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Abstract—In this paper we study the distribution of the scaled
largest eigenvalue of complex Wishart matrices, which has diverse
applications both in statistics and wireless communications.
Exact expressions, valid for any matrix dimensions, have been
derived for the probability density function and the cumulative
distribution function. The derived results involve only finite sums
of polynomials. These results are obtained by taking advantage
of properties of the Mellin transform for products of independent
random variables.

Index Terms—Communication systems; performance analysis;
eigenvalue statistics; the Mellin transform.

I. INTRODUCTION

Eigenvalue statistics of Wishart matrices play a key role in
the performance analysis and design of various communication
systems. Among these, the distribution of Scaled Largest
Eigenvalue (SLE), defined as the ratio of the largest eigenvalue
to the normalized sum of all eigenvalues, has been shown to
be an important measure. The applicability of the SLE spans
from classical problems in statistics [1], [2], [3], [4] to modern
applications in wireless communications [5], [6], [7], [8], [9].
Classical problems include testing the presence of interactions
in a two-way model [1] and testing the equality of eigenvalues
of certain matrices against various of alternatives [2], [3],
[4]. Contemporary applications in wireless communications
include non-parametric detection in array processing [5] and
spectrum sensing in cognitive radio networks [6], [7], [8],
[9]. Specifically, for spectrum sensing applications, the SLE
is formulated as a test statistics, which is first proposed
by [6] and further investigated in [7], [8], [9]. The SLE based
detector is the best known detector for single source detection,
outperforming several classical detectors in realistic sensing
scenarios [6], [7], [9]. Despite the importance of the knowl-
edge of the SLE, existing results on its statistical properties are
rather limited. In this paper, we aim to address this problem
by deriving simple and exact expressions for the Probability
Density Function (PDF) and Cumulative Distribution Function
(CDF) of the SLE.

The rest of this paper is organized as follows. In Section II
we formally define the scaled largest eigenvalue of Wishart
matrix followed by a concise survey on existing results.
Section III is devoted to deriving the exact SLE distribution

as well as the closed-form coefficients. Numerical examples
are provided in IV to verify the derived results. Finally in
Section V we conclude main results of this paper.

II. DEFINITIONS, PRIOR RESULTS AND CONTRIBUTIONS

Define a K × N (K ≤ N ) dimensional random matrix
X with independent and identically distributed (i.i.d) complex
Gaussian entries, each with zero mean and unit variance. The
K × K Hermitian matrixa R = XX† follows a complex
Wishart distribution with N degrees of freedom (d.o.f). We
denote the ordered eigenvalues of R as λ1 > λ2 > ... >
λK > 0, and the normalized trace of R as T = tr{R}/K =(∑K

i=1 λi

)
/K. The scaled largest eigenvalue of R is formally

defined as the ratio of its largest eigenvalue to its normalized
trace, i.e.,

X :=
λ1

1
K

∑K
i=1 λi

=
λ1
T
, (1)

where it can be verified that x ∈ [1,K].
The distribution of X has been the subject of intense study

in the literature. An exact expression for the distribution of X
in terms of a high dimensional integral has been proposed
in [1]. In [2], a relation between Laplace transforms of
random variables X and λ1 was established. By symbolically
inverting the Laplace transforms, some representations for
the distribution of X were derived in [3], [4]. Whilst being
exact, these representations [1], [2], [3], [4] can only be
evaluated numerically for small values of K and N due to
their unexplicit and complicated forms. Recently, motivated
by its application in spectrum sensing, several asymptoticalb

distributions of X have been derived [8], [7], [9] via random
matrix theory. Although these results are easy to compute,
their accuracy can not be guaranteed for not-so-large K and
N . As an example, in Fig. 1, we illustrate the accuracy of
an asymptotic result based on Tracy-Widom distribution (‘TW
based approx.’) from [7] and an improved version (‘TW based
approx. with correction’) from [8] with a typical choice of
parameters in spectrum sensingc: K = 4 and N = 100.

aThe operator (·)† denotes conjugate-transpose.
bAsymptotic in the sense that the matrix dimensions go to infinity while

their ratio is kept fixed, i.e. K →∞, N →∞ and K/N → r ∈ (0, 1).
cCorresponding to a situation of a sensing device with 4 antennas with 100

samples per antenna.
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Fig. 1. Accuracy of some existing asymptotic approximations to the SLE
distribution: K = 4, N = 100. The ‘TW based approx.’ refers to the result
of [7] and the ‘TW based approx. with correction’ refers to the result of [8].

From Fig. 1 we can see that the approximation errors of
both asymptotic results are non-negligible. Note that for other
applications discussed in Section I, the K, N values are often
smaller than in spectrum sensing applications. For example,
in [1] the authors considered K ≤ 4 and N ≤ 100 in all the
simulations. In addition, for the application considered in [5]
it was remarked that choosing K > 2 does not result in any
performance improvement and there N was always chosen to
be no more than 20. Therefore, the approximation accuracy
may become even lower when using the existing asymptotic
results for the above applications.

In this work, we derive exact expressions for the SLE
distribution, valid for arbitrary K and N , as a finite sum
of polynomials with some unknown coefficients. Closed-form
expressions for the coefficients are obtained for the most useful
system configurations of K = 2, 3, 4 with any N . These
results are simple to calculate and do not involve any integral
representations. To obtain these results, we adopt a novel
approach based on the Mellin transform, which eliminates the
need to handle correlations between λ1 and T . The derived
results yield a useful analytical tool in applications involving
statistical properties of the SLE.

III. THE SLE DISTRIBUTION

A. Exact Distribution

Although there exists intractable correlation between ran-
dom variables λ1 and T , it has been proved in [5] that the
random variables X and T are independent. As such, λ1 equals
the product of the independent random variables X and T .
By this independence, the (z − 1)th moment of λ1 can be
represented as

E[λz−11 ] = E[(XT )z−1] = E[Xz−1]E[T z−1]. (2)

Moreover, the (z− 1)th moment of a random variable x, with
PDF p(x), equals its Mellin transform as

E[xz−1] =

∫ ∞
0

xz−1p(x)dx :=Mz[p(x)], (3)

where Mz[·] denotes the Mellin transform operation. Define
fλ1(x), fT (x) and fX(x) as the PDFs of λ1, T and X
respectively. We have

Mz[fλ1
(x)] =Mz[fT (x)]Mz[fX(x)]. (4)

By the Mellin inversion theorem, the PDF of X can be
uniquely determined by the following contour integral

fX(x) =
1

2πi

∫ c+i∞

c−i∞
x−z
Mz[fλ1(x)]

Mz[fT (x)]
dz. (5)

In principle, the above Mellin inversion integral can be eval-
uated by using the residue theorem. Note that, following the
above Mellin transform framework, a related distribution of the
trace to the smallest eigenvalue has been derived recently [10].

The PDF of λ1 admits the following representation [11],
[12],

fλ1(x) =

K∑
i=1

e−ix
(N+K)i−2i2∑
j=N−K

ci,jx
j , (6)

where ci,j denotes the unknown coefficients. Closed-form
coefficients formulas will be derived in the next subsection.
Meanwhile, numerical algorithms are also available in [11],
[12] to calculate ci,j for a given K and N .

In order to apply the Mellin transform framework, we first
need to calculate Mz[fλ1

(x)], which equals

Mz[fλ1
(x)] =

K∑
i=1

(N+K)i−2i2∑
j=N−K

ci,j
ij

Γ(z + j)

iz
. (7)

It is well known that the sum of all eigenvalues of R,
∑K
i=1 λi,

follows central Chi-square distribution with 2KN degrees of
freedom, therefore the PDF of T =

(∑K
i=1 λi

)
/K can be

obtained as

fT (x) =
KKN

(KN − 1)!
xKN−1e−Kx. (8)

Its Mellin transform is

Mz[fT (x)] =
K1−z

(KN − 1)!
Γ(z +KN − 1). (9)

Inserting (7) and (9) into the Mellin inversion integral (5)
we have

fX(x) =
(KN − 1)!

K

K∑
i=1

(N+K)i−2i2∑
j=N−K

ci,j
ij
A(x, z) (10)

where

A(x, z) =
1

2πi

∫ c+i∞

c−i∞

Γ(z + j)

Γ(z +KN − 1)

(
ix

K

)−z
dz. (11)



Gm,np,q

(
x

∣∣∣∣ a1, . . . , apb1, . . . , bq

)
=

1

2πi

∫ c+i∞

c−i∞

∏m
j=1 Γ(bj + z)

∏n
j=1 Γ (1− aj − z)∏p

j=n+1 Γ(aj + s)
∏q
j=m+1 Γ (1− bj − z)

x−z dz. (12)

fX(x) =
(KN − 1)!

KKN−1

K∑
i=1

(N+K)i−2i2∑
j=N−K

iKN−j−2

(KN − j − 2)!
ci,jx

j

(
K

i
− x
)KN−j−2

θ

(
1− ix

K

)
. (13)

FX(y) =
(KN − 1)!

KKN−1

K∑
i=1

(N+K)i−2i2∑
j=N−K

iKN−j−2ci,j

(
C(y)θ

(
K

i
− y
)

+ C

(
K

i

)
θ

(
y − K

i

)
− C(1)

)
, (14)

where

C(y) =

(
K

i

)KN−j−2 KN−j−1∑
q=0

(−i/K)q(j + q + 1)−1

(KN − j − 2− q)!q!
yq+j+1.

By definition of the Meijer’s G function [13], as shown
in (12) on top of this page, the function A(x, z) can now be
represented as

A(x, z) = G1,0
1,1

(
ix

K

∣∣∣∣ KN − 1
j

)
. (15)

By using the fact that

G1,0
1,1

(
x

∣∣∣∣ ab
)

=
xb(1− x)a−b−1

(a− b− 1)!
θ(1− x), (16)

where θ(·) denotes the Heaviside step function

θ(x) =

{
0 x < 0
1 x ≥ 0

, (17)

the PDF of X in (10) simplifies to the expression shown in (13)
on top of this page.

We now focus on the CDF. By definition, the CDF of X ,
equals

FX(y) =
Γ(KN)

KKN−1

K∑
i=1

(N+K)i−2i2∑
j=N−K

iKN−j−2ci,jB(y), (18)

where

B(y) =

∫ y
1
xj
(
K
i − x

)KN−j−2
θ
(
1− ix

K

)
dx

(KN − j − 2)!
(19)

and y ∈ [1,∞). Using the definition of the hypergeometric
function 2F1(a, b; c;x) =

∑∞
n=0

(a)n(b)n
(c)n

xn

n! , where (a)n =

Γ(a+ n)/Γ(a) defines the Pochhammer symbol, the function
B(y) becomes

B(y) = C(y)θ

(
K

i
− y
)

+ C

(
K

i

)
θ

(
y − K

i

)
− C(1),

(20)

where

C(y) =
(K/i)KN−j−2

(KN − j − 2)!(j + 1)
yj+1 ×

2F1

(
−KN + j + 2, j + 1; j + 2;

i

K
y

)
.(21)

Since the parameters a, b and c of take integer values, the
hypergeometric function can be simplified to a finite sum
of polynomials. Consequently the function C(y), after some
manipulations, equals

C(y) =

(
K

i

)KN−j−2 KN−j−1∑
q=0

(−i/K)q(j + q + 1)−1

(KN − j − 2− q)!q!
yq+j+1.

(22)
Inserting (20) into (18), the CDF expression is summarized
as (14) on top of this page.

Note that both the exact PDF expression (13) and CDF
expression (14) involve the unknown coefficients ci,j inherited
from (6). Closed-form expressions for the coefficients ci,j will
be derived for K ≤ 4 with arbitrary N . For other K values,
one has to resort to numerical techniques [11], [12] to obtain
the values of ci,j .

B. Closed-form Coefficients
In order to circumvent possible computational burden when

using the numerical algorithms [11], [12] to compute ci,j , here
we derive closed-form ci,j expressions for K up to four with
arbitrary N . Note that the considered cases K ≤ 4 cover the
typical situations in applications discussed in Section I.

Following the methodology of obtaining the coefficients for
the smallest eigenvalue distribution [14], we first write an
integral representation for the largest eigenvalue distribution;

fλ1
(x) =

D(K,N)

(K − 1)!
xN−Ke−x

∫
J

∏
2≤i≤j≤K

(λi − λj)2 ×

K∏
i=2

λN−Ki e−λi(x− λi)2dλi, (27)



K = 2 :

c1,j =
2(−1)j−N (2N − j − 2)!

(−N + j + 2)!(N − j)!(N − 2)!(N − 1)!
, c2,j =

−(2N − j − 2)(2N − j − 3)

(−N + j + 2)!(N − 1)!
. (23)

K = 3 :

c1,j =

min{j−N+3,2}∑
k=max{0,j−N+1}

2(−1)j−N+1(N − k)!(2N − j + k − 4)!(−N + j − 2k + 4)

(2− k)!k!(N − j + k − 1)!(−N + j − k + 3)!(N − 3)!(N − 2)!(N − 1)!
, (24)

c2,j =

min{j−N+3,2}∑
k=max{0,j−2N+4}

(−1)k

(2− k)!k!(−N + j − k + 3)!

(
2(N − k)!(2N − j + k − 3)!

(2N − j + k − 5)!(N − 3)!(N − 1)!
−

(N − k − 1)!(2N − j + k − 2)!

(2N − j + k − 4)!(N − 3)!(N − 2)!
− (N − k + 1)!(2N − j + k − 4)!

(2N − j + k − 6)!(N − 2)!(N − 1)!

)
, (25)

c3,j =

min{j−N+3,N−1}∑
k=max{0,j−2N+5}

1

2k!(−N + j − k + 3)!(N − 2)!

(
(N − k + 1)!(2N − j + k − 4)!

(N − k − 1)!(2N − j + k − 6)!
−

(N − k)!(2N − j + k − 3)!(N − 2)

(N − k − 2)!(2N − j + k − 5)!(N − 1)

)
. (26)

where the constant D(K,N) =
(∏K

i=1(N − i)!(K − i)!
)−1

and the domain of the integration J = [0, x]K−1. Similar to
the case of the smallest eigenvalue [14], we first define the
following integral

La(x) :=

∫ x

0

λa(x− λ)2e−λdλ, (28)

which, by repeated use of integration by parts, equals

La(x) =

2∑
k=0

2(a− k + 2)!

(−1)kk!(2− k)!
xk−e−xa!

a∑
k=0

(a− k + 2)!

k!(a− k)!
xk.

(29)
When K = 2, the distribution in (27) becomes

fλ1
(x) = D(2, N)xN−2e−xLN−2(x). (30)

Comparing (30) with (6) and after some manipulations, the
coefficients are obtained as (23) on top of this page.

For K = 3, it can be verified that (27) equals

fλ1
(x) = D(3, N)xN−3e−x

(
LN−1(x)LN−3(x)−

(LN−2(x))2
)
. (31)

By using the equality

a∑
i=0

pix
i
b∑
i=0

qix
i =

a+b∑
i=0

min{i,a}∑
k=max{0,i−b}

pkqi−kx
i, (32)

and comparing (31) with (6) the coefficient expressions can
be calculated as shown in (24)-(26) on top of this page.

For K = 4, equation (27) can now be represented as

fλ1
(x) = D(4, N)xN−4e−x

(
2LN−1(x)LN−2(x)LN−3(x) +

LN (x)LN−2(x)LN−4(x)− (LN−3(x))2LN (x)−

(LN−1(x))2LN−4(x)− (LN−2(x))3
)
. (33)

Using the equality

a∑
i=0

pix
i
b∑
i=0

qix
i
c∑
i=0

lix
i =

a+b+c∑
i=0

min{i,a+b}∑
t=max{0,i−c}

min{t,a}∑
k=max{0,t−b}

pkqt−kli−tx
i, (34)

the closed-form coefficients for K = 4 can be similarly
obtained. They are, however, omitted in this paper due to space
limitations.

Note that for K ≥ 5 the numerical algorithm outlined [11],
[12] needs to be used to obtain the coefficients. Interested
readers may contact the first author for a copy of the code of
the numerical algorithm implemented in Mathematica R©.

IV. NUMERICAL RESULTS

Some numerical examples are provided in this section to
verify the derived SLE PDF expression (13), CDF expres-
sion (14) and corresponding coefficient expressions. We first
examine the cases when both closed-form distribution and
coefficients are available, where we choose N = 10 with
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Fig. 2. CDF of the scaled largest eigenvalue using closed-form coefficients.
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Fig. 3. PDF and CDF of the scaled largest eigenvalue: K = 6, N = 6,
using numerical coefficients.

K = 2, 3, 4 respectively. Using the derived CDF expres-
sion (14) with the corresponding closed-form coefficients, the
CDFs against simulations are plotted in Fig. 2. In addition,
we consider the case when K = 6 and N = 6, where
the closed-form coefficients are not available. In this case,
inserting these numerically obtained coefficients from [11]
(Table IV ) into (13) and (14), the corresponding PDF and
CDF are drawn in Fig. 3. From Fig. 2 and Fig. 3, we can see
that the derived results match simulations well.

V. CONCLUSIONS

Knowledge on the statistical property of the scaled largest
eigenvalue of Wishart matrices is key to understanding the
performance of various hypothesis testing procedures and
communication systems. In this work, we derived exact ex-
pressions for the PDF and CDF of the SLE for arbitrary matrix
dimensions by using a Mellin transform based method. Our

results are easy and efficient to compute, they do not involve
any complicated integral representations or unexplicit expres-
sions as opposed to existing results. The derived expressions
were validated through simulation results.
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