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Abstract—A technique to compute the Cumulative Distribu-
tion Function (CDF) of the Signal-to-Interference-plus-Noise-
Ratio (SINR) for a wireless link with a multi-antenna, Linear,
Minimum-Mean-Square-Error (MMSE) receiver in the presence
of interferers distributed according to a non-homogenous Poisson
point process on the plane, and independent Rayleigh fading
between antennas is presented. This technique is used to compute
the CDF of the SINR for several different models of intensity
functions, in particular, power-law intensity functions, circular-
symmetric Gaussian intensity functions and intensity functions
described by a polynomial in a bounded domain. Additionallyit
is shown that if the number of receiver antennas is scaled linearly
with the intensity function, the SINR converges in probability to
a limit determined by the “shape” of the underlying intensity
function. This work generalizes known results for homogenous
Poisson networks to non-homogenous Poisson networks.

Index Terms—MMSE, Non-homogeneous, Poisson, MIMO

I. I NTRODUCTION

Antenna arrays can improve the performance of wireless
networks by increasing robustness through diversity, and data
rates through spatial multiplexing, beamforming and interfer-
ence mitigation. The performance of multi-antenna systemsin
networks depends on environmental conditions and inter-node
distances which effect signal and interference strengths and
thus data rates. Hence the performance of multi-antenna sys-
tems in spatially distributed networks have received significant
attention in the literature.

Multi-antenna receivers in networks with uniformly random
spatial node distribution have been studied in several works.
Govindasamy et. al. [1] used an asymptotic analysis to ap-
proximate the spectral efficiency with MMSE receivers, and
Jindal et. al. [2] considered a partial zero-forcing receiver
and found that it is possible to linearly increase the area
spectral efficiency by simultaneously increasing the number of
antennas and density of simultaneous transmissions. Ali et. al.
[3] and Louie et. al. [4] found the exact CDF of the SINR with
MMSE receivers, with the former considering single-stream
and the latter considering multi-stream transmissions.

In many systems however, spatial node distributions may
not be homogenous, such as in networks with hot-spots. Inter-
ference modeling in non-homogenous single antenna systems
have been studied in several works such as [5], [6], [7] and
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Fig. 1. Randomly distributed transmitters with intensity functionΛ(r, θ) =
0.1r−1, with the representative receiver at the origin of the network.

references therein. Multi-antenna systems in non-homogenous
networks have been studied in relatively fewer works such
as [8] who considered interference-alignment in clustered
wireless networks, [9] who considered multi-antenna systems
in networks with Carrier-Sensing-Multiple-Access (CSMA)
which induces correlation between actively transmitting nodes
and [10] who used an asymptotic analysis to analyze the
spectral efficiency of non-homogenous networks with linear
MMSE receivers.

Here, we develop a framework to characterize the SINR of
a representative link with multiple antennas at the receiver in
the presence of single-antenna interferers distributed according
to a non-homogenous Poisson Point Process on the plane,
and independent Rayleigh fading between all antennas. The
non-homogenous node distribution is modeled by an intensity
functionΛ(r, θ) which controls the likelihood of nodes occur-
ing in a small region around the point(r, θ). SinceΛ(r, θ)
is deterministic (which can arise if the non-homogenity is
predictable), this model differs works such as [6] and [8] where
cluster locations are random.

This framework is used to find a closed-form expression for
the CDF of the SINR of a link in the center of a cluster with
a power-law distribution of node intensities (analyzed asymp-
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totically in [10]) as shown in the example in Figure 1 where
Λ(r, θ) = 0.1r−1. Expressions involving generalized functions
are also provided for networks with circularly-symmetric
Gaussian intensities and intensity functions representedby
a polynomial within a bounded region. The latter model is
interesting as arbitrary continuous intensity functions can be
approximated within bounded intervals with arbitrary accuracy
using polynomials. By fitting polynomials to experimental
data, this result can also be used to characterize systems for
which node distributions are not well-modeled mathematically
but for which experimental data on node locations exist.
Additionally, we show that if the number of receiver antennas
L is scaled linearly withΛ(r, θ), the SINR converges in
probability to a positive deterministic value which is a function
of Λ(r, θ). This latter result indicates that to the extent that
our assumptions (in particular independent Rayleigh fading)
hold, increasing the number of antennas per receiver can help
scale such networks. The results here are derived combining
techniques developed for homogenous networks in [3] and
non-homogenous network models from [10].

II. SYSTEM MODEL

In a circular network of radiusR, a receiver centered at
the origin is surrounded byn transmitting nodes that are
distributed independently and randomly in the circle according
to the Probability Density Function (PDF),fr,θ(r, θ), which
is related to the intensity functionΛ(r, θ) as follows:

fr,θ(r, θ) =
r

µ
Λ(r, θ)1{0≤r<R} (1)

where1{0≤r<R} is the indicator function. The number of the
transmittersn is a Poisson random variable with meanµ,
which can be expressed as:

µ =

∫ R

0

∫ 2π

0

rΛ(r, θ)dθdr (2)

We assume that these transmitters, also referred to as interfer-
ers, are communicating with other receivers at locations that
do not affect our results. In addition to the interferers, a target
transmitter is located at a fixed distancerT away from the
receiver at the origin.

Loss in signal power due to propagation is modeled by the
inverse power-law model, so that the average powerp from
a node transmitting with unit power, received at a distancer
is p = r−α, with the path-loss exponentα > 2. The receiver
at the origin hasL antennas and each transmitter has one
antenna. We use the subscriptT to denote the target transmitter
whereas the interferers are labeled1, 2, · · · , n. Using this
notation, the transmitted symbol of the target transmitteris
xT and the transmitted symbol of thei-th interferer isxi. The
L × 1 vectorgT represents the channel coefficients between
the target transmitter and theL antennas of the receiver at the
origin. Similarly, gi and ri represent the channel coefficients
and the distance between thei-th interferer and the receiver at
the origin. TheL× 1 received signal vector can be described

by the following equation:

y = r
−α/2
T gTxT +

n
∑

i=1

r
−α/2
i gixi +w (3)

where the entries ofgT andgi are independent, identically-
distributed (i.i.d.), zero-mean, unit-variance complex Gaussian
random variables.w is a noise vector of zero-mean, i.i.d. com-
plex Gaussian entries with varianceσ2 per complex dimension.

The receiver uses a minimum mean square error (MMSE)
estimator to estimatexT from y. The MMSE estimator is
known to maximize the SINR which is given by the following
well-known formula

SINR= r−α
T g

†
T

(

GPG† + σ2IL
)−1

gT (4)

where thei-th column of theL × n matrix G represents the
channel vectorgi of the i-th interferer.IL is anL×L identity
matrix, andP = diag

[

r−α
1 , r−α

2 , · · · r−α
n

]

is a diagonal matrix
with entries corresponding to the received power from the
interferers. Furthermore, we define the distance-normalized
SINR as γ = SINR · rαT to simplify notation. In deriving
the main results we takeR → ∞ to model the interferers
as resulting from a non-homogeneous Poisson point process
with the intensity functionΛ(r, θ).

III. M AIN RESULTS

A. Outage Probability with General Intensity Function

In communication systems, it is desirable to know the
probability that the SINR is below a thresholdτ , which is
often referred to as the outage probability. For a givenrT ,
this probability is simply Pr{SINR ≤ τ} = Fγ(τr

α
T ), where

Fγ(γ) is the CDF ofγ given by the following theorem.
Theorem 1:

Fγ(γ) = 1−
L−1
∑

k=0

(ψ(γ) + σ2γ)k

k!
exp(−ψ(γ)− σ2γ)

= 1− Γ(L,ψ(γ) + σ2γ)

Γ(L)
(5)

where

ψ(γ) =

∫ ∞

0

∫ 2π

0

Λ(r, θ)r
r−αγ

1 + r−αγ
dθdr, (6)

and,Γ(.) and Γ(., .) are the gamma function and the upper
incomplete gamma function respectively.
The corresponding PDF is:

fγ(γ) =
(ψ(γ) + σ2γ)L−1 exp(−ψ(γ)− σ2γ)(σ2 + ψ′(γ))

Γ(L)
,

whereψ′(γ) is the first derivative ofψ(γ) with respect toγ.
Proof: Given in Appendix A.

As a result, increasing the number of antennas at the receiver
from L to L + 1 reduces the outage probability by(ψ(γ) +
σ2γ)L exp(−ψ(γ)− σ2γ)/L!.



B. Scaling Non-homogeneous Networks by Increasing the
Number of Antennas

In this section, we show that the SINR on the representative
link (link between the receiver at the origin and its target
transmitter) converges to a constant as the density of nodes
increases, if the number of antennas at the receiver is linearly
increased with interferer density. This is under the assumption
that the channel model holds (in particular the independent
Rayleigh fading assumption) and that accurate measurements
of channel state information are available at the receiver.A
similar problem was addressed in the context of homogeneous
networks in [1] and [2].

A key result that we use to prove this is the following lemma
which may already be known but we were not able to find it
in the literature.

Lemma 1: Let the upper regularized gamma function be
denoted byQ(L, x) = Γ(L,x)

Γ(L) , whereΓ(L, x) is the upper
incomplete gamma function. LetL be a positve integer and
q > 0, then

lim
L→∞

Q(L, qL) =

{

0, if q ≥ 1

1, if q < 1.
(7)

Proof: Given in Appendix B.
Suppose that the intensity functionΛ(r, θ) = βΛc(r, θ),

whereΛc(r, θ) is a nominal intensity function which describes
the ”shape” of the true intensity function, andβ is the nominal
interferer density which scales the nominal intensity function.
We also define:

ψc(γ) =

∫ ∞

0

∫ 2π

0

Λc(r, θ)r
r−αγ

1 + r−αγ
dθdr. (8)

Suppose thatβ = qL , i.e., the number of antennas is scaled
linearly with the nominal density, we haveψ(γ) = βψc(γ) =
qLψc(γ). In addition, assuming that the noise is negligible,
the CDF in (5) from Theorem 1 can be expressed as:

Fγ(γ) = 1− Γ(L, qLψc(γ))

Γ(L)
(9)

By Lemma 1, we have:

lim
L→∞

Fγ(γ) = 1− Γ(L, qLψc(γ))

Γ(L)
=







0, if γ < ψ−1
c

(

1
q

)

1, if γ ≥ ψ−1
c

(

1
q

)

.

which implies that the SINR converges in distribution to a
constantψ−1

c

(

1
q

)

r−α
T as the number of antennas goes to

infinity. Additionally, since convergence in distributionto a
constant implies convergence in probability (e.g. see [11]), γ
converges in probability as well. Therefore, if we increasethe
number of antennas linearly with the nominal interferer density
in a given network, the SINR will approach a constant non-
zero value. This fact implies that such networks can be scaled
by linearly increasing the number of antennas per receiver with
user density without degrading the SINR to zero, provided that
the assumptions are satisfied.

C. Outage Probability with Polynomial Intensity Function

Consider an intensity function of the following form:

ΛP
m(r, θ) =

m
∑

k=0

akr
k1{0≤r≤R0} + ρ0r

ǫ1{R0≤r}, (10)

wherea0, a1, a2, ...am are arbitrary polynomial coefficients.
Thus, the intensity function in the range0 < r < R0 is
described by a polynomial. The second term in the equation
results in a power-law decay of the interferer density for
r ≥ R0. We additionally assume that−2 < ǫ < −1 and
ρ0 > 0. Then, the corresponding CDF ofγ is:

FP
m(γ) = 1−

L−1
∑

i=0

(ψP
m(γ) + σ2γ)i

i!
exp(−ψP

m(γ)−σ2γ) (11)

where

ψP
m(γ) =

2π2ρ0γ
2+ǫ

α

α
csc

(

(2 + ǫ)π

α

)

+

m
∑

k=0

2πakR
2+k
0

2 + k
2F1

(

1,
2 + k

α
;
2 + α+ k

α
− Rα

0

γ

)

, (12)

where2F1(·, ·; ·; ·) is Gauss’s hypergeometric function.
Since any continuous function can be uniformly approxi-

mated by a polynomial function with arbitrary accuracy in a
bounded interval, according to the Stone-Weierstrass Theorem
[12], we use the result above to derive the following theorem.

Theorem 2: For any CDFF (γ) corresponding to the inten-
sity function

Λ(r, θ) = h(r)1{0<r<R0} + ρ0r
ǫ1{R0≤r} (13)

where h(r) is any continuous function ofr, there exist
coefficientsa0, a1, a2, ...am such that

lim
m→∞

FP
m(γ) = F (γ). (14)

Proof: Given in Appendix C.
Theorem 2 allows us to approximate with arbitrary accuracy,

the CDF of the SINR for any intensity function that is
continuous inr within a finite domain using a polynomial
expression. In particular, since efficient algorithms exist for
fitting polynomials to real data, this technique could be useful
to analyze networks whose geometrical characteristics are
not easily captured by mathematical models, but for which
experimental data on node positions are available.

D. Outage Probability with Piecewise Power-law Function

Consider an intensity function of the following form:

Λ(r, θ) =



















ρ1r
ǫ1 for 0 < r < R1

ρ2r
ǫ2 for R1 < r < R2

...

ρmr
ǫm for Rm−1 < r < Rm

(15)

where ǫk > −2 for eachk for which Rk = 0. With this
intensity function, in the rangeRk−1 < r ≤ Rk, the intensity
function of the interferers follows a power-law distribution



with nominal densityρk, and exponentǫk. The CDF ofγ in
this case is given by (5) with

ψ(γ) =
2πρ1R

2+ǫ1
1

2 + ǫ1
2F1

(

1,
2 + ǫ1
α

;
2 + α+ ǫ1

α
;−R

α
1

γ

)

+
m−1
∑

k=2

2πρkγ

2− α+ ǫk

[

R2−α+ǫk
k ×

2F1

(

1,
−2 + α− ǫk

α
;
−2 + 2α− ǫk

α
;−γR−α

k

)

−R2−α+ǫk
k−1

× 2F1

(

1,
−2 + α− ǫk

α
;
−2 + 2α− ǫk

α
;−γR−α

k−1

)]

− 2πρmγ

2− α+ ǫm
R2−α+ǫm

m−1 ×

2F1

(

1,
−2 + α− ǫm

α
;
−2 + 2α− ǫm

α
;−γR−α

m−1

)

. (16)

For the simplest case, consider the intensity function:

Λ(r, θ) = ρrǫ, (17)

where−2 < ǫ < α − 2, to prevent interference from going
to infinity asR → ∞. This intensity function can be used to
model a network with a dense cluster of interferers, centered
on the representative receiver and is useful to model networks
with hot-spots. In this case, evaluatingψ(γ) over a finiteR,
applying one of Euler’s hypergeometric transforms [13], and
takingR→ ∞ yields,

ψ(γ) =
2π2ρ

α
γ(ǫ+2)/α csc

(

π
ǫ + 2

α

)

. (18)

Substituting (18) into (5), we have the CDF ofγ as

Fγ(γ) = 1−
L−1
∑

i=0

2π2ρ

i!α
csc

(

π
ǫ + 2

α

)

γ(ǫ+2)/α + σ2γ)i×

exp

(

−2π2ρ

α
csc

(

π
ǫ+ 2

α

)

γ(ǫ+2)/α − σ2γ

)

(19)

E. Outage Probability with Gaussian Intensity Function

Suppose that the receiver is located in the center of a
cluster who intensity follows a circularly-symmetric Gaussian
function.Λ(r, θ) can be written in the form of the PDF of a
Rayleigh variable multiplied with a constantρ expressed as:

Λ(r, θ) = ρ
r

v2
e−r2/2v2

(20)

where v controls the width of the intensity function. For
specific integer values ofα, ψ(γ) can be evaluated in terms of
generalized functions such as the hypergeomtric and Meijer-G
functions. For instance, whenα = 3,

ψ(γ) =
γρ

2
√
3πv2

G5 2
2 5

(

γ2

216v6

∣

∣

∣

∣

0, 12
0, 0, 13 ,

1
2 ,

2
3

)

(21)

whereG is the Meijer G-function. These expressions involve
special functions which can be evaluated efficiently in most
mathematical software packages.

IV. N UMERICAL RESULTS

A. Monte-Carlo Simulations

In this section, we summarize numerical results for the cases
analyzed in the previous sections. Monte-Carlo simulations
were run for various intensity functions to validate the general
technique in Theorem 1.

Figure 2 shows the empirical probability density function
(PDF) from 100,000 simulations of a wireless network with a
circularly-symmetric Gaussian intensity function, alongwith a
graph of the PDF from Theorem 1. The additional parameters
of the simulations are given in the caption. From the graph, it
is clear that the simulations match the theoretical predictions.
Additionally note that even with a large number of trials, the
simulated PDF is not smooth which suggests that a purely
simulation based approach to estimate the PDF of the SINR
in this case is computationally prohibitive. Hence, the CDF
and PDF given in terms of generalized functions through (21)
are useful as they can be evaluated efficiently.
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Fig. 2. Comparison between the empirical and theoretical PDF of the SINR
for the Gausian intensity function with mean number of interferersµ = 1000,
v = 500 , rT = 20, number of receiver antennasL = 10, α = 3, σ2 =
10−14.

Figure 3 shows the simulated and theoretical PDF for the
power-law intensity functionΛ(r, θ) = 0.023√

r
. The additional

parameters of the simulation are shown in the figure caption.
From the graph, it is clear that the theoretical prediction of
Theorem 1 is accurate.

B. Uniform Versus Clustered Networks

We can use the power law intensity function of (17) with
different values of the exponentǫ to compare the SINRs be-
tween networks with uniform and clustered node distributions.

Note that if we keep the value ofρ fixed, different values of
ǫ result in radically different numbers of nodes in the vicinity
of the receiver at the origin. To make a fairer comparison
between different values ofǫ, we adjustρ such that the mean
number of nodes that fall in a radiusRc disk centered at
the origin of the infinite network is fixed for the values of
ǫ under consideration. Figure 4 shows the probability that
the SINR is less than or equal to 10 for different values of
ǫ. For this plot, we have assumed thatµ = 3142 nodes on
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Fig. 3. Comparison between the empirical and theoretical probability density
function of SINR with the power-law intensity functionΛ(r, θ) = 0.023

√
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The parameters used arerT = 10, L = 10, α = 4, σ2 = 10−12 , and
100, 000 Monte-Carlo trials.

average in a circle of radiusRc = 1000, with ǫ varying from
−1 to 0, and values ofρ selected so thatµ = 3142. The
remaining parameters are specified in the caption. Note that
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Fig. 4. Outage probability vs.ǫ for power-law intensity functions with
L=1, 2, 4, 8 and 12 receiver antennas. Representative link lengthrT = 5,
mean number of interferers in a radius 1000 circle is fixed atµ = 3142,
α = 4, andσ2 = 10−12 .

the outage probability increases significantly with clustering.
For instance, withL = 4, the outage probability is just below
10−3 for ǫ = 0, and for ǫ = −0.5, the outage probability is
greater than 0.1. Additionally, observe that it is possibleto
significantly reduce the outage probability by increasing the
number of antennas at the receiver sinceL = 12 antennas at
the receiver withǫ ≈ −0.5 has the same outage probability as
L = 4 in a homogenous network.

C. Scaling node density by increasing number of antennas

Section III-B shows that if the number of antennas is scaled
linearly with the intensity function, the SINR approaches a
deterministic, non-zero value. To verify this result, we plotted
the CDF of the SINR for the Gaussian intensity function with
Λ(r, θ) = βΛc(r, θ) = β r

v2 e
−r2/2v2

. L = 1, 5, 10 and 20

are considered withβ increasing linearly withL in Figure
5. The remaining parameters used for the plot are given in
the caption. Figure 5 shows that as the number of interferers
increases from1 to 20, the CDF of SINR approaches a step
function, i.e the SINR approaches a constant non-zero valuein
distribution implying that it converges in probability as well.
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Fig. 5. Cumulative distribution function of SINR (dB) with number of
antennas increasing linearly with nominal interferer density, with v = 500 ,
rT = 20,α = 3 andσ2 = 10−14 .

V. SUMMARY AND CONCLUSIONS

A technique to compute the CDF of the SINR on a link with
multiple receiver antenans in non-homogenous Poisson field
of interferers is presented and used to find expressions for the
CDF of the SINR for several representative node distributions
including power-law intensity functions for which a closed
form expression for the CDF is found. This result can be used
to characterize the SINR in the center of a cluster and indicates
that while the SINR is significantly smaller in the center of a
dense cluster than in a homogenous network, the performance
loss can be mitigated by using a larger number of antennas
at the cost of additional complexity. Additionally, we showed
that if the number of receiver antennas is scaled linearly with
the node intensity function, the SINR converges in probability
to a positive constant, indicating that it is possible to scale
such networks by increasing the number of antennas provided
that the system assumptions hold. These results are useful to
designers of wireless systems where the spatial distribution of
nodes are predictable, a situation that often arises in practice.

APPENDIX

A. Proof of Theorem 1

From [3], the CDF ofγ can be expressed as

Fγ(γ) = 1− exp(−σ2γ)

L−1
∑

i=0

i
∑

k=0

(σ2γ)i−k

k!(i − k)!
·

(

µEp

[

pγ

1 + pγ

])k

exp

(

−µEp

[

pγ

1 + pγ

])

, (22)



where Ex represents the expectation with respect to the random
variable x. Recall thatp = r−α and the locations of the
transmitting nodes are characterized by the PDFfr,θ(r, θ).
Consequently, for our network model we have the following
expressions for the expectation in the previous equation:

Ep

[

pγ

1 + pγ

]

= lim
R→∞

∫ R

0

∫ 2π

0

fr,θ(r, θ)
r−αγ

1 + r−αγ
dθdr

(23)

From (1) and (6), we have

ψ(γ) = µEp

[

pγ

1 + pγ

]

(24)

Substituting into (22) yields

Fγ(γ) = 1− exp(−σ2γ)
L−1
∑

i=0

i
∑

k=0

(σ2γ)i−k

k!(i− k)!
ψk(γ) exp(ψ(γ))

= 1−
L−1
∑

i=0

(ψ(γ) + σ2γ)i

i!
exp(−ψ(γ)− σ2γ) (25)

(5) follows from equation (6.5.13) in [13], and the PDF is
found by taking the derivative of the CDF and simplifying.

B. Proof of Lemma 1

Let X0, X1, · · · , XL−1 be a set of i.i.d. Poisson random
variables with meanq. Define their sum and average respec-
tively by Y =

∑L−1
k=0 Xk and Ȳ = Y

L . By the weak law of
large numbers̄Y → q asL→ ∞ in probability, which implies
that Ȳ → q in distribution, i.e.

lim
L→∞

Pr
(

Ȳ ≤ x
)

=

{

0, if x ≤ q

1, if x > q.
(26)

Since the sum of independent Poisson random variables is
another Poisson random variable,Y is a Poisson random
variable with meanqL. Thus,

Q(L, qL) = Pr (Y ≤ L) = Pr
(

Ȳ ≤ 1
)

. (27)

whereQ(L, qL) is the CDF of a Poisson random variable with
meanqL. Taking the limit asL → ∞ and substituting (26)
yields (7) completing the proof.

C. Proof of Theorem 2

According to the Stone-Weierstrass Theorem [12], for every
δ > 0 there existsΛP

m(r, θ) such that for allr in [0, R], ∃ an
integerN such thatm ≥ N implies:

∣

∣ΛP
m(r, θ)− Λ(r, θ)

∣

∣ < δ (28)

Let δ1 be the product ofδ and the maximum value ofr r−αγ
1+r−αγ ,

max

[

r
r−αγ

1 + r−αγ

]

=

(

γ

α− 1

)1/α
(α− 1)

α
> 0 (29)

Then, for anyδ1 > 0, ∃ an integerN such thatm ≥ N implies

r
r−αγ

1 + r−αγ

∣

∣ΛP
m(r, θ) − Λ(r, θ)

∣

∣ ≤

max

[

r
r−αγ

1 + r−αγ

]

∣

∣ΛP
m(r, θ)− Λ(r, θ)

∣

∣ < δ1 (30)

which shows that r−αγ
1+r−αγΛ

P
n (r, θ) is uniformly convergent to

r−αγ
1+r−αγΛ(r, θ) on [0, R], and [0,∞] asΛP

m(r, θ) andΛ(r, θ)
are equal in(R,∞). Consequently, we can move the limit
outside the integrals in the following expression resulting in

ψ(γ) =

∫ ∞

0

∫ 2π

0

lim
m→∞

ΛP
m(r, θ)r

r−αγ

1 + r−αγ
dθdr

= lim
m→∞

ψP
m(γ). (31)

Moreover, we express (11) asFP
m(γ) = g(ψP

m(γ)), and
F (γ) = g(ψ(γ)). Sinceg(ψP

m(γ)) is a continuous function
of ψP

m(γ), asm→ ∞, ψP
m(γ) → ψ(γ), which implies

lim
m→∞

FP
m(γ) = F (γ)

= 1−
L−1
∑

i=0

(ψ(γ) + σ2γ)i

i!
exp(−ψ(γ)− σ2γ) (32)

which completes the proof.
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