chan et al. [15]. It is clear that if the aggregate is vulnerable
to local data falsification by the data providers, then it is also
vulnerable to manipulation by a corrupt aggregator. Moreover,
the influence of a corrupt aggregator is manifold that of a data
provider. Considering a distributed system in which one or
more aggregators can be corrupt, we must conclude that the
distributed aggregation function as a whole is indeed insecure,
although the influence of the adversary depends on the number
and placement of corrupt nodes.

V. TSense: A SYSTEM FOR SECURE AGGREGATION

We now present TSense, a conceptually simple solution to
the problem of securing TOP−K−WEIGHTED, as well as other
inherently insecure aggregation functions, based on the princi-
ples of trusted systems [21], [22]. TSense enables trustworthy
distributed aggregation even if a subset of the node population
is corrupt. Further details are presented in earlier work [23],
[28].

Our approach is based on limiting the adversaries’ oppor-
tunity for influencing the aggregate a priori by tightening the
circle of trust: participants in the trusted aggregation overlay
prove the correctness of their actions by deferring to a single
root of trust, e.g. a certification authority, via trusted modules
which perform distributed aggregation in a provably correct
manner.

Architecture of a Secured Node. The architecture of
a secured aggregation node is shown in Figure 2. Local
observations are provided by a trusted data source, e.g. a
trusted sensor [23], while local computations are carried out
by a trusted aggregator. The properties of the trusted nodes
can be defined as follows:

i Trusted data sources: A local input is correctly repre-
sented and an authenticated data stream produced, but
only when in contact with an authenticated trusted peer.

ii Trusted aggregators: An aggregation function is cor-
rectly computed for a set of verified inputs from partners
verified as trusted and an authenticated data stream
produced, again only delivered to authenticated trusted
partners.

Trusted modules operate in a close symbiotic relationship
with the otherwise untrusted hosting nodes. Specifically, we
assume the existence of an inherently untrusted process exe-
cuting on the nodes whose assistance is required to execute
the aggregation protocol. Services accessed by this process
include inherently untrusted platform services such as peer
node discovery, inter-process communication and networking
facilities.

Trusted aggregation overlay. A trusted overlay is formed
by connecting trusted modules with secure virtual channels,
either using the internal IPC mechanisms of the hosting node
or generic network links. The trusted channels are established
by strong mutual authentication and cryptographic protocols.
We leave the choice of protocols open for this work, remarking
that secure channels can be readily constructed using protocols
such as EC-STS [29]. Figure 2 shows trusted intra-node chan-
nels established between the trusted sensor and aggregator,
while trusted inter-node channels connect the aggregation node
(or rather its trusted aggregator) to a peer in the aggregation
overlay.

Device Trust Establishment. Establishing trust between
modules, and hence channel setup, requires us to establish
a per-device basis of trust. We must accept as fact that a
given device is trustworthy. This requires (a) an unique and
verifiable trusted module identity and (b) a trusted process
which verifies the operation of the device against a well-
defined set of operational and security specifications.

We assume the module identity is in the form of a public
globally unique identity and a set of asymmetric keys for
signing and verifying signatures. The identity must be certified
by a digital signature traceable to a trusted third party – that
is, a party which the querier trusts – and permanently bound
to the trusted module. Hence, an adversary must not be able
to alter or replace device identities of “captured” devices.

The signature must also imply that the trusted party has ver-
ified the device as correct according to the set of specifications.
The strictness of the verification procedures depends on the
level of trust that the consumer of the data places in the data.
A thorough code review may be sufficient for some consumers,
while others may require more absolute guarantees, the most
strict being a complete formal verification process. However,
such methods are still in their infancy and as yet not practical
except for fairly restricted systems.

In any case, verification implies minimality: In order to
verification to be tractable, the device should only implement
the bare minimum of functionality necessary to meet the se-
curity requirements. This motivates our choice of a symbiotic
relationship of small trusted modules and otherwise untrusted
generic hosts.



Tamper resistance. Having formally verified a trusted mod-
ule as correct, we want to ensure that it cannot be tampered
with. We have previously described a solution using tamper-
proof hardware devices, verified as correct and signed by a
trusted entity [23], [28]. One could also envision an alternative
approach in which trusted software modules are delivered
by trustworthy means and instantiated in a trusted execution
environment, such as a trusted hypervisor.

VI. A BRIEF ANALYSIS OF SYSTEM PROPERTIES

The simple solution of using trusted devices to enable secure
aggregation has a number of strong properties in terms of our
adversarial model. We summarize the key properties below,
and refer the reader to previous work [23], [28].

First of all, we have established that given strong pairwise
trust, traceable to a single mutually trusted entity, we can claim
that all contributing nodes must follow the protocol: each node
executes code verified to comply with a security specification
and in a manner which cannot be tampered with. Hence, we
can claim that all contributions to the aggregate computation
are correct, as defined by Narasimha and Tsudik [30] in the
context of outsourced databases. The other side of the coin,
completeness [30] in the dynamic case is more problematic,
since we must account for natural effects in dynamic systems
such as churn, mobility and node failures, in addition to the
adversarial situation in which corrupt nodes drop or corrupt
messages according to some strategy. We discuss the impact
of completeness further in Section VII, although measures to
ensure completeness in the adversarial case are not addressed
in this work.

Second, we claim that the system imposes a low overhead.
Let us ignore for the time being local per-node overhead, such
as that due to economic costs, processing, memory or power
requirements. These factors can be accounted for in the design
and provisioning of trusted modules and hosting platforms.
Instead, we concentrate on the communications complexity
which poses a challenge from a scalability standpoint. The
primary requirement for our solution is that it does not
negatively impact the inherent scalability properties of the
underlying distributed aggregation algorithm. The communi-
cations complexity on top of the underlying protocol is due to
(a) authentication and (b) data transfer. Assuming that authen-
tication is a rare event in a relatively stable network, we can
state that the majority of traffic is due to data transfer, which
adds constant overhead on top of the underlying aggregation
protocol stack.

Third, we claim that the solution effectively and transpar-
ently secures dynamic aggregation protocols, such as GAP
[5]. We substantiate this claim by the fact that the trusted
modules construct a secure distributed execution environment
for the essential sub-protocols. Given that the aggregation
protocol in question is decomposed into its secure and generic
components, we can claim that it retains its original scalability
properties (modulo authentication) as well as completeness
guarantees and accuracy objectives [31]. Note that although
we focus on tree-based aggregation protocols in this work, the

trusted devices approach is generally applicable to distributed
aggregation protocols, e.g. gossip-based aggregation protocols
[6].

Finally, let us examine what an adversary can accomplish
by a strategy of ignoring trusted devices. In fact, an adversary
accomplishes little except reducing his own importance: an
adversary that ignores trusted devices, either on its own host or
neighboring machines, is effectively excluding nodes under his
control, which is precisely the goal of protocols for detection
and elimination of corrupt nodes, such as reputation mecha-
nisms [32]. Since a device which cannot produce a trusted data
stream cannot be a member of the trusted aggregation overlay,
a node carrying trusted devices can elect to participate fully
and truthfully in the protocol or to not do so at all.

VII. A SIMULATION STUDY

Let us now study the Web site popularity ranking example
from Section III by means of a small simulation study.

In the scenario shown, N nodes, representing Web portals,
are initially created and assigned randomly generated web site
usage statistics over some m = N (µ, σ) visits. We assume
that hits to Web sites follow a power-law distribution, ranking
sites in expected descending order according to the probability
density function p(i, α) ∝ i−α, where i ∈ N is both the
website ID and its expected rank and α is a parameter of
the distribution. Web site popularity rankings, as well as a
plethora of other network phenomena, have been shown to
follow a power-law distribution [33]. We show simulation runs
for a small n-ary tree (∆ = 3, h = 3) and a single one-
shot query with k = 10 issued by the root. We average
50 independent simulation runs to produce the result. The
local state of each node is initialized at startup of each run
using dN (10000, 2500)e web requests, the target of each being
randomly selected according to a power-law distribution with
α = 1.0.

Unrestricted adversaries. We begin by considering the
case in which the adversary is unrestricted, meaning that
corrupt nodes may modify local observations or partial aggre-
gate computation in an arbitrary manner. The objective of the
adversary in this scenario is to falsely promote the low ranking
sites 22, 24 and 26. An expected t = 15% of nodes, excluding
the root, are corrupted at the start of the simulation and execute
a local corruption function wi = fC(a) = N (γ · w1, % · w1):
the weight of a falsely promoted site i is drawn from a normal
distribution centered around the weight of the currently highest
ranked site. Figure 3(a) shows the results for γ = 1 and
% = 1/3. In the first experiment, we let the corrupt nodes
modify only local observations, while modifying the aggregate
computation itself in the second. The unmodified aggregate is
shown as a baseline reference and follows a power-law over
several orders of magnitude. Observe that the attack on the
aggregate computation is the more powerful of the two, as
expected. The results support our earlier findings in Section IV
that the TOP−K−WEIGHTED function is insecure: arbitrary bias
can be introduced by even a single node. Note that the
querier has no way of disputing the aggregate result. Even



statistical comparisons with previous runs must be considered
inconclusive as transient effects, such as flash crowds [34],
might well introduce legitimate bias in current or past results.

Limiting the adversary. We now restrict the capability of
corrupt to dropping packets, simulating the introduction of
trusted devices. Two such cases are shown in Figure 3(b).
Note that completeness is not addressed in this scenario,
allowing the adversary the opportunity to drop updates at will.
In the first case considered, the adversary directs the corrupt
nodes to discard all aggregate updates. In the second case,
we assume that the corrupt nodes can view, but not modify,
partial aggregates. This enables the corrupt nodes to mount
a more intelligent attack. We consider an attack in which
the adversary drops all packets other than those containing a
measurement for site 24. Neither attack is particularly effective
in influencing the ranking, although the intelligent dropper
manages to introduce a small bias, as can be seen in the
enlarged view.

VIII. BACKGROUND AND RELATED WORK

Our work benefits from a rich collection of prior work;
space constraints force us to review only a few select papers
from the literature.

Distributed aggregation protocols [1]–[7] are inherently
vulnerable to stealthy data modification [14], [15] attacks,
severely reducing their utility for critical applications. Ex-
tensive work has been carried out in the field of secure
aggregation to assure the integrity of aggregates [15]–[20].
However, the work cited imposes severe restrictions on the
aggregation system, such as assuming a limited set of aggrega-
tion functions, specific data types, a small number of possible
adversaries, static networks and imposing expensive integrity
assurance protocols that may undermine the scaling properties
of distributed aggregation protocols. In contrast, TSense sup-
ports arbitrarily complex data types and aggregation functions,
and does so in dynamic networks without any restriction on
the number of compromised nodes and while preserving the
scalability properties of the underlying protocol stack.

The top-k aggregation problem is relevant in many fields:
sensor networks [8], [9], distributed databases [10], distributed
systems [1], [11], [12], cloud computing [35] and meta-
data directed search in the network of information [13] to
name a few. Security-wise, there is extensive literature on
privacy-preserving top-k aggregation [36], [37] which we have
also considered in previous work [38]. However, there is
surprisingly little work on the integrity vulnerabilities of top-k
queries in distributed aggregation.

Secure devices and trusted systems principles [22] have
been considered extensively before, for instance as a solution
to the fair exchange problem [39]. Secure storage is considered
by Maheshwari et al. [40] and simple non-equivocation mech-
anisms by Levin et al. [41]. Secure sensors have been proposed
previously [23], [42]–[44]. To the best of our knowledge,
we are the first to consider a trusted systems approach to
the wider problem of integrity preservation in distributed
aggregation. Our solution is in some aspects comparable to

the outsourced aggregation model, which Nath et al. address
by the application of one-way hash chains [45]. However, our
solution is conceptually simpler and continues to apply in more
general distributed aggregation settings.

IX. CONCLUSIONS AND FUTURE WORK

We present TSense, a system for simple and efficient trusted
distributed aggregation based on trusted systems principles.
At a basic level, we construct a system for trusted distributed
function evaluation by using provably correct trusted modules,
which are traceable to a single root of trust. This approach
is generally applicable to the entire family of distributed
aggregation protocols, including those intended for dynamic
networked systems.

We focus our attention on the security of the top-k aggre-
gate, motivated by application examples. We extend previous
results to show that aggregate is inherently insecure – more
precisely, as insecure as the sub-aggregate used to compute
the ranking weights. Using a small simulation, we demonstrate
that the trusted systems principles do succeed in limiting the
adversarial capabilities sufficiently to consider distributed top-
k aggregation secure with respect to the integrity of the global
estimate, modulo a small bias due to malicious drops.

Our results are a stepping stone towards the larger goal of
developing TSense into a comprehensive framework for secure
sensing, information gathering and distributed aggregation.
Future work includes constructing a system for distributing
attested software modules, which can be securely instantiated
on participating platforms in such a manner that they can prove
the correctness of executing modules.
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