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Abstract—In recent years, there has been an increasing de- In contrast, applications that carry inelastic traffic like
mand for ubiquitous streaming like applications in data netvorks.  audio/video streaming, can only tolerate a limited amount
In this paper, we concentrate on NUM-based rate allocation of packet delay or fluctuation in rate. Hence, they are in

for streaming applications with the so-called S-curve utity - f d oft diff tialiie/ut
functions. Due to non-concavity of such utility functions, the possession of non-concave and often non-difierentialligyu

underlying NUM problem would be non-convex for which dual functions [1], [6]. This results in a non-convex and usually
methods might become quite useless. To tackle the non-comve non-smooth NUM for which dual/primal-dual methods might
problem, using elementary techniques we make the utility of prove quite useless.

the network concave, however this results in reverse-conxecon- There have been several works that have addressed non-

straints which make the problem non-convex. To deal with sut a NUM bl f I fi i
transformed NUM, we leverage Sequential Convex Programming  COMVEX problems for resource aflocation supporting

(SCP) approach to approximate the non-convex problem by a inelastic services [6]-[12]. Leet al. [7] outlined the possibility
series of convex ones. Based on this approach, we propose @f divergence of dual methods for non-concave utilities and
distributed rate allocation algorithm and demonstrate that under  proposed a distributed “self-regulating” heuristic foteraon-
mild conditions, it converges to a locally optimal solutionof the 4| of non-concave utilities, where some of the sources tur
original NUM. Numerical results validate the effectivenes, in . . . .
terms of tractable convergence of the proposed rate allocan themselves off according to their chgl '”form?‘F'O”- Haretle
algorithm. al. [8] proposed necessary and sufficient conditions for canon-
ical distributed algorithm to converge to global optimunihie
. INTRODUCTION presence of non-concave utilities. A centralized alganitior
With recent advances in networking technologies and videon-convex NUM has been proposed|in [9] in which sum-of-
compression, there is an increasing demand for ubiquitosguares technique was applied to a polynomial approximatio
multimedia applications like live streaming, video gamingpf the non-concave utility function. However, this cenrat
video conferencing, and voice over IP. Multimedia applmas approach suffers from high order of complexity. [d [6], the
are characterized by a multitude of QoS requirements incluauthors exerted a redefined variant of the non-concaveyutili
ing stringent bandwidth, delay, and delay jitter guarasitéde function in a distributed flow control algorithm so that the
ever increasing demand for streaming traffic has attractechetwork can achieve a utility-proportional fair rate altion.
lot of research interests to develop efficient mechanisms fauthors of [10] merged the utility-proportional theory Wit
resource allocation between competing multimedia session stochastic optimization framework to propose a rate céntro
a wide variety of networking scenarids [1]-[3]. algorithm for the mixture of elastic and inelastic traffic in
In the course of the last decade, rate allocation has beemmeless sensor networks. Ih_[11], the authors introduced a
widely addressed as the (usually distributed) solution &N smooth utility function as an approximation to the idealrsta
work Utility Maximization (NUM), which has emerged ascase utility function for SVC-encoded streams and levetage
an analytical framework to understand and design existitige utility-proportional approach to redefine the NUM which
network protocols[[4]t[6]. The goal of NUM is to maximizeis solvable using dual methods. Authors bf][12], addressed
the aggregate utility of the users subject to operationdl ahUM problem in the context of random access in WLANs
practical constraints of the network. In the basic form dbr stations generating either elastic or inelastic traffic
NUM proposed in[[4], the feasibility of rate allocation was In this study, we focus on NUM-based rate allocation for
accommodated by congestion in links. So far, a plethora stieaming applications with a class of non-concave utility
studies have concentrated on NUM-based rate allocation fanctions. Towards this, we adopt the so-calfdurve utility
services with elastic traffic such as traditional file tramsbue functions for streaming traffi¢c [2]] [3] as they are shown o b
to strict concavity and differentiability of the utility fiction capable of characterizing the user perceived quality fooad
for elastic traffic, such NUMs are smooth and strictly convesange of multimedia streaming scenarios. In order to tackle
and thus far have been efficiently solved using dual or pimahe resulting non-convex NUM, we exploit transformation
dual methods (see e.d. [5] and references therein.) techniques to gain a strictly concave objective. Howe\vs, t
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procedure yields a class of non-convex DC (difference of
convex) constraints, referred to eaverse-convex constraints

[13]. We then deal with the non-convex transformed NUM
using an approach calleBequential Convex Programming

with DC congtraints, abbreviated as SCP-DC, which was
proposed in[[13]. In this regard, SCP-DC approach tackles =
the problem with reverse-convex constraints by solving a >
series of convex problems. Then we present a distributed
rate allocation algorithm obtained by solving the sequesfce
convex problems in an iterative manner. We demonstrate that
under mild assumptions, the proposed algorithm will cogeer
to a locally optimal solution of the original NUM problem. To
the best of our knowledge, this is the first work that addresse
NUM with S-curve utilities with Sequential Convex Program-
ming approach. Finally, our numerical experiments confir
the tractable convergence rate of our proposed algorithsn an’

validate the its effectiveness in our experiment scenarios hayve mostly usedigmoidal logistic function defined below as

The rest of this paper is organized as follows. In Sectigfe utility function for inelastic traffic_[7],[[0]:
M we describe the network and utility model and in Section

100

g. 1: S-curve Utility Corresponding to different valuet @; and

[M] we establish problem formulation. Then we present our U(x) = o (1)
solution algorithm in Sectiof V. Numerical analysis is giv 14 ee@=h)
in Sectior[V] and conclusion is drawn in SectionVII. which has the inflection point™ = 3.

Il. SYSTEM MODEL In this work, we f(_)cus on §tream|ng applications which are
shown to admit utility functions referred to as S-curve [3],

A. Network Model [2]. Such utility functions can capture the perceptual vide
We consider a communication network that consists guality of streaming users as a function of transmissioa. rat

asetL = {1,...,L} of unidirectional links and a setIn [2], the authors have proposed the following mathemética
S = {1,...,5} of sources. We denote by = (¢;,l € £) expression for this class of utility functions

the link capacity vector where; is the capacity of linkl in 20 \C2e

bps. We assume that each logical souscgansmits at rate U 1= e~ Cus(5) 5

r, € Xy £ [my, M), wherem, and M, are the minimum s(@s) = 1—eCs )

and the maximum rates, respectively. There is a fixed Set\ﬁlf]ere r. is the constant rate at which video of sourge

links L(s) C L thﬁt sources uses to reach ItS_destanxaglon-is encoded and:, is the average data rate received during
We represent such routes using a routing maRix R ' transmission. Constant§;. > 0 and Ch, > 1 are some

which is defined as parameters that depend on the properties of the video seguen
o1l if sources passes through link and video encoder and might be determined in an offline
ls 0 otherwise fashion for stored media streaming.

Rate allocation is considered to be feasible if and only if |t iS €asy to verify that the inflection point of the S-curve
the source rate vectar = (z, s € S) satisfies the following Ulility function is given by

conditions 1
infl _ (C2s - 1) Cza
xr =Ts

Cl. z,€X,, s€8 C15Cas

Cc2. 235:1 Riszs < ¢y, le L.
. The above equation implies théb, > 1 results inz™ > 0
B. Uiility Model which makes S-curve a non-concave function. Elg. 1 portrays
In order to measure the user satisfaction degree, we use éBehe utility functions corresponding to different valuels o
well known notion of utility function. We associate an inase parameter€;, and Ca;.
ing and continuously differentiable functidn (z;) with each ~ The family of S-curve utility functions are capable of
sources. As mentioned in[[1], multimedia applications, sucf¢apturing characteristics of fine-granularity scalabéseted
as video streaming and VoIP, fall in the category of inetastand non-scalable video streams as their special cases. For
traffic and unlike elastic traffic, they are usually modelegxample, perceptual quality of FGS encoded video is smooth
by a family of non-concave utility functions referred to agnd can easily be approximated By (2). Moreover, the step-
sigmoidal-like functiord [7]. For example, previous studieswise utility of SVC video streams [14] can also be roughly
Ta _ _ _ o o characterized by S-curvel(2). Hard real-time applicatisunsh
An increasing functionf(z) is called asigmoidal-like function, if it has . . . . . L
one inflection pointzo, and f(z) > 0, for = < zo and f”(z) < 0, for @S traditional voice service require fixed transmissioa.r&or
x > xo. In other words f(z) is convex forz < z¢ and concave fox > zo. Such services, the utility below a threshold rate would be.ze



These applications are non-scalable and can be repredsntetbr a constraint is replaced by an affine approximation toenak
a step utility function. S-curve utility functiori(2) cansal the constraint convex. Using this approach, the L.H.S oheac
approximate a step function @, — oo [2]. reverse-convex constraigi(z) < ¢ is replaced by its first

. PROBLEM FORMULATION order Taylor approximation around a feasible pahtdenoted
by g:(%,&'), as follows

We model the rate allocation for streaming applications A T~
following the framework of Network Utility Maximization 9(2,2') = (@) + V(@) (2 -2)<q (8)
(NUM) which was proposed as the extension to optimization Since g; is differentiable,Vg exists at auxiliary variable
flow control in the seminal work of Lowet al. [4]. The i/ < X,. It's easy to verify thatj(&,&') is affine in &

objective is the sum of utility functions with utilities deéd and thereby L.H.S of[{8) is convex. Thus, the constrdint (8)

by (2) and the constraints are feasibility conditicB$-C2. represents a convex constraint. Fprwe get
The rate allocation problem is described as follows

1 _
5,3 . 1 Al
mea.i'( 255:1 Us(xs) ZRlsrs ( Ty) 2 + 025( s) (Zs xs)) 9)
subject to Y Risxs < VieLl (3) Finally, we rewrite the NUM problem with approximated

constraints as

where X denotes the Cartesian product of all rate domains s

1 — ¢ Cuss
Xs,s€8. _ _ o max 276 ol (10)
As stated in the previous section, the S-curve utility fiorct &3 cX — l-e
(2) is non-concave foilC>; > 1 which makes the above subjectto:  §i(& &) <e; VieL (11)

problem non-convex. We would like to elaborate on making . _ o . o
this problem convex so as to use powerful methods developee above problem is strictly convex (i) since its objective
for convex optimization. We can make the utility functioris strictly concave because ¢f (6) and its constraints dieeaf

concave with the following change of variables: functions. . .
s Before proceeding to solve the above problem, it's worth
= _ [ Ts 4) Mmentioning that in case of sigmoidal logistic utility furans
Ts @, if we definez, = ¢**=F), we will come up with a

Substituting the above transformation [ (2), we obtain tH@nvex objective with DC constraints, which can be treated b
transformed utility functiorl/, (.) as the aforementioned technique to obtain a convex formuiatio

similar to problem[{Z0)E(11). Therefore, the solution @dare
(5) to be discussed in the next section, will be applicable to the
case of NUM with sigmoidal logistic utility functions.

1 — e_c‘lsjs

Us (¥s) = T—=au

where the transformed varia belongs to
big 9 IV. OPTIMAL SOLUTION

G cq b l<%)ck <MS>C2S] In this section, we solve probleni {10)={11) using dual

Ts Ts methods|([4], [[15].

The transformed utility functiorl, is strictly concave in A Primal Problem

T, because for’;; > 0, its second derivative satisfies The Lagrangian function is derived as [16]:
2 N~ o~
U;/(js) _ - (_C;S_)c] : e—C1s%: - (6) iL‘ z H Z U $3 ;/Ll (gl(:v, x') Cl) (12)
Rewriting the capacity constraint for link yields where ; is the positive Lagrange multiplier associated with
e constraint[(Il) for linkl and p = (p,1 € L).
)2 ZR[STstczs <g¢; VielL. (7 According to Karush-Kuhn-Tucker (KKT) theorem, the

stationary point of the Lagrangian, i.e. the solution to
Unfortunately, the above capacity constraints with tran32L (£*, ", u*) = 0, provides the unique solution to the
formed variables do not correspond to a convex constrafioblem [(10){(1l). Partial derivatives of the Lagrangiaithw
as the (L.H.S) of[{[7) is a concave function. Indeed, the sespect taz is given in [1B) at the top of the next page, and
D, = {#,|g:(Zs) — ¢ < 0} is a non-convex set, however thefinally for the stationary point we get
setRY — D; = {i|gi(&s) —a >0} is a convex set. In

optimization terminology, such a constraint is referrecisoa T = Cl (A7 —log p*") (14)
reverse-convex constraint which is a special case @fifference 1s
of Convex (DC) constraints [13], [15]. where

In order to tackle such reverse-convex constraints, we use A = Do ( C15Cas ) + (1 1 )logo%/*
the sequential convex programming algorithm with DC con- rs (1 —e=Cre) 2s °
straints (SCP-DC) proposed in[[13]. In this approach, the non- s+ _ Z Rygpi. (15)

convex function that borders the range of permissible &lue



) TR LT
oz, — 7.0+ (®) di:szljm <ZS:RMS <($5) TG, @)@ mE) ) —a

s —C1s%s d 1 —
_ G <(;z;)c§s ()T T (F, - a?;>> rs Y Rispu

[ O . :
Clse_clsjs Ts g\ —~——1
= T_con 0o (@)= ZRlsm =0 (13)
l

It's easy to verify that the transformed source rateis a Moreover, for rate computation at iterationwe get
decreasing function with respect i, [ € L. 1

We postpone findinge’* to the next subsection. We will D = — (AgtH) — log Ps(t)) (19)
find p* by solving the dual problem associated to the primal 1s
problem. Towards this, we first derive the dual function,athi Where
is defined as the following Lagrangian maximization/[16]: Agtﬂ) ~ log < C15Cas )) i <1 B

1 ) -
_ —ls™as 1oga:(t)
_ »—Cis s
D(p) = max_L (& & ,p) =L (%", 2" n) re(l—em® Cos
E,& X Finally, by taking the inverse transformation bf (4), fousce

B. Dual Problem rate at iteratet + 1, we get
Having obtained the dual function, i.eD(p) = (t+1) ~(t+1)) Oo=
L (#*,&", p), the dual problem is defined as the following Ts T =T (w ) N (20)
minimization problem[[16]: _ L :
where[.]x, is the projection ontotj.
min D (w) (16)
n>0 V. RATE ALLOCATION ALGORITHM

Solving the above problem in closed form might be ima_ Algorithm
possible, and hence we solve it using iterative methods. A
problem [Z0){(Ih) is strictly convex, the dual functidn i)
is differentiable over the open s&}_, and we can benefit
from gradient projection algorithm to solve the dual problem
[17]. In this algorithm, the dual variable is iteratively dated
in the opposite direction t& D(u) as follows:

SThe equations obtained in the previous section for optimal
source rate calculation, i.€. {19) ad](20), and dual véiab
update, i.e.[(18), can work together to form a distributed
solution to problem[{3). Below we have shown a concise form
of this iterative algorithm as Algorithm 1. As we can see,
implementation of this algorithm necessitates two medmasi
pD = [u® — A D(p®))*+ for information exchange between links and sources.

1) Each link! updates its price and communicates the result

where~ > 0 is a sufficiently small step-size. .
g y b to the corresponding sources.

Using Danskin’s Theorem [17], the partial derivatives & th 2) Each lculates it f d inf th
dual function are characterized as follows ) Each source calculates its new rate and informs the

oD links in its path.

i al(®, &) a7) This type of information exchange can be carried out explic-
H itly, for example via flooding-like mechanisms as suggested
In an iterative setting, to find the optimal value of the auXTg]. This is in contrast to the implicit mechanisms inhéren
iliary variablez’*, similar to Proximal Optimization Methods Optimization Flow Control approachl[4] where each source
[17], we update it as follows can infer aggregate price of its path using either queueing
/) _ £®) delay or packet loss ratio, and each link just needs to measur

its current flow to update its price.
Put another way, it makes sense that, to calculate primal-

optimal variablez**") at iteration stept, #*) is the best B- Convergence
candidate foez’ along which the affine approximatioln] (8) can First we note that at the steady state, i.e. when

be made. i(t+1) . j(t)
Substituting [(Il7) into gradient projection update formula - ’
results in the following dual variable update or equivalently when
+ - -
= i = e - @0, &) FHD gt =0,

the approximated capacity constrairits (8) would become

+
= [u” - a-a@".3 )] a8 1
> Rirg(@T)en <o, lelL, (21)

wherez" is the value of optimal transformed rate giveft).



and thereby convexified constrairt$ (8) will become eqeival k_‘ X

to DC constraintd (7). Therefore, if the algorithm converge \ - /
the steady state, the convexified constrainks (8) will bevequ ‘ Xs
alent to the original constraints of the transformed proble X, ) .

In [13], it has been proved that under mild conditions on / X, \

the objective function, such as strict convexity, the SCP-D
algorithm converges to a local maximizer of the non-convex Fig. 2: Network topology and flow rates
problem [[3). Therefore, the proposed rate allocation élyor

will reach a local maximum of probleni](3) provided that

7 is chosen sufficiently small so that the gradient projection e B S uuuu ey g ]
algorithm will convergel[1]7]. ﬁ;
Based on the results stated [n[[13], if SCP-DC algorithm 200f A - f
converges, then the steady state point is a stationary pbint "
the optimization problem. Put another way, the steady state £ ;5! ,
point is a local optimal of the optimization problem. It has % L
also been proved i [13] that for strictly convex objectives glooi JSi R |
the SCP-DC algorithm always converges to a KKT point of ¢
the original optimization probleni{3). - -~ Sourcel
50} == Sourcez||
Algorithm 1 — Source3
Distributed Rate Control Algorithm for Streaming Traffic — Source4
Using SCP-DC Algorithm o ‘ ‘ ‘ ‘ - - 7 Sourceb
0 10 20 30 40 50 60
Initialization Iteration
1) Set of sources and links including the routing matrix (a) Evolution of Flow Rates
2) rs,C1s,C2s fors € S .
3) yandg forle L 10x103
Main Loop
Do until max, \xgt+1) — xgt)\ <e 9
1) For eachl € £, update link priceu; by: 8
() ~t-Dy T ,
ut = [Mz(t) — (e — @, 8¢ 1)))] 3 !
2) For eachs € S, ; is calculated by: %‘ 6
C1Cas 1 ) = 5t
A g ( —22522 V41— — ) logl
o8 rs (1 —e=C1s) + Cas o8
al
S+ _ L s
T = (AS log p ) al |
s() = () (t-+1) ‘ ‘ : ‘
and p = >, Rismu'?. Then calculater as 25 10 20 2 20 o 0

Iteration

1
(t+1) _ ~(t+1)) Cag
e B {TS <xs ) L( (b) Evolution of Shadow Price

Fig. 3: Evolution of (a) Source rates and (b) Link price foe tiirst
scenario
In this section, we investigate the performance and validit

of the proposed rate allocation algorithm listed in the jmes that the stopping criterion is met in iteration step: 12 which
section as Algorithm 1. implies the proper convergence rate of the algorithm.

VI. NUMERICAL ANALYSIS

A. Scenario 1 B. Scenario 2

We first consider a simple topology with a single bottleneck Now we focus on a scenario with multiple bottleneck
link with capacityc = 1 Mbps. Video sequences for alllinks whose topology is shown in Fidd 2 with capac-
sources are assumed to be encoded at the constant bit itstevector ¢ = (210, 425,610,425,210) Kbps. Sources
rs = 256 Kbps. Sources have utility functions with parametenisave utility functions with parameter€->; = 6,Vs and
Cis = 6,¥s and (Caq,...,C2) = (2,4,6,8,10). The 2nd (Cyy,...,C15) = (2,4,6,8,10). Similar to the previous sce-
column of Table | lists the results of the proposed rateario, we setr, = 256, v = 107%, ande = 0.1. The 4th
allocation algorithm with step size = 10~* and the stopping column of Table | lists the results of the proposed rate allo-
criterione = 0.1. cation algorithm. Fig._4(&) and Fig. 4[b) display the evioint

Fig.[3(a) and Fig._3(b) display the evolution of source ratex source rates and link prices, respectively. As shown @n Fi
and link price, respectively. From Fifj. 3(a), it is obseteab/d(a), the stopping criterion is satisfied in iteration step 70



Source Rates
=
[e0]
o

VIl. CONCLUSION

In this paper, we addressed rate allocation for streaming
applications with non-convex S-curve utility functionsr<f
we convexified the utility functions with elementary tramsf
mation techniques. Then, we exploited the SCP-DC approach
[13] to handle the resultant reverse-convex constrainsingdJ

"'§°”r°e2 | dual method, we then proposed a distributed rate allocation

=—=Sourcez| . . . .

1o — cources algorithm which was shown to achieve a locally optimal
160 — Sourced| | solution of the non-convex NUM. Simulation results valitht
150 ‘ = = = Source5| 4 the tractable convergence and accuracy of the proposed rate
140 1 allocation algorithm. As a possible direction to continbést
130 \ \ \ \ \ \ \ research, it is promising to address rate allocation folhsuc

0 20 40 60 80 100 120 140 160 . N . .
lteration streaming applications in wireless networks.
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