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Abstract—In recent years, there has been an increasing de-
mand for ubiquitous streaming like applications in data networks.
In this paper, we concentrate on NUM-based rate allocation
for streaming applications with the so-called S-curve utility
functions. Due to non-concavity of such utility functions, the
underlying NUM problem would be non-convex for which dual
methods might become quite useless. To tackle the non-convex
problem, using elementary techniques we make the utility of
the network concave, however this results in reverse-convex con-
straints which make the problem non-convex. To deal with such a
transformed NUM, we leverageSequential Convex Programming
(SCP) approach to approximate the non-convex problem by a
series of convex ones. Based on this approach, we propose a
distributed rate allocation algorithm and demonstrate that under
mild conditions, it converges to a locally optimal solutionof the
original NUM. Numerical results validate the effectiveness, in
terms of tractable convergence of the proposed rate allocation
algorithm.

I. I NTRODUCTION

With recent advances in networking technologies and video
compression, there is an increasing demand for ubiquitous
multimedia applications like live streaming, video gaming,
video conferencing, and voice over IP. Multimedia applications
are characterized by a multitude of QoS requirements includ-
ing stringent bandwidth, delay, and delay jitter guarantees. The
ever increasing demand for streaming traffic has attracted a
lot of research interests to develop efficient mechanisms for
resource allocation between competing multimedia sessions in
a wide variety of networking scenarios [1]-[3].

In the course of the last decade, rate allocation has been
widely addressed as the (usually distributed) solution to Net-
work Utility Maximization (NUM), which has emerged as
an analytical framework to understand and design existing
network protocols [4]-[5]. The goal of NUM is to maximize
the aggregate utility of the users subject to operational and
practical constraints of the network. In the basic form of
NUM proposed in [4], the feasibility of rate allocation was
accommodated by congestion in links. So far, a plethora of
studies have concentrated on NUM-based rate allocation for
services with elastic traffic such as traditional file transfer. Due
to strict concavity and differentiability of the utility function
for elastic traffic, such NUMs are smooth and strictly convex
and thus far have been efficiently solved using dual or primal-
dual methods (see e.g. [5] and references therein.)

In contrast, applications that carry inelastic traffic like
audio/video streaming, can only tolerate a limited amount
of packet delay or fluctuation in rate. Hence, they are in
possession of non-concave and often non-differentiable utility
functions [1], [6]. This results in a non-convex and usually
non-smooth NUM for which dual/primal-dual methods might
prove quite useless.

There have been several works that have addressed non-
convex NUM problems for resource allocation supporting
inelastic services [6]-[12]. Leeet al. [7] outlined the possibility
of divergence of dual methods for non-concave utilities and
proposed a distributed “self-regulating” heuristic for rate con-
trol of non-concave utilities, where some of the sources turn
themselves off according to their local information. Handeet
al. [8] proposed necessary and sufficient conditions for canon-
ical distributed algorithm to converge to global optimum inthe
presence of non-concave utilities. A centralized algorithm for
non-convex NUM has been proposed in [9] in which sum-of-
squares technique was applied to a polynomial approximation
of the non-concave utility function. However, this centralized
approach suffers from high order of complexity. In [6], the
authors exerted a redefined variant of the non-concave utility
function in a distributed flow control algorithm so that the
network can achieve a utility-proportional fair rate allocation.
Authors of [10] merged the utility-proportional theory with a
stochastic optimization framework to propose a rate control
algorithm for the mixture of elastic and inelastic traffic in
wireless sensor networks. In [11], the authors introduced a
smooth utility function as an approximation to the ideal stair-
case utility function for SVC-encoded streams and leveraged
the utility-proportional approach to redefine the NUM which
is solvable using dual methods. Authors of [12], addressed
NUM problem in the context of random access in WLANs
for stations generating either elastic or inelastic traffic.

In this study, we focus on NUM-based rate allocation for
streaming applications with a class of non-concave utility
functions. Towards this, we adopt the so-calledS-curve utility
functions for streaming traffic [2], [3] as they are shown to be
capable of characterizing the user perceived quality for a broad
range of multimedia streaming scenarios. In order to tackle
the resulting non-convex NUM, we exploit transformation
techniques to gain a strictly concave objective. However, this
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procedure yields a class of non-convex DC (difference of
convex) constraints, referred to asreverse-convex constraints
[13]. We then deal with the non-convex transformed NUM
using an approach calledSequential Convex Programming
with DC constraints, abbreviated as SCP-DC, which was
proposed in [13]. In this regard, SCP-DC approach tackles
the problem with reverse-convex constraints by solving a
series of convex problems. Then we present a distributed
rate allocation algorithm obtained by solving the sequenceof
convex problems in an iterative manner. We demonstrate that
under mild assumptions, the proposed algorithm will converge
to a locally optimal solution of the original NUM problem. To
the best of our knowledge, this is the first work that addresses
NUM with S-curve utilities with Sequential Convex Program-
ming approach. Finally, our numerical experiments confirm
the tractable convergence rate of our proposed algorithm and
validate the its effectiveness in our experiment scenarios.

The rest of this paper is organized as follows. In Section
II, we describe the network and utility model and in Section
III, we establish problem formulation. Then we present our
solution algorithm in Section IV. Numerical analysis is given
in Section VI and conclusion is drawn in Section VII.

II. SYSTEM MODEL

A. Network Model

We consider a communication network that consists of
a set L = {1, . . . , L} of unidirectional links and a set
S = {1, . . . , S} of sources. We denote byc = (cl, l ∈ L)
the link capacity vector wherecl is the capacity of linkl in
bps. We assume that each logical sources transmits at rate
xs ∈ Xs , [ms,Ms], wherems and Ms are the minimum
and the maximum rates, respectively. There is a fixed set of
links L(s) ⊆ L that sources uses to reach its destination.
We represent such routes using a routing matrixR ∈ R

L×S,
which is defined as

Rls =

{

1 if sources passes through linkl
0 otherwise

Rate allocation is considered to be feasible if and only if
the source rate vectorx = (xs, s ∈ S) satisfies the following
conditions

C1. xs ∈ Xs, s ∈ S
C2.

∑S

s=1 Rlsxs ≤ cl, l ∈ L.

B. Utility Model

In order to measure the user satisfaction degree, we use the
well known notion of utility function. We associate an increas-
ing and continuously differentiable functionUs(xs) with each
sources. As mentioned in [1], multimedia applications, such
as video streaming and VoIP, fall in the category of inelastic
traffic and unlike elastic traffic, they are usually modeled
by a family of non-concave utility functions referred to as
sigmoidal-like functions1 [7]. For example, previous studies

1An increasing functionf(x) is called asigmoidal-like function, if it has
one inflection pointx0, and f ′′(x) > 0, for x < x0 and f ′′(x) < 0, for
x > x0. In other words,f(x) is convex forx < x0 and concave forx > x0.
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Fig. 1: S-curve Utility Corresponding to different values of C1 and
C2

have mostly usedsigmoidal logistic function defined below as
the utility function for inelastic traffic [7], [9]:

U(x) =
1

1 + e−α(x−β)
(1)

which has the inflection pointxinfl = β.
In this work, we focus on streaming applications which are

shown to admit utility functions referred to as S-curve [3],
[2]. Such utility functions can capture the perceptual video
quality of streaming users as a function of transmission rate.
In [2], the authors have proposed the following mathematical
expression for this class of utility functions

Us(xs) =
1− e−C1s(xs

rs
)C2s

1− e−C1s

(2)

where rs is the constant rate at which video of sources
is encoded andxs is the average data rate received during
transmission. ConstantsC1s > 0 and C2s ≥ 1 are some
parameters that depend on the properties of the video sequence
and video encoder and might be determined in an offline
fashion for stored media streaming.

It is easy to verify that the inflection point of the S-curve
utility function is given by

xinfl = rs

(

C2s − 1

C1sC2s

)
1

C2s

The above equation implies thatC2s > 1 results inxinfl > 0
which makes S-curve a non-concave function. Fig. 1 portrays
some utility functions corresponding to different values of
parametersC1s andC2s.

The family of S-curve utility functions are capable of
capturing characteristics of fine-granularity scalable, layered
and non-scalable video streams as their special cases. For
example, perceptual quality of FGS encoded video is smooth
and can easily be approximated by (2). Moreover, the step-
wise utility of SVC video streams [14] can also be roughly
characterized by S-curve (2). Hard real-time applicationssuch
as traditional voice service require fixed transmission rate. For
such services, the utility below a threshold rate would be zero.



These applications are non-scalable and can be representedby
a step utility function. S-curve utility function (2) can also
approximate a step function asC2s → ∞ [2].

III. PROBLEM FORMULATION

We model the rate allocation for streaming applications
following the framework of Network Utility Maximization
(NUM) which was proposed as the extension to optimization
flow control in the seminal work of Lowet al. [4]. The
objective is the sum of utility functions with utilities defined
by (2) and the constraints are feasibility conditionsC1-C2.
The rate allocation problem is described as follows

max
x∈X

∑S

s=1 Us(xs)

subject to
∑

s Rlsxs ≤ cl ∀l ∈ L (3)

whereX denotes the Cartesian product of all rate domains
Xs, s ∈ S.

As stated in the previous section, the S-curve utility function
(2) is non-concave forC2s > 1 which makes the above
problem non-convex. We would like to elaborate on making
this problem convex so as to use powerful methods developed
for convex optimization. We can make the utility function
concave with the following change of variables:

x̃s =

(

xs

rs

)C2s

(4)

Substituting the above transformation in (2), we obtain the
transformed utility functionŨs (.) as

Ũs (x̃s) =
1− e−C1sx̃s

1− e−C1s

(5)

where the transformed variablẽxs belongs to

x̃s ∈ X̃s ,

[

(

ms

rs

)C2s

,

(

Ms

rs

)C2s

]

The transformed utility functioñUs is strictly concave in
x̃s, because forC1s > 0, its second derivative satisfies

Ũ ′′
s (x̃s) = −

(C1s)
2

1− e−C1s

e−C1sx̃s < 0 (6)

Rewriting the capacity constraint for linkl, yields

gl(x̃) ,
∑

s

Rlsrsx̃
1

C2s

s ≤ cl; ∀l ∈ L. (7)

Unfortunately, the above capacity constraints with trans-
formed variables do not correspond to a convex constraint
as the (L.H.S) of (7) is a concave function. Indeed, the set
Dl = {x̃s|gl(x̃s)− cl ≤ 0} is a non-convex set, however the
set RS

+ − Dl = {x̃s|gl(x̃s)− cl > 0} is a convex set. In
optimization terminology, such a constraint is referred toas a
reverse-convex constraint which is a special case ofDifference
of Convex (DC) constraints [13], [15].

In order to tackle such reverse-convex constraints, we use
the sequential convex programming algorithm with DC con-
straints (SCP-DC) proposed in [13]. In this approach, the non-
convex function that borders the range of permissible values

for a constraint is replaced by an affine approximation to make
the constraint convex. Using this approach, the L.H.S of each
reverse-convex constraintgl(x̃) ≤ cl is replaced by its first
order Taylor approximation around a feasible pointx̃

′, denoted
by ĝl(x̃, x̃

′), as follows

ĝl(x̃, x̃
′) , gl(x̃

′) +∇gl(x̃
′)T (x̃− x̃

′) ≤ cl (8)

Since gl is differentiable,∇g exists at auxiliary variable
x̃′
s ∈ X̃s. It’s easy to verify thatĝl(x̃, x̃

′) is affine in x̃

and thereby L.H.S of (8) is convex. Thus, the constraint (8)
represents a convex constraint. Forĝl we get

ĝl(x̃, x̃
′) =

∑

s

Rlsrs

(

(x̃′
s)

1

C2s +
1

C2s
(x̃′

s)
1

C2s
−1

(x̃s − x̃′
s)

)

(9)

Finally, we rewrite the NUM problem with approximated
constraints as

max
x̃,x̃′∈X̃

S
∑

s=1

1− e−C1sx̃s

1− e−C1s

(10)

subject to: ĝl(x̃, x̃
′) ≤ cl; ∀l ∈ L. (11)

The above problem is strictly convex (iñx) since its objective
is strictly concave because of (6) and its constraints are affine
functions.

Before proceeding to solve the above problem, it’s worth
mentioning that in case of sigmoidal logistic utility functions
(1), if we define x̃s = eα(x−β), we will come up with a
convex objective with DC constraints, which can be treated by
the aforementioned technique to obtain a convex formulation
similar to problem (10)-(11). Therefore, the solution procedure
to be discussed in the next section, will be applicable to the
case of NUM with sigmoidal logistic utility functions.

IV. OPTIMAL SOLUTION

In this section, we solve problem (10)-(11) using dual
methods [4], [16].

A. Primal Problem

The Lagrangian function is derived as [16]:

L
(

x̃, x̃′,µ
)

=
∑

s

Ũs (x̃s)−
∑

l

µl

(

ĝl(x̃, x̃
′)− cl

)

(12)

whereµl is the positive Lagrange multiplier associated with
constraint (11) for linkl andµ = (µl, l ∈ L).

According to Karush-Kuhn-Tucker (KKT) theorem, the
stationary point of the Lagrangian, i.e. the solution to
∇L

(

x̃
∗, x̃′∗,µ∗

)

= 0, provides the unique solution to the
problem (10)-(11). Partial derivatives of the Lagrangian with
respect tõxs is given in (13) at the top of the next page, and
finally for the stationary point we get

x̃∗
s =

1

C1s
(A∗

s − log ρs∗) (14)

where

A∗
s = log

(

C1sC2s

rs (1− e−C1s)

)

+

(

1−
1

C2s

)

log x̃′∗
s

ρs∗ =
∑

l

Rlsµ
∗
l . (15)



∂L

∂x̃s

=
d

dx̃s

Ũs (x̃s)−
d

dx̃s

∑

l

µl

(

∑

s

Rlsrs

(

(x̃′
s)

1

C2s +
1

C2s
(x̃′

s)
1

C2s
−1(x̃s − x̃′

s)

)

− cl

)

=
C1se

−C1sx̃s

1− e−C1s

−
d

dx̃s

(

(x̃′
s)

1

C2s +
1

C2s
(x̃′

s)
1

C2s
−1(x̃s − x̃′

s)

)

rs
∑

l

Rlsµl

=
C1se

−C1sx̃s

1− e−C1s

−
rs

C2s
(x̃′

s)
1

C2s
−1
∑

l

Rlsµl = 0 (13)

It’s easy to verify that the transformed source ratex̃∗
s is a

decreasing function with respect toµ∗
l , l ∈ L.

We postpone finding̃x′∗ to the next subsection. We will
find µ

∗ by solving the dual problem associated to the primal
problem. Towards this, we first derive the dual function, which
is defined as the following Lagrangian maximization [16]:

D(µ) = max
x̃,x̃′∈X̃

L
(

x̃, x̃′,µ
)

= L
(

x̃
∗, x̃′∗,µ

)

B. Dual Problem

Having obtained the dual function, i.e.D (µ) =
L
(

x̃
∗, x̃′∗,µ

)

, the dual problem is defined as the following
minimization problem [16]:

min
µ≥0

D (µ) (16)

Solving the above problem in closed form might be im-
possible, and hence we solve it using iterative methods. As
problem (10)-(11) is strictly convex, the dual functionD(µ)
is differentiable over the open setRL

++ and we can benefit
from gradient projection algorithm to solve the dual problem
[17]. In this algorithm, the dual variable is iteratively updated
in the opposite direction to∇D(µ) as follows:

µ
(t+1) = [µ(t) − γ∇D(µ(t))]+

whereγ > 0 is a sufficiently small step-size.
Using Danskin’s Theorem [17], the partial derivatives of the

dual function are characterized as follows
∂D

∂µl

= cl − ĝl(x̃, x̃
′) (17)

In an iterative setting, to find the optimal value of the aux-
iliary variablex̃′∗, similar to Proximal Optimization Methods
[17], we update it as follows

x̃
′(t+1) = x̃

(t)

Put another way, it makes sense that, to calculate primal-
optimal variablex̃(t+1) at iteration stept, x̃

(t) is the best
candidate for̃x′ along which the affine approximation (8) can
be made.

Substituting (17) into gradient projection update formula
results in the following dual variable update

µ
(t+1)
l =

[

µ
(t)
l − γ(cl − ĝl(x̃

(t), x̃′(t)))
]+

=
[

µ
(t)
l − γ(cl − ĝl(x̃

(t), x̃(t−1)))
]+

(18)

wherex̃(t) is the value of optimal transformed rate givenµ(t).

Moreover, for rate computation at iterationt, we get

x̃(t+1)
s =

1

C1s

(

A(t+1)
s − log ρs(t)

)

(19)

where

A(t+1)
s = log

(

C1sC2s

rs (1− e−C1s)

)

+

(

1−
1

C2s

)

log x̃(t)
s

Finally, by taking the inverse transformation of (4), for source
rate at iteratet+ 1, we get

x(t+1)
s =

[

rs

(

x̃(t+1)
s

)
1

C2s

]

Xs

(20)

where[.]Xs
is the projection ontoXs.

V. RATE ALLOCATION ALGORITHM

A. Algorithm

The equations obtained in the previous section for optimal
source rate calculation, i.e. (19) and (20), and dual variable
update, i.e. (18), can work together to form a distributed
solution to problem (3). Below we have shown a concise form
of this iterative algorithm as Algorithm 1. As we can see,
implementation of this algorithm necessitates two mechanisms
for information exchange between links and sources.

1) Each linkl updates its price and communicates the result
to the corresponding sources.

2) Each sources calculates its new rate and informs the
links in its path.

This type of information exchange can be carried out explic-
itly, for example via flooding-like mechanisms as suggestedin
[18]. This is in contrast to the implicit mechanisms inherent
in Optimization Flow Control approach [4] where each source
can infer aggregate price of its path using either queueing
delay or packet loss ratio, and each link just needs to measure
its current flow to update its price.

B. Convergence

First we note that at the steady state, i.e. when

x̃
(t+1) = x̃

(t),

or equivalently when

x̃
′(t+1) − x̃

(t+1) = 0,

the approximated capacity constraints (8) would become
∑

s

Rlsrs(x̃
(t+1)
s )

1

C2s ≤ cl, l ∈ L, (21)



and thereby convexified constraints (8) will become equivalent
to DC constraints (7). Therefore, if the algorithm converges to
the steady state, the convexified constraints (8) will be equiv-
alent to the original constraints of the transformed problem.
In [13], it has been proved that under mild conditions on
the objective function, such as strict convexity, the SCP-DC
algorithm converges to a local maximizer of the non-convex
problem (3). Therefore, the proposed rate allocation algorithm
will reach a local maximum of problem (3) provided that
γ is chosen sufficiently small so that the gradient projection
algorithm will converge [17].

Based on the results stated in [13], if SCP-DC algorithm
converges, then the steady state point is a stationary pointof
the optimization problem. Put another way, the steady state
point is a local optimal of the optimization problem. It has
also been proved in [13] that for strictly convex objectives,
the SCP-DC algorithm always converges to a KKT point of
the original optimization problem (3).

Algorithm 1
Distributed Rate Control Algorithm for Streaming Traffic
Using SCP-DC Algorithm

Initialization
1) Set of sources and links including the routing matrix
2) rs, C1s, C2s for s ∈ S
3) γ andcl for l ∈ L

Main Loop
Do until maxs |x

(t+1)
s − x

(t)
s | < ǫ

1) For eachl ∈ L, update link priceµl by:

µ
(t+1)
l

=
[

µ
(t)
l

− γ(cl − ĝl(x̃
(t), x̃(t−1)))

]+

2) For eachs ∈ S, x̃s is calculated by:

A
(t+1)
s = log

(

C1sC2s

rs (1− e−C1s)

)

+

(

1−
1

C2s

)

log x̃
(t)
s

x̃
(t+1)
s =

1

C1s

(

A
(t+1)
s − log ρs(t)

)

andρs(t) =
∑

l
Rlsµl

(t). Then calculatex(t+1)
s as

x
(t+1)
s =

[

rs

(

x̃
(t+1)
s

) 1

C2s

]

Xs

VI. N UMERICAL ANALYSIS

In this section, we investigate the performance and validity
of the proposed rate allocation algorithm listed in the previous
section as Algorithm 1.

A. Scenario 1

We first consider a simple topology with a single bottleneck
link with capacity c = 1 Mbps. Video sequences for all
sources are assumed to be encoded at the constant bit rate
rs = 256 Kbps. Sources have utility functions with parameters
C1s = 6, ∀s and (C21, . . . , C25) = (2, 4, 6, 8, 10). The 2nd
column of Table I lists the results of the proposed rate
allocation algorithm with step sizeγ = 10−4 and the stopping
criterion ǫ = 0.1.

Fig. 3(a) and Fig. 3(b) display the evolution of source rates
and link price, respectively. From Fig. 3(a), it is observable
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Fig. 3: Evolution of (a) Source rates and (b) Link price for the first
scenario

that the stopping criterion is met in iteration stept = 12 which
implies the proper convergence rate of the algorithm.

B. Scenario 2

Now we focus on a scenario with multiple bottleneck
links whose topology is shown in Fig. 2 with capac-
ity vector c = (210, 425, 610, 425, 210) Kbps. Sources
have utility functions with parametersC2s = 6, ∀s and
(C11, . . . , C15) = (2, 4, 6, 8, 10). Similar to the previous sce-
nario, we setrs = 256, γ = 10−4, and ǫ = 0.1. The 4th
column of Table I lists the results of the proposed rate allo-
cation algorithm. Fig. 4(a) and Fig. 4(b) display the evolution
of source rates and link prices, respectively. As shown in Fig.
4(a), the stopping criterion is satisfied in iteration stept = 70
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Fig. 4: Evolution of (a) Source rates and (b) Link prices for the
second scenario

Scenario 1 Scenario 2
Source Algorithm fmincon Algorithm fmincon

1 118.1668 117.9658 209.8065 210.0000
2 191.2863 191.1745 202.4938 202.6043
3 219.4306 219.3638 222.3787 227.3957
4 232.2970 232.2520 227.6564 227.6043
5 239.2770 239.2439 197.3906 197.3957

TABLE I: Rate allocation results

which again demonstrates the tractable convergence rate of
the proposed algorithm in a topology with multiple bottleneck
links.

C. Validation

In order to validate the rate allocation results obtained
above, we have also solved the problem (3) by invoking
fmincon function in Matlab [19]. When calling this function,
we chooseInterior-Point Method [16], [17] as its solving
algorithm. The results returned byfmincon for the two
scenarios along with those obtained by our algorithm are listed
in Table I. It is easy to confirm that the rate allocation results
completely match those obtained fromfmincon.

VII. C ONCLUSION

In this paper, we addressed rate allocation for streaming
applications with non-convex S-curve utility functions. First
we convexified the utility functions with elementary transfor-
mation techniques. Then, we exploited the SCP-DC approach
[13] to handle the resultant reverse-convex constraints. Using
dual method, we then proposed a distributed rate allocation
algorithm which was shown to achieve a locally optimal
solution of the non-convex NUM. Simulation results validated
the tractable convergence and accuracy of the proposed rate
allocation algorithm. As a possible direction to continue this
research, it is promising to address rate allocation for such
streaming applications in wireless networks.
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