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Abstract�In this paper, we study the strategic coexistence be-
tween macro and femto cell tiers from a game theoretic learning
perspective. A novel regret-based learning algorithm is proposed
whereby cognitive femtocells mitigate their interference toward
the macrocell tier, on the downlink. The proposed algorithm
is fully decentralized relying only on the signal-to-interference-
plus-noise ratio (SINR) feedback to the corresponding femtocell
base stations. Based on these local observations, femto base
stations learn the probability distribution of their transmission
strategies (power levels and frequency band) by minimizing
their regrets for using certain strategies, while adhering to the
cross-tier interference constraint. The decentralized regret based
learning algorithm is shown to converge to an ǫ-coarse correlated
equilibrium (ǫ-CCE) which is a generalization of the classical
Nash Equilibrium (NE). Finally, numerical results are shown to
corroborate our  ndings where, quite remarkably, our learning
algorithm achieves the same performance as the classical regret
matching, but with substantially much less overhead.

I. INTRODUCTION

Wireless data traf c has been increasing exponentially in

recent years in which the emergence of novel wireless services

such as social networking and gaming has introduced stringent

quality-of-service (QoS) and data rate constraints on next-

generation wireless cellular networks. This increase led mobile

operators to explore new ways to achieve network coverage

improvements, higher spectral ef ciencies, and OPEX/CAPEX

reductions. In view of this, femtocell technology (and small

cells in general) represents a novel networking paradigm based

on the idea of deploying low-power, low-cost base stations

underlaying the legacy macrocell network [1].

The deployment of future heterogeneous cellular networks

supporting macro, pico, and femtocells coexisting on the

same spectrum and in the same geographical area entails

new technical challenges for mobile operators. These chal-

lenges encompass co-tier and cross-tier interference, coverage

holes due to large transmit power disparity across small

cells, handover optimization, and heterogenous backhaul de-

sign. Furthermore, because femtocells are user-deployed, self-

organizing network (SON) capabilities requiring innovative

interference and mobility management are of vital importance.

For this reason, both academia and standardization bodies are
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Fig. 1. Two-tier network topology including a mix of high-power (Macro-
BS) and low-power base stations (Pico-BS and Femto-BS). MUE/FUE/PUE
stand for macro/femto/pico user equipments.

currently looking at SON aspects in which self-con guration

and self-optimization are deemed instrumental to make the

deployment of femtocell networks feasible.

Interference management for femtocell networks can be

found in a number of works such as [2], [3], [4] among

others where a variety of techniques including dynamic fre-

quency planning, dynamic spectrum occupation, power con-

trol, closed/open/hybrid access group [3], context awareness

capabilities were studied. Interference management solutions

based on reinforcement learning (RL) techniques such as Q-

learning, cooperative Q-learning, replication dynamics and

their variants were studied in [4], [6].

In this paper, we propose a fully decentralized algorithm for

interference mitigation from the femto-to-macrocell tier, on

the downlink, as shown in Fig. 1. The basic idea is that each
femtocell base station (FBS) learns the regret of its actions

taken at every time instant, aiming at minimizing its average

regret over time. At the same time and owing to the two-

tier hierarchy, femtocells need to mitigate their interference

brought onto the macrocell. A player�s regret is de ned as the

difference between its average utility when playing the same

action in all previous stages of the game, and its average utility

obtained by constantly changing its actions. The underlying

assumption in our work is that feedback messages from

macrocell users (MUEs) to their serving macrocell base station

(MBS) containing their instantaneous signal to interference



plus noise ratio (SINR) can be decoded by all FBSs. The

repetitive observation of the SINR is used by the FBS to

dynamically con gure how often different frequency bands

are used such that, a minimum time-average SINR level can

be guaranteed at the macrocell tier. Finally, our proposed

algorithm allows us to capture fundamental issues, namely,

(1) joint estimation of players� own utility function due to

perturbation and regret minimization, and (2) alleviate the

setback of the classical regret matching procedure in terms

of information requirement.

This paper is organized as follows. In Section II, the system

and game model are presented. Section III describes the

regret-based learning procedure carried out by femtocells to

learn their optimal transmission strategies and mitigate their

interference towards the macrocell tier. The distributed regret

based learning algorithm is described in Section IV. Finally,

numerical results are presented in Section V, and Section VI

concludes this paper.

II. MODELS

A. Notations

Boldface upper and lower case symbols represent vectors

and scalars. Given a random variable z, the expectation with

respect to the probability distribution of z is denoted by Ez[.].
The indicator function is denoted by 1{condition} and it equals

1 (resp. 0) when condition is true (resp. false). Given a  nite

set A, △(A) represents the set of all probability distributions

over the elements of the  nite set A. Let the vector e
(S)
s =(

e
(S)
s,1 , ..., e

(S)
s,S

)

∈ R
S denote the s-th vector of the canonical

base spanning the space of real vectors of dimension S. Here,

∀n ∈ {1, ..., S} \ {s}, e
(S)
s,n = 0 and e

(S)
s,s = 1.

B. System Model

Let us assume M = 1 macrocell base station operating

over a set S = {1, . . . , S} of S frequency bands. Let

Γ0 = (Γ
(1)
0 , . . . ,Γ

(S)
0 ) denote the minimum average SINR

offered by the MBS to its macrocell user equipment over

its corresponding spectrum band. Consider now a set K =
{1, . . . ,K} of K femtocells underlaying the macrocell. Each

femtocell can use any of the available frequency bands to serve

its corresponding femto end-users (FUE) as long as it does not

induce a lower average SINR than the minimum required by

the MUE. At each time interval each FBS serves one FUE

over one of the available channels following a time division

multiple access (TDMA) policy.

Designate the MBS�s transmit power on a given sub-carrier

to be p
(s)
0 and let |h

(s)
0,0|

2 denote the channel gain between the

MBS and its associated MUE in sub-carrier s ∈ S. Likewise,
|h

(s)
i,j |

2 denotes the channel gain between transmitter j and

receiver i on sub-carrier s, and let σ
(s)
k

2
be the variance of

the additive white Gaussian noise at receiver k, which is

assumed to be constant over all sub-carriers for simplicity.

Let pk,max with k ∈ K be the maximum transmit power

of FBS k. For all k ∈ K, let the S-dimensional vector

pk(t) =
(

p
(1)
k (t), ..., p

(S)
k (t)

)

denote the power allocation

(PA) vector of FBS k ∈ K at time t. Here p
(s)
k (t) is the transmit

power of femtocell k over frequency band s at time t. All

FBSs are assumed to transmit over one frequency band only

at each time t at a given power level not exceeding pk,max. Let

Lk ∈ N be the number of discrete power levels of FBS k and

denote by q
(ℓ,s)
k its ℓ-th transmit power level when used over

channel s, with (ℓ, s) ∈ Lk × S, with Lk = {1, . . . , LK}.

Denote also by q
(0,0)
k , with k ∈ K, the S-dimensional null

vector, i.e., q
(0,0) = (0, . . . , 0) ∈ R

S . Thus, FBS k has

Nk = Lk · S + 1 possible PA vectors and for all t ∈ N,

pk(t) ∈ Ak, where

Ak = q
(0,0) ∪

{

q
(ℓ,s)
k : (ℓ, s) ∈ Lk × S

}

. (1)

The SINR of MUE on carrier s is:

γ
(s)
0 =

|h
(s)
0,0|

2p
(s)
0

σ
(s)
0

2
+

∑

k∈K

|h
(s)
0,k|

2p
(s)
k

︸ ︷︷ ︸

femtocells

, (2)

The SINR for FBS k ∈ K serving its femto-user FUE is given

as follows:

γ
(s)
k =

|h
(s)
k,k|

2p
(s)
k

σ
(s)
k

2
+ |h

(s)
k,0|

2p
(s)
0

︸ ︷︷ ︸

macrocell

+
∑

j∈K\{k}

|h
(s)
k,j |

2p
(s)
j

︸ ︷︷ ︸

femtocells

. (3)

Finally, all FBSs are interested in optimizing a given interfer-

ence mitigation metric denoted by φk : RS·K → R
+, which

determines at each instant t the impact of the interference on

the macro system based on the observation of all the SINR

levels γ
(s)
k and γ

(s)
0 , with (k, s) ∈ K × S. The interference

mitigation metric considered in this work is:

φk

(
pk,p−k

)
=

S∑

s=1

log2
(
1 + γ

(s)
k

)
.1{

γ
(s)
0 >Γ

(s)
0

}. (4)

This metric at a given instant t is different from zero only if

the macrocell satis es at time t the minimum SINR level at

least over one of the available channels. Hence, as long as the

macrocell tier sees its QoS requirement satis ed, femtocells

obtain a positive reward/payoff.

C. Game Theoretic Model

The cross-tier interference mitigation problem described in

the previous section can be modeled by a normal-form game

G =
(

K, {Ak}k∈K, {φk}k∈K

)

. Here, K represents the set of

FBSs in the network and for all k ∈ K, the set of actions of
FBS k is the set of power allocation vectors Ak described in

(1). We denote by A = A1 × ... × AK the space of actions,

and φk : Ak → R+ is the payoff function of femtocell k.

At each time t and for all k ∈ K, FBS k chooses its action

from the  nite set Ak following a probability distribution

πk(t) =
(

π
k,q

(0,0)
k

(t), π
k,q

(1,1)
k

(t), ..., π
k,q

(Lk,Sk)

k

(t)
)

where



π
k,q

(lk,sk)

k

is the probability that femtocell k plays action

q
(lk,sk)
k at time t, i.e.,

π
k,q

(lk,sk)

k

= Pr
(

pk(t) = q
(lk,sk)
k

)

. (5)

where (lk, sk) ∈ {1, ..., LK} × S ∪ {(0, 0)}.

In what follows, we give a de nition of the equilibrium

concept to be used in the sequel of this paper.

D. ǫ-Coarse Correlated Equilibrium (ǫ-CCE)

Since the action set A is discrete and  nite, the game G
admits at least one equilibrium in mixed strategies. In what

follows, we formally de ne the ǫ-coarse correlated equilibrium

(ǫ-CCE):

De nition 1 (ǫ-Coarse Correlated Equilibria): The proba-

bility distribution π ∈ ∆(A) is a ǫ-coarse correlated equilib-

rium if ∀k ∈ K and ∀a′k ∈ Ak,

∑

a−k∈A−k

φk(a
′
k,a−k)π−k,a−k

−

∑

a∈A

φk(ak,a−k)πa6ǫ, (6)

where π−k, a−k
=

∑

ak∈Ak

π(ak,a−k) is the marginal probabil-

ity distribution w.r.t. ak.

Note that, by letting ǫ = 0, the classical de nition of coarse

correlated equilibrium is obtained. An CCE is a probability

distribution over the set of action pro les of the game from

which no player has incentives to deviate. When a player ob-

serves the values of other players� actions, the classical regret

matching procedure exhibits convergence which is described

in the following theorem.

Theorem 1 (Hart and Mas-Colell [5]): If every player

plays according to the adaptive procedure of regret matching,

then the empirical distribution of play converges almost surely

as time goes in nity to the set of correlated equilibrium

distributions of the game G.

Remark 1: It is worth noting that correlated equilibria

which are a generalization of Nash equilibria are more rel-

evant within the context of decentralized and dense networks

(such as femtocells), as it induces players to coordinate their

actions, and hence reach better overall performance than the

Nash approach (with no coordination). The following section

describes how femtocells learn these equilibria in a totally

decentralized manner.

III. REGRET-BASED LEARNING PROCEDURE FOR

CROSS-TIER INTERFERENCE MITIGATION

Let us assume that a given FBS k ∈ K compares the

time-average of its utility observations φ̃k(n) obtained by

constantly changing its actions following a particular strategy

πk, with the case where it would have played the same action

in all previous stages of the game, while other players use

their current strategies π−k. Our behavioral assumption is

that all femtocells are interested in choosing the probability

distribution π
∗ ∈ △ (A) that minimizes the regret, where the

regret of player k for not having played action q
(ℓk,sk)
k from

n = 1 up to time t is calculated as follows:

r
k,q

(ℓ,s)
k

(t) =
1

t

t∑

n=1

φ
(

q
(ℓ,s)
k ,p−k(n)

)

− φ̃k(n), (7)

Note that if r
k,q

(lk,sk)

k

(t) > 0, player k ∈ K would have

obtained a higher average utility by playing action q
(ℓk,sk)
k

during all the previous stages. Thus, player k regrets for not

having done it. On the contrary, if r
k,q

(lk,sk)

k

(t) 6 0, player k

does not regret at all. Hence, given a vector of regrets up to

time t, where rk(t) =
(

r
k,q

(0,0)
k

(t), . . . , r
k,q

(Lk,Sk)

k

(t)
)

, player

k would be inclined towards taking actions with the highest

regret, that is:

π
k,q

(lk,sk)

k

(t) =
max

(

0, r
k,q

(lk,sk)

k

(t)
)

∑

(l,s)∈Ak

max
(

0, r
k,q

(l,s)
k

(t)
) . (8)

Remark 2: At each time t > 0, FBS k calculates its

regret vector rk(t) =
(

r
k,q

(0,0)
k

(t), . . . , r
k,q

(Lk,Sk)

k

(t)
)

. This

hinges on the fact that: (1) each FBS knows the explicit

expression of its own utility function φk(., .), and (2) each
FBS observes the actions of all the other players at each

time t, p−k(t). Clearly, these assumptions are unrealistic in

practice due to the distributed nature of femtocell networks,

and thus techniques for relaxing the information conditions

are paramount. The following section shows how to deal with

such a case. Surprisingly as will be shown, one can design

variants of the regret matching procedure which requires no

knowledge whatsoever of other players� actions, and yet yields

similar performance.

IV. LEARNING THE ǫ-COARSE CORRELATED

EQUILIBRIUM (ǫ-CCE)

As previously noted, the classical regret matching learning

approach is unsuitable for solving the cross-tier interference

mitigation problem due to the amount of required information

at every FBS k. Here, we describe our novel distributed

learning algorithm which signi cantly relaxes this assumption.

To do that, femtocells face a trade-off between minimizing

their regret and estimating their achieved time-average utility

by playing a particular action at each time t. Hence, a suitable

behavioral rule for each femtocell would be choosing the

actions which yield high regrets more likely than those yield-

ing lower regrets, but in any case always letting a non-zero

probability of playing any of the actions. Formally speaking,

the behavioral rule described above can be modeled by the

probability distribution βk(r
+
k (t)) satisfying:

βk(r
+
k (t)) ∈

arg max
πk∈△(Ak)

[ ∑

pk∈Ak

πk,pk
rk,pk

(t) + κkH(πk)
]

, (9)

where, we denote by r
+
k (t) the vector of positive regrets:

r
+
k (t) = max (0, rk(t)).



The temperature parameter κk > 0 represents the interest of
FBS k to choose other actions rather than those maximizing

the regret in order to improve the estimations of the vectors

of regrets (7). The unique solution to the right hand side of

the continuous and strictly concave optimization problem in

(9) is written as:

βk(r
+
k (t)) =(

β
k,q

(0,0)
k

(r+
k (t)), βk,q

(1,1)
k

(r+k (t)), ..., βk,q
(Lk,Ak)

k

(r+
k (t))

)

(10)

where for all k ∈ K and for all (lk, sk) ∈ Lk × S:

β
k,q

(lk,sk)

k

(r+
k (t)) =

exp
(

κkr
+

k,q
(lk,sk)

k

(t)
)

∑

pk∈Ak

exp
(

κkr
+
k,pk

(t)
) , (11)

where β
k,q

(lk,sk)

k

(r+
k (t)) > 0 holds with strict inequality

regardless of the regret vector rk(t). In what follows, the

distributed regret based learning algorithm for cross-tier in-

terference mitigation between macro and femtocell tier is

formally described.

A. Distributed No-Regret Learning Algorithm

The distributed learning procedure carried out independently

by every FBS k ∈ K is described below where ∀k ∈ K and

∀(ℓk, sk) ∈ {1, . . . , Lk} × S ∪ {(0, 0)}:







φ̂
k,q

(ℓk,sk)
k

(t) = φ̂
k,q

(ℓk,sk)
k

(t−1)+

νk(t)1{

pk(t)=q
(ℓk,sk)
k

}

(

φ̃k(t)−φ̂
k,q

(ℓk,sk)
k

(t−1)

)

,

r
k,q

(lk,sk)
k

(t) = r
k,q

(lk,sk)
k

(t−1)+λk(t)

(

φ̂
k,q

(ℓk,sk)
k

(t−1)−

r
k,q

(lk,sk)
k

(t−1)−φ̃k(t)

)

,

π
k,q

(lk,sk)
k

(t) = π
k,q

(lk,sk)
k

(t−1)+

αk(t)

(

β
k,q

(lk,sk)
k

(rk(t))−π
k,q

(lk,sk)
k

(t−1)

)

κk(t) = κk(t−1)+ǫk(t).Ψ(t)

(12)

where πk(0) and rk(0) are arbitrary initial actions and regrets,
Ψ is a non-decreasing function, νk, αk, λk and ǫk are learning

rates1 chosen such that:

1In this work, femtocells are assumed to have similar learning rates, i.e.,
∀k ∈ K, λk = λ, αk = α. Different learning rates across players is left for
future work.

lim
T→∞

T∑

t=0

α(t) + λ(t) = +∞ (13)

lim
T→∞

T∑

t=0

α(t)2 + λ(t)2 < +∞, (14)

lim
t→∞

λ(t)

ν(t)
= 0, (15)

lim
t→∞

α(t)

λ(t)
= 0 (16)

lim
t→∞

ǫ(t)

α(t)
= 0 (17)

Remark 3: We would like to stress that in contrast to

the classical regret matching approach where each player

k perfectly knows its own utility function φ(q
(l,s)
k ,p−k(t))

as well as other players� chosen strategies, our proposed

algorithm is totally decentralized and is composed of three

phases. First, using its own instantaneous observed utility,

each player is able to estimate its expected utility with each

of its actions. Second, the estimated utility function allows

players to compute their regrets of playing a given action.

Third, players update the probability distribution of their

transmission strategies. Moreover, conditions (13)-(17) are

necessary to guarantee that the regret processes rk(t) always
see the process φ̂k(t) as fast processes always calibrated to

the current value of the regret, and likewise, for the strategy

distribution processes πk(t) which sees the regret processes

as fast processes always calibrated to the current values, as

per (15). Finally, it is important to note that the temperature

parameter κk is time-dependent in order to account for the fact

in the beginning of the learning process femtocells may decide

to explore all their actions (small κ) to favorite the estimation

of the expected utility and corresponding regrets. Then as κk

increases, the behavioral rule approaches the classical regret

learning. That is, the ǫ (of the ǫ-CCE) is made smaller as time

increases which ensures the asymptotic convergence to CCE.

A formal proof of the convergence of this algorithm relies on

stochastic approximation theory using the notions of multiple

time scale and is not included here for space limitation.

V. SIMULATION RESULTS

Let us consider one macrocell with radius Rm = 500 under-
laid withK femtocells each of radius Rf = 20 m, transmitting
over an arbitrary number of carriers S, with L transmit power

levels. The minimum SINR of the macrocell UEs is given by

Γ0 =
(

Γ
(1)
0 , . . . ,Γ

(S)
0

)

where Γ
(1)
0 = · · · = Γ

(N)
0 = 3 dB is

assumed. The transmission power of the macro BS is set to 43
dBm, whereas the FBS adjusts its power through the various

learning schemes to a value of maximum 10 dBm. The channel
is represented as a combination of path-loss fading and log-

normal shadowing with standard deviation of 8 and 4 dBm for

outdoor and indoor communications, as per [8].

In Figure 2, we plot the average femtocell sum-rate for

K = 2 FBSs underlaying one macrocell over s = 2 sub-
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Fig. 2. Convergence of the proposed learning algorithm as well as the
classical regret matching in terms of Ergodic transmission rate, for K = 2

femtocells, S = 2 channels, and L = 2 power levels.

carriers, highlighting the convergence behavior of our pro-

posed algorithm as well as the benchmark case (classical regret

matching). We observe that surprisingly the proposed learning

approach yields the same performance as the RM in the long-

term. This is quite signi cant given the fact that unlike the

RM approach, our algorithm is totally decentralized and does

not require any information about other players� strategies.

Figures 3-4 plot the convergence of the probability distri-

bution over the set of actions taken by both FBSs. As time

goes by FBS k = 1 increases the probability to transmit with

the maximum power level on frequency band s = 1, while
the probability of transmitting on the other bands decreases.

On the other hand, the probability that FBS k = 2 transmits

with maximum transmit power level on carrier s = 1 decreases
with time, whereas the probabilities of transmitting over carrier

s = 2 with maximum transmit level increases. It can also be

seen that although femtocells do not communicate with each

other, they implicitly coordinate their transmissions by using

different frequency bands with very high probability.

VI. CONCLUSIONS

In this paper, the problem of cross-tier interference mitiga-

tion was studied from a game theoretic learning perspective.

Owing to their implicit coordination, a regret-based learning

algorithm was proposed where femtocells jointly estimate their

own utility function and learn their transmission strategies in

a purely decentralized manner, relying only on local informa-

tion. The considered behavioral rule was shown to converge

to an ǫ-CCE where femtocells optimize their exploration

and exploitation tradeoff. Remarkably, it was shown that the

proposed algorithm achieves the same performance of the

classical regret matching approach with much less overhead.
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