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Abstract—A technique to compute the Cumulative Distribu- . e
tion Function (CDF) of the Signal-to-Interference-plus-Noise- .. * ¢
Ratio (SINR) for a wireless link with a multi-antenna, Linear, : . K
Minimum-Mean-Square-Error (MMSE) receiver in the presence AT
of interferers distributed according to a non-homogenous Bisson <t e
point process on the plane, and independent Rayleigh fading PR R
between antennas is presented. This technique is used to conte L PELEERNr
the CDF of the SINR for several different models of intensity e '. R '..'-‘., e
functions, in particular, power-law intensity functions, circular- SRR Y. . S
. . . . . . . . s T’ ." e o 3
symmetric Gaussian intensity functions and intensity funtions < o AL
described by a polynomial in a bounded domain. Additionallyit C .. R )
is shown that if the number of receiver antennas is scaled learly T .:.: ..

with the intensity function, the SINR converges in probabilty to

a limit determined by the “shape” of the underlying intensity

function. This work generalizes known results for homogenos

Poisson networks to non-homogenous Poisson networks. R
Index Terms—MMSE, Non-homogeneous, Poisson, MIMO "
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. INTRODUCTION
1. Randomly distributed transmitters with intensiginétion A(r, ) =

. . Fig.
Antenna arrays can improve the performance of ere|e§§r*1, with the representative receiver at the origin of the netwo

networks by increasing robustness through diversity, aatd d
rates through spatial multiplexing, beamforming and ieter

ence mitigation. The performance of multi-antenna Systmsyeferences therein. Multi-antenna systems in non-homagen
networks depends on environmental conditions and intéengyetworks have been studied in relatively fewer works such
distances which effect signal and interference strengtfts &5 [g] who considered interference-alignment in clustered
thus data rates. Hence the performance of multi-antenna Syfeless networks[[9] who considered multi-antenna syste
tems in spatlally _dlstnbuted networks have received $igamt i, npetworks with Carrier-Sensing-Multiple-Access (CSMA)
attention in the literature. - o which induces correlation between actively transmittioges
Multi-antenna receivers in networks with uniformly randomyng [10] who used an asymptotic analysis to analyze the
spatial node distribution have been studied in several WO”Spectral efficiency of non-homogenous networks with linear
Govindasamy et. al! [1] used an asymptotic analysis t0 agmSE receivers.
proximate the spectral efficiency with MMSE receivers, and o6 e develop a framework to characterize the SINR of

Jindal et. al. [[2] considered a partial zero-forcing reeeiv 5 representative link with multiple antennas at the recdive
and found that it is possible to linearly increase the argge nresence of single-antenna interferers distributedraing
spectral efficiency py 5|mu_ltaneouslymcreasm_g t_he numobe 4 o non-homogenous Poisson Point Process on the plane,
antennas apd density of simultaneous transm|SS|ons.ﬁdi.e_t and independent Rayleigh fading between all antennas. The
[3] and Louie et. al.[[4] found the exact CDF of the SINR with,_homogenous node distribution is modeled by an intensit
MMSE receivers, with the former considering S'f‘gle'StreamnctionA(r, 0) which controls the likelihood of nodes occur-
and the latter considering multi-stream transmissions. ing in a small region around the poifit, #). Since A(r, )
In-many systems however, spatial node distributions may yeterministic (which can arise if the non-homogenity is

not be homogenous, such as in networks with hot-spots- Intgfegictable), this model differs works such @s [6] &rid [8pweh
ference modeling in non-homogenous single antenna systefi&ter |ocations are random.

have been studied in several works suchlas [3], [6], [7] andThis framework is used to find a closed-form expression for

t Corresponding author. This research was supported in panetiNational the CDF of th(_% S_lNR of a link in _the C?nter of a cluster with
Science Foundation under Grant CCF-1117218. a power-law distribution of node intensities (analyzednagy
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totically in [10]) as shown in the example in Figurk 1 wheréy the following equation:

A(r,0) = 0.1r~1. Expressions involving generalized functions n

are aI;o providgt_:i for nepNorkg with c?rcularly-symmetric yzr;"‘/QngT +Zr;a/2gi$i +w 3)

Gaussian intensities and intensity functions represebted =

a polynomial within a bounded region. The latter model is ] ) ) ]

interesting as arbitrary continuous intensity functioas de Where the entries ogr andg; are independent, identically-

approximated within bounded intervals with arbitrary aegy distributed (i.i.d.), zero-mean, unit-variance compleauSsian

using polynomials. By fitting polynomials to experimentaTa”dom var_labIeSzv_ls anoise yector of zero-mean, ii.d. com-

data, this result can also be used to characterize systemsPi§* Gaussian entries with varianeé per complex dimension.

which node distributions are not well-modeled mathemégica The receiver uses a minimum mean square error (MMSE)

but for which experimental data on node locations exisgstimator to estimate:r from y. The MMSE estimator is

Additionally, we show that if the number of receiver antesndnNown to maximize the SINR which is given by the following

L is scaled linearly withA(r,6), the SINR converges in Well-known formula

probability to a positive deterministic value which is a ¢tion a -1

of A(r,#). This latter result indicates that to the extent that SINR=r g} (GPG' +°1) " gr (4)

our assumptions (in particular independent Rayleigh @)dinyhere thei-th column of theL x n matrix G represents the

hold, increasing the number of antennas per receiver can hghannel vectog; of thei-th interfererl; is anL x L identity

scale_such networks. The results here are denved‘combmmgtrix, andP = diag [Tl—a7r2—o¢7 N .,r,;a] is a diagonal matrix

techniques developed for homogenous networks_In [3] aggh entries corresponding to the received power from the

non-homogenous network models from[10]. interferers. Furthermore, we define the distance-normeliz

SINR asy = SINR- r$ to simplify notation. In deriving

the main results we tak& — oo to model the interferers
In a circular network of radiusk, a receiver centered atas resulting from a non-homogeneous Poisson point process

the origin is surrounded by. transmitting nodes that areWith the intensity functiom\(r, 6).

distributed independently and randomly in the circle adoay

Il. SYSTEM MODEL

to the Probability Density Function (PDF¥, ¢(r,6), which . MAIN RESULTS
is related to the intensity functiofi(r, #) as follows: A. Outage Probability with General Intensity Function
fro(r,0) = ZA(T“,9)1{0<T<R} (1) In communication systems, it is desirable to know the

probability that the SINR is below a threshotd which is

wherel o<, sy is the indicator function. The number of theften referred to as the outage probability. FOL a given
transmittersn is a Poisson random variable with meap thiS probability is simply PESINR < 7} = F,(777), where

which can be expressed as: F,(v) is the CDF ofy given by the following theorem.
Theorem 1:
R 27
] :/ / rA(r, 0)d0dr 2 L1 + o2~)k
o Jo Fy(v) = 1=) w exp(—1(7) — 07)

We assume that these transmitters, also referred to afeinter k=0 9
ers, are communicating with other receivers at locatioms$ th - 1_ L'(L,y(7) + o)
do not affect our results. In addition to the interferersaét I'(L)
transmitter is located at a fixed distancg away from the
receiver at the origin. )

. . . . o0 s —Q
_ Loss in signal power due to propagation is modeled by the b(v) = / / A(r,0)r r ddr, (6)
inverse power-law model, so that the average powémom o Jo 14+r—ay
a node Erj\nsmmmg with unit power, received at a dISt.mceand,F(.) andT(.,.) are the gamma function and the upper
is p = r—¢, with the path-loss exponent > 2. The receiver . . .

L . incomplete gamma function respectively.

at the origin hasL antennas and each transmitter has onﬁ1 dina PDE is:
antenna. We use the subscfipto denote the target transmitter € corresponding IS:
Whergas the mterferers are labeled2,--- ,n. Using tf}|s (W) + 2y exp(—(y) — 029) (0% + ¢/ (7))
notation, the transmitted symbol of the target transmiiger fr() = (L) )
x7 and the transmitted symbol of theh interferer isz;. The
L x 1 vectorgr represents the channel coefficients betweavherey’ () is the first derivative ofi)(+) with respect toy.
the target transmitter and tleantennas of the receiver at theProof: Given in Appendix{A.
origin. Similarly, g; andr; represent the channel coefficients As a result, increasing the number of antennas at the raceive
and the distance between th¢h interferer and the receiver atfrom L to L + 1 reduces the outage probability By (v) +
the origin. TheL x 1 received signal vector can be described?y) exp(—y(y) — o2v)/L!.

®)

where




B. Scaling Non-homogeneous Networks by Increasing the C. Outage Probability with Polynomial Intensity Function

Number of Antennas Consider an intensity function of the following form:

In this section, we show that the SINR on the representative m
link (link between the receiver at the origin and its target AP (r,0) = Zakal{OSTSRU} + por L ry<rys (10)
transmitter) converges to a constant as the density of nodes k=0
increases, if the number of antennas at the receiver istineayhere g, ay, as, ..a., are arbitrary polynomial coefficients.
increased with interferer density. This is under the assiamp Ty, the intensity function in the range < r < Ry is

that the channel model holds (in particular the independefiiscribed by a polynomial. The second term in the equation

Rayleigh fading assumption) and that accurate measuremegkyits in a power-law decay of the interferer density for
of channel state information are available at the receier.,. >~ p e additionally assume that2 < ¢ < —1 and
similar problem was addressed in the context of homogenegyis.. (. Then, the corresponding CDF ofis:
networks in [1] and[[2].

A key result that we use to prove this is the following IemmaFP( )
which may already be known but we were not able to find it ™ v
in the literature.

Lemma 1: Let the upper regularized gamma function b¥here

L-1,.,p o2~)?
ns W exp(—vE (v)—0) (11)
i=0 '

denoted byQ(L,x) = FéfL’”)”, whereT'(L, ) is the upper P\ 2wy ((2+eom
incomplete gamma function. Let be a positve integer and m(7) = a e a *
. 0’ If ¢ 2 1 - 2 T L 241 ) o ) @ v )
lim Q(L,qL) = i (7) h=0
L—oo Loitg <l where,F (-, +;+;+) is Gauss’s hypergeometric function.
Proof: Given in Appendix(B. Since any continuous function can be uniformly approxi-

Suppose that the intensity functioh(r,8) = BA.(r,6) mated by a polynomial function with arbitrary accuracy in a
whereA.(r, 0) is a nominal intensity function which describedounded interval, according to the S_tone-Welerst_rass Eineo
the "shape” of the true intensity function, arids the nominal [12], we use the result above to derive the f_ollowmg theorem
interferer density which scales the nominal intensity fiore ~_1heorem 2: For any CDFE () corresponding to the inten-

We also define: sity function
< 2w —a A(r,0) = h(r)L{o<r<ro} + Por“l{ro<r (13)
v = [ [ Aot s @ | et R e
o Jo L+r=ay where h(r) is any continuous function of, there exist

Suppose thag = gL , i.e., the number of antennas is scale80efficientsao, ai, as, ..a such that

linearly with the nominal density, we havgv) = 5¢.(v) = lim EFE(y) = F(v). (14)
qLv.(v). In addition, assuming that the noise is negligible, m—o0
the CDF in [5) from Theorerl 1 can be expressed as: Proof: Given in Appendix{_C.

Theorem 2 allows us to approximate with arbitrary accuracy,

F,(y)=1- L, gL (v)) (9) the CDF of the SINR for any intensity function that is
(L) continuous inr within a finite domain using a polynomial
By Lemmald, we have: expression. In particular, since efficient algorithms efis

fitting polynomials to real data, this technique could befulse

to analyze networks whose geometrical characteristics are
not easily captured by mathematical models, but for which
experimental data on node positions are available.

which implies that the SINR converges in distribution to &_ Outage Probability with Piecewise Power-law Function
—-1(1 —Q

po_ns_tanhbc __(E "7 .as the number Of_ ant_enl_‘las. goes 0 consider an intensity function of the following form:

infinity. Additionally, since convergence in distributidn a

constant implies convergence in probability (e.g. seé)[Hl] pirt for0<r <Ry

converges in probability as well. Therefore, if we increttse par?  for Ry <r < Ry

. . T . A(r,0) =

number of antennas linearly with the nominal interferergitgn

in a given network, the SINR will approach a constant non-

zero value. This fact implies that such networks can be dcale

by linearly increasing the number of antennas per receiittr wwheree;, > —2 for eachk for which R, = 0. With this

user density without degrading the SINR to zero, provided thintensity function, in the rang®;_; < r < Ry, the intensity

the assumptions are satisfied. function of the interferers follows a power-law distriburti

. L T(LgLe(y)  JO fy<u!
nggon(w—l—T‘ 1, ify >yt

Q= Q=

(15)

pmre™ for R,,_1 <r < R,



with nominal densitypy, and exponent,. The CDF of~ in IV. NUMERICAL RESULTS

this case is given by [5) with A. Monte-Carlo Smulations

P(v)

_ 2mp RPTC (1 24+e€ 2+a+e RY In this section, we summarize numerical results for thesase

T 244 o ’ @ Ty analyzed in the previous sections. Monte-Carlo simulation
m-l were run for various intensity functions to validate the eyah

+ Z _ATPEY [Rﬁa“kx technique in Theorefm 1. B - _ _
s AT T ek Figure[2 shows the empirical probability density function

—2+a—€ —2+2a— ¢ Cu 9—ate, (PDF)from 100,000 simulations of a wireless network with a
2f1( 1, o ; o VR ) - Ry circularly-symmetric Gaussian intensity function, alomigh a

_ _ _ _ graph of the PDF from Theorem 1. The additional parameters
24 a—€ —242a— ¢ —a . . . . . .
x o Fy1, ; =R of the simulations are given in the caption. From the graph, i
@ @ is clear that the simulations match the theoretical premist
Additionally note that even with a large number of trialsg th
simulated PDF is not smooth which suggests that a purely

27Tpm’}/ 2—a+€m
T 5 _ .. “'m—1 x
2—a+e¢,

2F1(1, —24+a- “m, 2420 —€p : —VRWCL)- (16) Simulation based approach to estimate the PDF of the SINR
o o in this case is computationally prohibitive. Hence, the CDF
For the simplest case, consider the intensity function: and PDF given in terms of generalized functions throligh (21)
are useful as they can be evaluated efficiently.
A(r,0) = pre, 17)
where—2 < e < o — 2, to prevent interference from going 0.01 . Er‘n vical
to infinity as R — oo. This intensity function can be used tc 7The%retica|
model a network with a dense cluster of interferers, cedter %%
on the representative receiver and is useful to model n&svo U
with hot-spots. In this case, evaluatingy) over a finiteR, ~ 2 0%
applying one of Euler's hypergeometric transforms| [13]d ar 2
taking R — o yields, £0.004
1/1(’7) _ 27T_2p,y(e+2)/a csc (Wﬂ) ) (18) 0.002r
(0% (0%
Substituting [(IB) into[{5), we have the CDF fas % 100 200 I 200 500
“on? €+2 , . . g .
Fv (7) =1 Z S cse (W—) 7(€+2)/°‘ + 027)Z>< Fig. 2. Compar_lson t_)etween_ the gmplncal and theore'tlcaE BbDthe SINR
Pt [a1e% « for the Gausian intensity function with mean number of ifeesrs ;. = 1000,

972 et v iioo , v = 20, number of receiver antennds = 10, « = 3, 02 =
exp (_ ap cse (71' - ) ,Y(€+2)/a _ 0.2,}/) (19) 10 .
Figure[3 shows the simulated and theoretical PDF for the
power-law intensity functiom\(r,d) = 2923, The additional
Suppose that the receiver is located in the center ofparameters of the simulation are shown in the figure caption.
cluster who intensity follows a circularly-symmetric Gaissx From the graph, it is clear that the theoretical predictibn o
function. A(r, 6) can be written in the form of the PDF of aTheorem 1 is accurate.
Rayleigh variable multiplied with a constaptexpressed as:

E. Outage Probability with Gaussian Intensity Function

B. Uniform Versus Clustered Networks

A(r,0) = /)%e_TQ/z”2 (20) We can use the power law intensity function bfl(17) with
v different values of the exponeantto compare the SINRs be-
where v controls the width of the intensity function. Fortween networks with uniform and clustered node distritsio
specific integer values ef, /() can be evaluated in terms of Note that if we keep the value pffixed, different values of
generalized functions such as the hypergeomtric and Mé&ijerc result in radically different numbers of nodes in the vitjni
functions. For instance, whem = 3, of the receiver at the origin. To make a fairer comparison
vp _ ~2 between different values ef we adjustp such that the mean
Y(y) = SG3 3 (216 §l0.0 11 g) (21) number of nodes that fall in a radiug. disk centered at
23 RS PR the origin of the infinite network is fixed for the values of
whereG is the Meijer G-function. These expressions involve under consideration. Figuld 4 shows the probability that
special functions which can be evaluated efficiently in mo#te SINR is less than or equal to 10 for different values of
mathematical software packages. e. For this plot, we have assumed that= 3142 nodes on




0.06 : : : : are considered withg increasing linearly withL in Figure

< Empirical B. The remaining parameters used for the plot are given in
0.05} — Theoretical | the caption. Figurgl5 shows that as the number of interferers
increases fronl to 20, the CDF of SINR approaches a step
function, i.e the SINR approaches a constant non-zero value
distribution implying that it converges in probability aselv

Empirical PDF
o
o
@

’ - TP—
‘e L= 1 =100 Kd
0.01r - == == | =5 =500 /
08} H
0 ‘ ‘ seesesccscccesl  ALrrrere L =10; u=1000
0 20 40 60 80 100 — 20 1 =
SINR < o6l L = 20; 4 = 2000
z 0
Fig. 3. Comparison between the empirical and theoretiaathatility density IS
function of SINR with the power-law intensity functlon(r 6) = 2023 & o4l
The parameters used arer = 10, L = 10, a = 4, 02 = 10~'2, and  © ,
100, 000 Monte-Carlo trials. N
0.2f R4
K
- -
average in a circle of radiuB. = 1000, with e varying from ol=r=’ =2 s s s
—1 to 0, and values ofp selected so that = 3142. The 0 5 10 15 20 25 30
remaining parameters are specified in the caption. Note tl.w. SINR (dB)

Fig. 5. Cumulative distribution function of SINR (dB) withumber of
10° ‘ antennas increasing linearly with nominal interferer dgnsvith v = 500 ,
rp =20,a =3 ando? = 1014,

V. SUMMARY AND CONCLUSIONS

..j' A technique to compute the CDF of the SINR on a link with
%10’4* 1 multiple receiver antenans in non-homogenous Poisson field
@ of interferers is presented and used to find expressionfiéor t
& CDF of the SINR for several representative node distrilmgio

including power-law intensity functions for which a closed
form expression for the CDF is found. This result can be used
10 ‘ ‘ ‘ ‘ to characterize the SINR in the center of a cluster and inelsca
1 08 e o4 02 0 that while the SINR is significantly smaller in the center of a
dense cluster than in a homogenous network, the performance
Fig. 4. Outage probability vse for power-law intensity functions with l0oss can be mitigated by using a larger number of antennas
L=1,2,4,8 and 12 receiver antennas. Representative link length=5, 4t the cost of additional complexity. Additionally, we shexv
mean number of interferers in a radius 1000 circle is fixed. at 3142, . . . . .
o =4, ando? = 10— 12. that if the number of receiver antennas is scaled linearti wi
the node intensity function, the SINR converges in proligbil
the outage probability increases significantly with clusg 0 & positive constant, indicating that it is possible tolesca
For instance, withl = 4, the outage probability is just belowsuch networks by increasing the number of antennas provided
103 for e = 0, and fore = —0.5, the outage probability is that the system assumptions hold. These results are useful t
greater than 0.1. Additionally, observe that it is possite designers of wireless systems where the spatial distobf
significantly reduce the outage probability by increasihg t hodes are predictable, a situation that often arises intipeac
number of antennas at the receiver sidce- 12 antennas at
the receiver withe &~ —0.5 has the same outage probability as
L = 4 in a homogenous network. A. Proof of Theorem[I]

APPENDIX

C. Scaling node density by increasing number of antennas From [3], the CDF ofy can be expressed as

SectiorI[-B shows that if the number of antennas is scaled () = 1 — exp(—o? Z Z
linearly with the intensity function, the SINR approaches a "~ p( 7) k!
deterministic, non-zero value. To verify this result, wetfgd &
the CDF of the SINR for the Gaussian intensity function with (HEp [ Py ]) ox <—NEp { Py D . (2
A(r,0) = BA:(r,0) = BLe —r*/2* [, = 1,5,10 and 20 1+py

=0 k=0




where E; represents the expectation with respect to the randavhich shows that%Af(r, 6) is uniformly convergent to
variable z. Recall thatp = »—* and the locations of the _r—y A(r,0) on [0, B], and [0, oc] as A” (r,0) and A(r, 0)

. . . 1+ —x
transmitting nodes are characterized by the PRR(r,60). ;e eaual in(R, o). Consequently, we can move the limit

Consequently, for our network model we have the followingsige the integrals in the following expression resgliim

expressions for the expectation in the previous equation:

o B I S ry
e - [ o
(23)
From (1) and[(6), we have
_ Py
v =y | 2] (24)
Substituting into[(2R) yields
L-1 1 (027)i=k
Fy(y)=1- eXP(—UQV) mlﬁk(’ﬂ exp(¥(v))
=0 k=0
L-1 02 A
=1-) (1&(7): 7 exp(—1(7) — 0*7) (25)
i=0

(©) follows from equation (6.5.13) ir [13], and the PDF sy} s Govindasamy,

found by taking the derivative of the CDF and simplifying.

B. Proof of Lemmal[l

Let Xy, X1,---,X_1 be a set of ii.d. Poisson random
variables with mear. Define their sum and average respec-

tively by Y :725;01 Xp andY = % By the weak law of
large number§” — g asL — oo in probability, which implies

thatY — ¢ in distribution, i.e.
0, ifx<gq
1,

lim Pr(Yﬁx): T
x> q.

L—oo

(26)

Since the sum of independent Poisson random variables a
. . . . [
another Poisson random variabl¥, is a Poisson random

variable with mearnyL. Thus,

Q(L,qL)=Pr(Y <L)=Pr(Y <1). (27)

whereQ(L, ¢L) is the CDF of a Poisson random variable with[8]

meanqgL. Taking the limit asL — oo and substituting[{26)
yields [1) completing the proof.

C. Proof of Theorem[2

According to the Stone-Weierstrass Theorem [12], for eve

§ > 0 there existsA” (r,0) such that for all- in [0, R], 3 an

integer N such thatm > N implies:
|AL (r,0) — A(r,0)| < 6 (28)

Letd; be the product of and the maximum value of r°

~
14r—oy?
1/
vy 1_( 2\ @-1
14 r—ay a—1 «@

Then, for any; > 0, 3 an integerV such thatn > N implies

>0

(29)

Inax{r

rT %y P _ <
ril gy ’Am(r, 0) — A(r, 9)‘ <
—ay
nwx[rii;;—gg}‘Aﬁ(n@)——A(n@)‘<<ﬁ (30)

=TT i ARy b
Y(y) = A Jim m (T )TW r
= lim ] (y). (31)
m—0o0
Moreover, we expresd (11) aB! () = g(vr(y)), and

F(v) = g(¥(v)). Sinceg(y?r (7)) is a continuous function
of P (), asm — oo, ¥ () — 1(v), which implies

Jdim F(y) = F()
L—-1 0_2 i

=1y PO ) -0t (D)
=0 ’

which completes the proof.
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