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Abstract— In this paper, we study the performance of network–
coded cooperative diversity systems with practical communica-
tion constraints. More specifically, we investigate the interplay
between diversity, coding, and multiplexing gain when the relay
nodes do not act as dedicated repeaters, which only forward
data packets transmitted by the sources, but they attempt to
pursue their own interest by forwarding packets which contain
a network–coded version of received and their own data. We
provide a very accurate analysis of the Average Bit Error Prob-
ability (ABEP) for two network topologies with three and four
nodes, when practical communication constraints,i.e., erroneous
decoding at the relays and fading over all the wireless links,
are taken into account. Furthermore, diversity and coding gain
are studied, and advantages and disadvantages of cooperation
and binary Network Coding (NC) are highlighted. Our results
show that the throughput increase introduced by NC is offset
by a loss of diversity and coding gain. It is shown that there is
neither a coding nor a diversity gain for the source node when
the relays forward a network–coded version of received and their
own data. Compared to other results available in the literature,
the conclusion is that binary NC seems to be more useful when
the relay nodes act only on behalf of the source nodes, and do not
mix their own packets to the received ones. Analytical derivation
and findings are substantiated through extensive Monte Carlo
simulations.

I. I NTRODUCTION

Cooperative/multi–hop networking has recently emerged
as a strong candidate technology for many future wireless
applications [1], [2]. The basic premise of cooperative/multi–
hop communications is to achieve and to exploit the benefits
of spatial diversity without requiring each mobile node to be
equipped with co–located multiple antennas. On the contrary,
each mobile node becomes part of a large distributed array and
shares its single–antenna (as well as hardware, processing, and
energy resources) to help other nodes of the network to achieve
better performance/coverage. However, the efficient exploita-
tion of cooperative/multi–hop networking is faced by the
following challenges [3], [4]: i) due to practical considerations,
such as the half–duplex constraint or to avoid interference
caused by simultaneous transmissions, distributed cooperation
needs extra bandwidth resources (e.g., time slots or frequen-
cies), which might result in a loss of system throughput; ii)
relay nodes are forced to use their own resources to forward
the packets of other nodes, usually without receiving any
rewards, except for the fact that the whole system can become
more efficient; and iii) in classical cooperative protocols, the
relay nodes that perform a retransmission on behalf of other
nodes must delay their own frames, which has an impact on
the latency of the network.

To overcome these limitations, a new technology named
Network Coding (NC) has recently been introduced to improve
the network performance [5]–[7]. NC can be broadly defined
as an advanced routing or encoding mechanism at the network
layer, which allows network nodes not only to forward but also
to process incoming data packets. Different forms of NC exist
in the literature,e.g., algebraic NC, physical–layer NC, and
Multiple–Input–Multiple–Output (MIMO–) NC, which offer a
different trade–off between achievable performance and imple-
mentation complexity. The interested reader might consult[4]
for a recent survey and comparison of these methods. The
common feature of all NC approaches is that the network
throughput is improved by allowing some network nodes to
combine many incoming packets, which, after being mixed,
need a single wireless resource (e.g., a time slot or a frequency)
for their transmission. Thus, NC is considered a potential and
effective enabler to recover the throughput loss experienced
by cooperative/multi–hop networking [3]. Theory and experi-
ments have shown that network–coded cooperative/multi–hop
systems can be extremely useful for wireless networks with
disruptive channel and connectivity conditions [6], [7].

The performance of cooperative/multi–hop networks has
been studied extensively during the last years, see,e.g., [8]–
[11], and many important conclusions have been drawn about
the achievable diversity and coding gain over fading chan-
nels. On the other hand, the analysis of the performance of
cooperative/multi–hop systems with NC is almost unexplored
so far. More specifically, understanding the interplay between
the multiplexing gain introduced by NC and the achievable
diversity/coding gain introduced by cooperation is an open
and challenging research problem, especially when practical
communication constraints (erroneous decoding and fading)
are taken into account [12]–[14]. Some recent results on this
matter are [15]–[21]. In particular, [16] and [20] have recently
provided an accurate and closed–form analysis of network–
coded cooperative/multi–hop systems by estimating both di-
versity and coding gain with realistic source–to–relay links.
These papers have highlighted, for some network topologies
and encoding schemes, the potential benefits of NC to recover
the throughput loss of cooperative/multi–hop networking.

However, the analysis in [16] and [20] considers the clas-
sical scenario where some network nodes (i.e., the relays)
operate only on behalf of other network nodes (i.e., the
sources) when forwarding data to a given destination. In other
words, the relays are dedicated network elements with no
data to transmit and, thus, they receive no direct reward from
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Fig. 1. 1–source (S), 1–relay (R), 1–destination (D) network topology. Nodes
S and R have data packets to transmit toD. X(Y ) → Z denotes that nodeX
processes/manipulates the data packet of nodeY to forward it to nodeZ. Scenarios:
(a) non–cooperative; (b) cooperative (R acts as a relay forS); and (c) network–coded
cooperative (R acts as a relay forS and at the same time transmits its own data toD).

cooperation. In this paper, we are interested in studying the
interplay between diversity, coding, and multiplexing gain of
network–coded cooperative/multi–hop wireless networks when
the relays have their own data packets to be transmitted to a
common destination, and exploit NC to transmit them along
with the packets that have to be relayed on behalf of the
sources. This way, the relays can help the sources without
the need to: i) delay the transmission of their own data
packets; and ii) use specific resources (energy and process-
ing) to forward the packets of the sources. Thus, NC can
potentially avoids throughput and energy loss. However, itis
not clear whether performing NC at the relay nodes entail
any performance (i.e., diversity or coding gain) loss with
respect to classical cooperative diversity. The main aim of
this paper is to shed lights on this matter, and to highlight
the fundamental diversity, coding, and multiplexing trade–off
with realistic communication constraints and binary NC at the
relays. To this end, two network topologies are considered
with 3 (1 source, 1 relay, 1 destination) and 4 nodes (1 source,
2 relays, 1 destination), and the end–to–end Average Bit Er-
ror Probability (ABEP) over independent but non–identically
distributed (i.n.i.d) Rayleigh fading channels is computed in
closed–form. Our results highlight that the throughput increase
introduced by NC is offset by a loss of the diversity gain.
More specifically, it is shown that, when the relays forward a
network–coded version of received and their own data packets,
there is neither a coding nor a diversity gain for the source.
Compared to other results available in the literature [16],[20],
the conclusion is that binary NC seems to be more useful when
the relays act on behalf of the sources only, and do not mix
their own packets to the received ones.

The remainder of this paper is organized as follows. In Sec-
tion II, system model and problem statement are summarized.
In Section III, the analytical framework to compute the ABEP
is described. In Section IV, the achievable diversity, coding,
and multiplexing gain of various schemes with and without
NC are analyzed and compared. In Section V, some numerical
results are shown. Finally, Section VI concludes this paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We study two cooperative network topologies with three
and four nodes, as shown in Fig. 1 and Fig. 2, respectively.
We consider a Time–Division–Multiple–Access (TDMA) pro-
tocol, where all transmissions take place in non–overlapping
time–slots (TS denotes the duration of a time–slot). Also,
we assume the half–duplex constraint,i.e., nodes cannot
transmit and receive at the same time [3]. Furthermore, we

Fig. 2. 1–source (S), 2–relay (R andT ), 1–destination (D) network topology. Nodes
S, R, andT have data packets to transmit toD. Notation: i) X(Y ) → Z denotes
that nodeX processes/manipulates the data packet of nodeY to forward it to node
Z. Scenarios: (a) non–cooperative; (b) cooperative (R andT act as relays forS); (c)
network–coded cooperative (R andT act as relays forS and at the same time transmit
their own data toD); (d) hybrid network–coded cooperative (R acts only as a relay for
S, while T acts as a relay forS and at the same time transmits its own data toD).

analyze the MIMO–NC approach, where network decoding
and demodulation at the final destination are jointly performed
at the physical layer, which results in a cross–layer decoding
algorithm [4]. For analytical tractability, we assume thateach
node uses uncoded Binary Phase Shift Keying (BPSK) modu-
lation. In those scenarios where NC is exploited, we consider
binary NC (exclusive OR denoted by⊕) as this provides a
low–complexity design of the relays. Each wireless channel
is assumed to experience Rayleigh fading. More specifically,
the fading coefficient between two generic nodesX and
Y is denoted byhXY , and it is assumed to be a circular
symmetric complex Gaussian Random Variable (RV) with
zero mean and varianceσ2

XY per dimension. Fading over
different links is assumed to be i.n.i.d to account for different
propagation distances and shadowing effects. The noise at the
input of nodeY and related to the transmission from node
X to nodeY is denoted bynXY , and it is assumed to be
complex Additive White Gaussian (AWG) with varianceN0/2
per dimension. Finally,nXY at different time–slots or at the
input of different nodes are assumed to be independent and
identically distributed (i.i.d.).

A. Problem Statement

The main objective of this paper is to understand the
performance vs. throughput trade–off provided by NC over
fading channels. To be more specific, let us consider the 3–
node scenario in Fig. 1. Similar comments apply to the 4–node
scenario in Fig. 2. We have two nodes (S andR), which have
data to transmit to nodeD. In Scenario (a), both nodes perform
their transmission toD in a selfish mode,i.e., no cooperation.
In Scenario (b), nodeR is willing to help nodeS to forward
the overheard packet to nodeD. In this case, nodeS acts
as a “golden user”, and nodeR delays the transmission of
its own data packet to help nodeS first. In this case, nodeS
can take advantage of cooperation to improve its performance.
However, nodeR has to share its transmission energy with
nodeS, and it must delay its own transmission: this is the
price of cooperation. In Scenario (c), nodeR uses NC to
avoid the limitations just mentioned. By using NC, nodeR
can avoid to delay its own packet, and it can transmit a coded
(XOR) version of overheard packet from nodeS and its own
packet. The gain is twofold: i) no transmission delay; and ii)
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no need to share transmission energy with nodeS. In this case,
the overall transmission can be completed in two time–slots
rather than in three time–slots as in Scenario (b). Thus the
network throughput increases.

The fundamental questions we want to address in this paper
are: i) Is there any performance (diversity/coding gain) loss,
with respect to selfish and cooperative scenarios, for this
throughput gain?; and ii) In case of performance loss, is this
only due to erroneous decoding at nodeR or is this related to
NC operations too? Our closed–form asymptotic analysis will
provide a clear answer to both questions. Similar questions
hold for Fig. 2 as well, where we can see that, depending
on the level of cooperation and NC, the throughput of the
network, i.e., the number of time–slots, is different.

Due to space limitations, we are unable to provide a step–
by–step analysis and derivation for all the scenarios shown
in Fig. 1 and Fig. 2. However, the analytical development is
very similar for all of them. Thus, for ease of exposition and
clarity, we have decided to focus our attention on a scenario
only. We have chosen Scenario (d) in Fig. 2, as it is the
most general one. So, in the remainder of this paper only this
scenario will be analyzed analytically. However, in Section IV
we will summarize the final expression of the ABEP for all the
scenarios in Fig. 1 and Fig. 2, and we will compare achievable
performance and throughput of all of them.

B. Signal Model

Let us consider Scenario (d) in Fig. 2. During the first
time–slot, nodeS broadcasts a BPSK modulated bit,xS =√
Em (1− 2bS), whereEm is the average transmitted energy

andbS ∈ {0, 1} is the bit emitted byS. The signals received
at nodesR, T , andD are given byySX = hSXxS + nSX ,
whereX = R, X = T , andX = D, respectively. Similar to
[16], [19], [20], the intermediate nodesR andT demodulate
the received bit by using conventional Maximum–Likelihood
(ML–) optimum decoding:
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where X = R and X = T , and (̂·) and (̃·) denote
detected/estimated and trial bit of the hypothesis–detection
problem, respectively.̂b(X)

S is the estimate ofbS at nodeX .
During the second time–slot, nodeR remodulates and for-

wards its estimate ofbS , i.e., b̂(R)
S , to nodeD. The transmitted

bit is xR =
√

Em/2
(

1− 2b̂
(R)
S

)

. Let us note that nodeR

uses only half of its available energy to forwardb̂(R)
S on behalf

of nodeS, as it needs half energy to transmit its own data
during the fourth time–slot. This allows us to consider a total
energy constraint, and it guarantees a fair comparison among
the scenarios. Similar considerations apply to all the scenarios
shown in Fig. 1 and Fig. 2. The signal received at nodeD is
yRD = hRDxR + nRD.

During the third time–slot, nodeT performs similar op-
erations as nodeR in the second time–slot. However, node
T applies binary NC to avoid to use two time–slots to help

nodesS and to transmit its own data. More specifically, the
bit transmitted by nodeT is xT =

√
Em

[

1− 2
(

b̂
(T )
S ⊕ bT

)]

,
wherebT is the bit thatT wants to transmit to nodeD. Unlike
nodeR, nodeT uses full transmission energy, since, with the
help of NC, it does not need an extra time–slot to forward its
own data. The signal received atD is yTD = hTDxT +nTD.

Finally, let us note that the fourth time–slot is not of interest
in the detection process, as the bit transmitted in this time–
slot is independent of all the others. So, it can be demodulated
without considering previous received bits. However, the need
of this time–slot to complete the overall communication is
important to assess the network throughput of the system.

C. Detection at NodeD

Upon reception of signalsySD, yRD, and yTD in time–
slot one, two, and three, respectively, nodeD can perform
joint demodulation ofbS and bT . As mentioned above,bR
is treated independently as the related packet is independent
of the others. To avoid the analytical intractability and imple-
mentation complexity of the ML–optimum demodulator, we
consider the sub–optimal, but asymptotically–tight (for high
Signal–to–Noise–Ratio, SNR), Cooperative Maximum Ratio
Combining (C–MRC) detector shown in (2) on top of this
page [16], [22], where: i)λR = min {γSR, γRD}/γRD and
λT = min {γST , γTD}/γTD account for the reliability of
the S–to–R and S–to–T links, respectively; and ii)γXY =
|hXY |2 (Em/N0) with X andY being two generic nodes of
the network. The derivation of (2) follows the same arguments
as in [16], [22], and it is here omitted to avoid repetitions.

III. PERFORMANCEANALYSIS

The aim of this section is to estimate the performance of the
detector in (2), by providing a closed–form expression of the
ABEP for high–SNR. The ABEP of nodeS and nodeT , i.e.1,
ABEPS = Pr

{

bS 6= b̂
(D)
S

}

andABEPT = Pr
{

bT 6= b̂
(D)
T

}

,
respectively, can be computed by using the methodology
described in [19, Sec. IV]. In particular, we have:

ABEPX ≤ 1
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bT =0

1∑
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APEPX (c → c̃) (3)

where: i)APEPX (c → c̃)= APEP(c → c̃) ∆̄
(

bX , b̃X

)

; ii)

C = {000, 010, 111, 101} is the codebook of Scenario (d) in
Fig. 2, which takes into account forwarding and NC operations
performed at nodesR and T . The generic element ofC is
c = [bS, bS , bS ⊕ bT ]; iii) card {C} = 4 is the cardinality of
C, i.e., the number of codewordsc in C; iv) APEP(c → c̃) is
the Average Pairwise Error Probability (APEP) of the generic
pair of codewordsc = [c1, c2, c3] = [bS , bS, bS ⊕ bT ] and

c̃ = [c̃1, c̃2, c̃3] =
[

b̃S, b̃S , b̃S ⊕ b̃T

]

of the codebook,i.e.,
the probability of estimating̃c in (2), when, instead,c has
actually been transmitted, andc and c̃ are the only two
codewords possibly being transmitted; and v)∆̄

(

bX , b̃X

)

=

1Pr {·} denotes probability.
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, where∆(·, ·) is the Kronecker delta function,

i.e., ∆
(

bX , b̃X

)

= 1 if bX = b̃X and ∆
(

bX , b̃X

)

= 0 if

bX 6= b̃X . This function is used to include in the computation
of ABEPX only those APEPs which result in an error for the
information bit of interest,i.e., X = S or X = T [19].

A. Computation ofAPEP(c → c̃)

From (3), it follows that that ABEP can be estimated if
APEP (c → c̃) is available in closed–form, where the average
is over fading channel statistics and AWGN. In this section,we
compute an asymptotically–tight formula forAPEP (c → c̃),
which is accurate for high–SNR.

From (2), by definition, we have (4) on top of this page,
where: i) Λc = Λ

(

bS, bT ; bS , bT , b̂
(R)
S , b̂

(T )
S

)

and Λc̃ =

Λ
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)

; ii) EX {·} is the expectation

operator computed over RVX ; and iii)
(a)
= is obtained by

using the total probability theorem and by conditioning upon
possible decoding errors at nodesR andT [23]. Since demod-
ulation outcomes at nodeR andT are independent, we have:
i) Pr
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, where

Q (x) =
(

1
/√

2π
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x exp
(

−t2
/

2
)

dt is the Q–function
and these probabilities are due to using BPSK modulation
[23]. From these expressions, it follows that conditioningupon
decoding errors at nodeR and nodeT implies conditioning
upon the fading channel gainshSR and hST . This explains
the presence of the expectations in (4).

The next step is the computation of each conditional prob-
ability Pr {∆c,c̃ < 0| (·)}. To this end, a closed–form expres-
sion of ∆c,c̃ is needed. This can be obtained by substituting
ySD, yRD, and yTD in (2), and through some algebraic
manipulations. The final result is as follows:

∆c,c̃ = γSDd
2
S + 2

√
γSDdSRe

{
n̄
∗
SD

}

+ λR

(
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{
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+ λT

(

γTD d̂T + 2
√
γTDdTRe

{
n̄∗
TD

})
(5)

where: i) Re {·} is the real part operator; ii)(·)∗ denotes
complex conjugate; iii)j =

√
−1 is the imaginary unit;

iv) φXY is the phase of the generic fading gainhXY , i.e.,
hXY = |hXY | exp (jφXY ); v) n̄∗

XY = n∗
XY φXY

/√
N0 is

the normalized AWGN for the genericX–to–Y link, which
has zero mean and unit variance; vi)dS = 2 (c̃1 − c1) =

2
(

b̃S − bS

)

, dR = 2 (c̃2 − c2) = 2
(

b̃S − bS

)

, dT =

2 (c̃3 − c3) = 2
[(

b̃S ⊕ b̃T

)

− (bS ⊕ bT )
]

; and vii) d̂R =
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dR, d̂T = 2
[

1− 2
(

b̂
(T )
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dT . Finally, it
is worth noticing that the expression given in (5) is useful
whichever the conditioning on the bits estimated at nodeR
and nodeT are. Onlyd̂R andd̂T change for different detection
outcomes. To make this aspect more explicit, we use the

notation (X = R, X = T ): i) d̂X = d̂
(ok)
X if b̂

(X)
S = bS ;

and ii) d̂X = d̂
(nok)
X if b̂

(X)
S 6= bS .

To computePr {∆c,c̃ < 0| (·)}, we exploit the Laplace
inversion transform method in [24, Eq. (5)]:

Pr{∆c,c̃ < 0| (·)} =
1

2πj

∫
δ+j∞

δ−j∞

M∆
c,c̃

( s| (·))
s

ds (6)

with: i) M∆c,c̃
(s| (·)) = E{hXD},{nXD} {exp (−s∆c,c̃)| (·)}

being the (two–sided) Moment Generating Function (MGF) of
the conditional RV∆c,c̃. The average is computed over fading
gains and AWGN of all the linksX–to–D for X = {S,R, T};
and ii) δ being a real number such that the contour path of
integration is in the region of convergence ofM∆c,c̃

( ·| ·).
Then,APEP(c → c̃) can be obtained by substituting (6)

in (4), by computing the expectation over fading statistics,
AWGN, and by solving the inverse Laplace transform. In
particular, since in this paper we are interested in high–SNR
analysis,i.e., Em/N0 → ∞, an asymptotic expression of the
MGF in (6) is needed [24, Eq. (12)]. Due to space constraints,
in this paper we cannot provide all the details of the derivation.
As an illustrative example, we provide a brief description of
the main steps behind the computation of one addend in (4).
In particular, we focus our attention on the fourth addend in
(4), which is denoted byAPEP(4) (c → c̃). The reason is that
this term is the most complicated to be computed.
APEP(4) (c → c̃) in (4) can be written as shown in (7) on

top of the next page, where: i)F (·, ·) is defined in (8) on

top of the next page; ii)
(a)
= is obtained by using the Craig’s

representation of the Q–function [25]; iii)
(b)
= is obtained

by averaging over the AWGN withG (·, ·, ·) being defined

in (9) on top of the next page; and iv)
(c)
= is obtained by

averaging over channel fading and using some simplifications
that hold for high–SNR. In particular,Ψ0 (·), Ψ1 (·, ·), and
Ψ2 (·, ·) are defined in (10) on top of the next page, where
γ̄XY = 2σ2

XY (Em/N0) for the generic pair of nodesX and
Y . Note that, forX = R andX = T , dX 6= 0 ⇔ d̂X 6= 0.

Let us consider the most general case withdS 6= 0, dR 6= 0,
and dT 6= 0. Both integrals in the brackets in (10) can be
computed in closed–form with the help of [25, Eq. (5A.9)].
Thus,APEP(4) (c → c̃) simplifies as follows:

APEP
(4)

(c → c̃) =
I4

(

d̂
(nok)
R

, d̂
(nok)
T

)

4γ̄SDγ̄SRγ̄ST d2
S d̂

(nok)
R d̂

(nok)
T

(11)

whereI4 (·, ·) is defined in (12) on top of the next page.
Some important considerations are worth being made about

APEP(4) (c → c̃) in (11). First, we notice that the asymptotic
behavior of the APEP is clearly shown, and, for the considered
case study, a diversity order equal to three is obtained [8].
Second, the integralI4 (·, ·) can be computed, either ana-
lytically or numerically, by using one of the many methods
described in [24]. Finally, we would like to mention that the
case study investigated in this section,i.e., APEP(4) (c → c̃),
is the most complicated addend, as it is the only term involving
the product of two Q–functions. All the other cases are much
simpler to be computed, and all integrals similar toI4 (·, ·) in



APEP(4) (c → c̃) =
1

2πj

∫
δ+j∞

δ−j∞

E{hXY },{nXY }
{

exp [−sF ({hXY } , {n̄XY })]Q
(√

2γSR

)

Q
(√

2γST

)} ds

s

(a)
=

1

2π3j

∫
δ+j∞

δ−j∞

∫
π/2

0

∫
π/2

0

E{hXY },{nXY }
{

exp [−sF ({hXY } , {n̄XY })] exp
(

− γSR

sin2 (θ1)

)

exp

(

− γST

sin2 (θ2)

)}

dθ1dθ2
ds

s

(b)
=

1

2π3j

∫
δ+j∞

δ−j∞

∫
π/2

0

∫
π/2

0

G (s, θ1, θ2) dθ1dθ2
ds

s

(c)
=

1

2π3j

∫
δ+j∞

δ−j∞

Ψ0 (s)

(∫
π/2

0

Ψ1 (s, θ1) dθ1

)(∫
π/2

0

Ψ2 (s, θ2) dθ2

)
ds

s

(7)

F ({γXY } , {n̄XY }) = γSDd2
S + 2

√
γSDdSRe

{
n̄∗
SD

}
+ λR

(

γRDd̂
(nok)
R

+ 2
√
γRDdRRe

{
n̄∗
RD

})

+ λT

(

γTD d̂
(nok)
T

+ 2
√
γTDdTRe

{
n̄∗
TD

})

(8)

G (s, θ1, θ2) = EγSD

{

exp
(

−sγSDd2
S + s2γSDd2

S

)}

EγSR,γRD

{

exp

(

− γSR

sin2 (θ1)
− smin {γSR, γRD} d̂

(nok)
R + s2

min {γSR, γRD}
γRD

d2
R

)}

× EγST ,γTD

{

exp

(

− γST

sin2 (θ2)
− smin {γST , γTD} d̂

(nok)
T

+ s2
min {γST , γTD}

γTD

d2
T

)} (9)

Ψ0 (s) =

{[
γ̄SDd2

Ss (1 − s)
]−1

dS 6= 0

1 dS = 0
, Ψ1 (s, θ1) =

{[

γ̄SR

(

sd̂
(nok)
R

+ sin−2 (θ1)
)]−1

dR 6= 0

0 dR = 0
, Ψ2 (s, θ2) =

{[

γ̄ST

(

sd̂
(nok)
T

+ sin−2 (θ2)
)]−1

dT 6= 0

0 dT = 0
(10)

I4

(

d̂
(nok)
R

, d̂
(nok)
T

)

=
1

2πj

∫
δ+j∞

δ−j∞

1

s4 (1 − s)

[

1 −
(

1 + sd̂
(nok)
R

)−1/2
] [

1 −
(

1 + sd̂
(nok)
T

)−1/2
]

ds (12)

(12) can be computed in closed–form by using the method of
residues [24, Eq. (6)]. The details of the derivation are omitted,
but final results are summarized and discussed in Section IV.

IV. PERFORMANCECOMPARISON: IS NC USEFUL?

The aim of this section is to compare the performance of
the different scenarios and network topologies shown in Fig. 1
and Fig. 2. For all cases of interest, the methodology described
in Section III is used to compute the ABEP. In particular,
(3) is applied for all possible codewords of the codebook.
The final results are summarized in Table I, by assuming, for
a fair comparison, the total energy constraint mentioned in
Section II-B. Furthermore, since we are interested in high–
SNR analysis, Table I shows only the dominant terms in
(3), i.e., those APEPs having the slowest decaying behavior
as a function ofEm/N0 → ∞ [19]. In fact, these terms
determine both diversity and coding gain. The accuracy of
the frameworks shown in Table I is validated in Section V
through Monte Carlo simulations.

Important considerations can be drawn from our analysis.
Let us consider the 3–node network topology. The ABEP
of Scenario (b) shows that nodeS can exploit distributed
diversity to improve the diversity gain, but the price to pay
is a performance degradation for nodeR, whose ABEP is
worse than in the non–cooperative case,i.e., Scenario (a).
Very interestingly, we notice that the network–coded scenario,
i.e., Scenario (c), is the worst one in terms of performance.
NodeS has no gain from cooperation, and the diversity order
is equal to one. Furthermore, and very surprisingly, node
S has the same ABEP as in the non–cooperative case. In
other words, there is neither power nor diversity gain. As
far as nodeR is concerned, the situation is even worse:
the ABEP is worse than the non–cooperative case. Also, we
notice that this performance penalty depends only in part on
decoding errors on theS–to–R link. In fact, even assuming
γ̄SR → ∞, i.e., no decoding errors at nodeR, the ABEP is
worse because of performing NC. In conclusion, unlike [16],
[19]–[21] where it shown that NC is beneficial in cooperative
networks when some nodes act only as relays and have no data
to transmit, Table I points out that, if the relay nodes have their
own data to transmit, NC introduces no gain when compared

to the non–cooperative scenario, and, in some cases, NC
might also be harmful. To the best of the authors knowledge,
this important behavior has never been reported in the open
technical literature [4]. Similar comments apply to the 4–node
network topology. In particular, we notice that nodeS has a
diversity order that depends on the number of relay nodes that
do not perform NC but just forward the received packets.

Finally, we would like to emphasize that, unlike state–
of–the–art performance analysis of cooperative networks (see
[15], [16], [20] for further comments), our analysis encom-
passes a very accurate estimation of the coding gain. This is
instrumental to clearly assess diversity and coding trade–off
summarized in Table I.

V. NUMERICAL AND SIMULATION RESULTS

In this section, we compare the frameworks summarized
in Table I with Monte Carlo simulations. More specifically,
simulation results are obtained through a brute force imple-
mentation of (2). Some selected curves are shown in Fig. 3
and Fig. 4 for the 3–node and 4–node scenario, respectively.
For simplicity, but without loss of generality, i.i.d. fading is
considered. We can see that the framework in Table I closely
overlaps with Monte Carlo simulations for high–SNR. This
confirms the accuracy of the analytical derivation in Section
III, and the theoretical findings Section IV.

VI. CONCLUSION

In this paper, we have studied the performance of network–
coded cooperative wireless networks with practical communi-
cation constraints. A general framework has been proposed,
which can capture diversity and coding gain, and provides
insightful information about the performance of the system,
along with the tradeoff and the interplay of cooperation and
NC. Unlike common belief, our analysis has clearly shown
that using NC might be harmful for the system. In fact, we
have shown that the diversity order is determined only by those
nodes that act as repeaters and do not network–code their own
data to the received packets. These results and conclusionsare
valid for binary modulation and binary NC. Current research
activity is now concerned with the investigation of wireless
networks with non–binary modulation and non–binary NC.



TABLE I

ABEP FOR HIGH–SNR (k1 ≈ 0.4853 IS OBTAINED BY COMPUTING TERMS LIKE I4
(

d̂
(nok)
R

, d̂
(nok)
T

)

IN (11) BY USING [24, EQ. (10)], AND k2 =
(

525 + 11
√
5
)

/800).

ABEPS ABEPR ABEPT

3–Node Network (a) (1/4) γ̄−1
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(1/4) γ̄−1
RD

–

3–Node Network (b) (3/8) γ̄−1
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γ̄−1
RD

+
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√
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]
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–
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ST + (1/4) γ̄−1
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Fig. 3. ABEP againstEm/N0 for the 3–node network topology in Fig. 1. Solid
lines show the analytical framework and markers show Monte Carlo simulations. Setup:
i) i.i.d. fading withσ2

0 = 1; and ii) γ̄0 = 2σ2
0 (Em/N0). ABEPS andABEPR of

Scenario (a) are given by the single–hop bound.
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Fig. 4. ABEP againstEm/N0 for the 4–node network topology in Fig. 2. Solid
lines show the analytical framework and markers show Monte Carlo simulations. Setup:
i) i.i.d. fading with σ2

0 = 1; and ii) γ̄0 = 2σ2
0 (Em/N0). ABEPS , ABEPR, and

ABEPT of Scenario (a) are given by the single–hop bound.
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