
ar
X

iv
:1

30
6.

05
87

v1
  [

cs
.IT

]  
3 

Ju
n 

20
13

Analog Turbo Codes: Turning Chaos to Reliability
Jing Li (Tiffany)†‡, and Kai Xie‡

† School of Electronic Information Engineering, Soochow University, Suzhou, Jiangsu Province, P.R.China
‡ Dept of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA

Emails: jingli@ece.lehigh.edu, kax205@ece.lehigh.edu

Abstract—Analog error correction codes, by relaxing the
source space and the codeword space from discrete fields to
continuous fields, present a generalization of digital codes. While
linear codes are sufficient for digital codes, they are not for analog
codes, and hence nonlinear mappings must be employed to fully
harness the power of analog codes. This paper demonstrates
new ways of building effective (nonlinear) analog codes from a
special class of nonlinear, fast-diverging functions known as the
chaotic functions. It is shown that the “butterfly effect” of the
chaotic functions matches elegantly with the distance expansion
condition required for error correction, and that the useful idea
in digital turbo codes can be exploited to construct efficient turbo-
like chaotic analog codes. Simulations show that the new analog
codes can perform on par with, or better than, their digital
counter-parts when transmitting analog sources.

I. I NTRODUCTION

Seventy years of coding research has resulted in many
remarkable efficient error correction codes. The culmination
is reflected in the discovery of turbo codes and and the
re-discovery of low-density parity-check (LDPC) codes –
practical linear codes that are capable of approaching the
Shannon limit on additive white Gaussian noise (AWGN)
channels. Since these codes are digital codes, analog sources,
such as sound, color, images, and the vast geo-, physical-
, chemical-, bio-signals acquired by the sensors, must first
be sampled (discretizing the time) and quantized (discretiz-
ing the amplitude). The communication theory states that as
long as sampling is performed at or above the Nyquist rate,
the discrete-time samples can losslessly recover the original
continuous-time signals. In comparison, however, quantization
will result in permanent granularity error that is irrecoverable.
To keep the granularity error small in general requires more
quantization levels and/or higher-dimension quantization (i.e.
vector quantization). The former may cause non-negligible
bandwidth expansion, and the latter can be very hard to design.

One possibility to avoid the burden of quantization and
the associated granularity error is to transmit the discrete-
time continuous-valued analog source directly in its analog
form. Since real-world channels are inevitably noisy, to en-
sure adequate transmission fidelity requires practical analog
error correction codes (AECC), or, simply, analog codes –
codes that encode (discrete-time) continuous-valued analog
source sequences to (discrete-time) continuous-valued analog
codeword to combat channel noise and distortion [1]–[4].
Although not nearly as popular as digital codes, the notion
of “analog error correction coding” actually dated back to

Li’s work is partially supported by National Science Foundation Under
Grant No CCF-0829888, OCI-1122027 and CMMI-0928092.

the early 80’s, when Wolf [1] and Marshall [2] independently
introduced the concept. (It was termedreal number coding
in Marshall’s work andanalog codingin Wolf’s work.) To
put the digital systems in perspective, the combination of
quantization, digital error correction codes and the QAM
(quadratic amplitude modulation) digital modulation1 may be
viewed as a single analog error correction code. A noteworthy
advantage of using a single analog code in lieu of its digital
counter-part is the simplicity. To design a good digital system
requires not only the careful design of individual components,
but also a judicious balance of the rates between them, i.e.
how many bits to use for quantization, error correction coding
and modulation, respectively. All of this involves a lot of
complicated design issues.

Although analog error correction follows much the same
philosophy as digital error correction, good AECCs are hard
to find. Early ideas of analog codes were a natural outgrowth
of digital codes, by extending conventional digital codes
from the finite field to the real-valued or the complex-valued
field (namely, symbols from a very large finite field can
approximate real values). This has resulted in, for example,
analog BCH codes and analog RS codes [1], [2]. Since these
(linear) analog codes also rely heavily on the conventional
decoding algorithms such as the modified Berlekamp-Massey
and Forney algorithm, they perform best on a specialpulse
channel where noise only occurs to a limited number of
coded symbols. For practical AWGN channels, however, the
performance of these analog codes can be rather disappointing,
since every coded symbol is distorted by the channel. Xie
and Li recently established a mean square error (MSE) lower
bound (i.e. best achievable performance) for linear analog
codes [5]. The fact that nonlinear analog codes can outperform
this lower bound clearly speaks for the necessity and benefits
of going nonlinear.

Key Idea Underpinning Chaotic Analog Codes:
To design good analog error correction codes, let us re-

evaluate the profound idea underpinning error correction,
namely, the principle ofdistance expansion. In digital encod-
ing (a discrete function), thesource spacein which elements
have relatively small Hamming distance and may easily get
confused with each other, is mapped to acode spacein
which elements have (much) larger Hamming distance and
can therefore tolerate (much) larger distortion. For analog

1High-order QAM (e.g. 256QAM or 512QAM) has become dominant in
high-date-rate wireless systems; and analog data can be naturally modulated
through∞-order QAM.

http://arxiv.org/abs/1306.0587v1


codes to effectively achieve distance expansion and combat
distortion would require good continuous functions that can
effectively magnify Euclidean distance. For this, we propose
to exploit chaotic functions (or chaotic systems), a specially
class of continuous-valued, nonlinear functions with bounded
state spaces exhibiting a topological mixing feature. Chaotic
systems are widely existent in the natural world as well as the
engineering world, and many of them can be realized using
simple electric circuits. Despite the rich variety of formalities,
chaotic systems share one common property, namely, high
sensitivity to the initial state. Popularly dubbed thebutterfly
effect,this property states that a small perturbation to the initial
state(s) of a chaotic system will cause a huge difference some
time later. Although this butterfly effect is in general viewed as
a system penalty, it can actually be cleverly exploited to satisfy
the distance expansion property required by a good channel
code. Specifically, if one treats the initial state(s) of a chaotic
system as the source (to be encoded), and treats some later
states as the codeword (having been encoded), then the chaotic
system naturally enacts a channel encoder that successfully
magnifies the small differences (distance) among the source
sequences to large ones.

This elegant feature was first noted by Chen and Wornell
some twelve years ago. In their pioneering work [4], they pro-
posed the first chaotic analog code, thetent map code. The first
of its kind, this code directly employs atent map– a nonlinear,
discrete-time, real-valued chaotic map with simple formulation
– as the chaotic generator to achieve channel encoding. A
near maximum likelihood (ML) detector is also developed
to perform effective channel decoding [6]. However, in part
because the tent map code performs nowhere comparable to
digital codes, and in part because chaotic functions are rather
foreign to the coding community, the beautiful idea exposed
in [4] was largely ignored.

Novel Constructive Mechanism:

In this paper, we reclaim this intriguing idea and propose a
new and effective way to utilize chaotic functions in designing
analog codes. Our studies show that direct application of
chaotic functions may be insufficient, since a single chaotic
function usually has imbalanced protection of some kind,
namely, some part of the codeword may be protected (much)
weaker and hence are more prone to error than the others.
To mitigate this defect and provide balanced protection to all,
we propose to exploit the powerful structure of digital turbo
codes. Recall that a turbo code is built on two convolutional
codes, which are parallelly concatenated in such a way that
if one convolutional code produces a low-weight (i.e. weak)
codeword, the other will most likely produce a high-weight
(i.e. strong) one. As such, the overall codeword weight is
rarely very small, thus significantly improving the worst case
and reducing the chance for worst case. Borrowing this idea,
we can arrange a similar “buddy system” by arranging two
simple chaotic functions in a parallel concatenation, suchthat
the vulnerable part of one is properly paired with the robust
part of the other. Our new codes are to turbo codes, as single

chaotic functions (e.g. the tent map code) are to convolutional
codes.

To demonstrate our idea, below we present two constructive
examples, using the tent map and the baker’s map, respectively.
We discuss how turbo-like structures can be devised for
component codes to effectively cover for each other, and verify
the effectiveness of our approaches through simulations. We
show that the proposed turbo-like chaotic analog codes not
only significantly outperform their processor (i.e. the tent map
code [4]), but can also perform on par with, or better than,
their digital counter-parts (i.e. the combination of quantization,
digital coding and digital modulation).

II. K EY IDEA OF CHAOTIC ANALOG CODES AND ML
DECODING

We consider building analog codes from chaotic functions.
Prominent features of chaos includes continuous but bounded
state space, deterministic randomness, nonlinearity, nonperiod-
icity, topological mixing, and sensitivity to initial conditions.
The last is widely known as the butterfly effect, due to
Lorentz’s 1972 paper, “Does the flap of a butterflys wings in
Brazil set off a tornado in Texas?” This very feature, i.e. the
fast-diverging nature of chaotic functions, is usually measured
by a Lyapunov exponent that is> 1.

In general, a chaotic function is a real-valued or complex-
valued recursive function in the form of:

xi = F (xi−1), (1)

wherex0 is the initial state vector (the seed), andxi is the
state vector at timei. A straightforward way to build a rate1/n
systematic chaotic analog code, such as how the tent map code
is constructed, is to feed the source sequence to the chaotic
function as the initial state (the systematic part), and to collect
(n−1) subsequent states as parities to protect the source.

In theory, a code is well defined as long as the codebook
is specified. In practice, there is also need for encoding and
especially decoding procedure. For digital codes, irrespective
of complexity, one can always perform brute-force exhaustive
search (e.g. comparing the received sequence with2k valid
codewords) or syndrome decoding (i.e. placing all the2n

sequences in the standard array and performing table look-up)
to achieve good performance. Note that such universal proce-
dures become impossible for analog codes, since the codeword
space is now continuous, consisting of unaccountably infinite
points all of which are valid. If an analog codes is constructed
by directly taking a known chaotic function as the encoder
(e.g. the tent map code), then the decoder may employ existing
chaotic estimation methods. However, as mentioned before,
more sophisticated and better-performing code structure would
involve the concatenation or compounding of two or multiple
chaotic functions, and judicious decoding procedure must be
designed case by case.

Consider an analog codeC with mappingUk C
→ X

n, where
the source spaceUk and the codeword spaceXn are assumed
to be continuous and differentiable. Consider transmitting the
codewordx and receiving the sequencer at the output of a



noise channel. We can define the ML decoder for a general
analog code as

ũ
k−1
0 = arg max

0≤i≤t−1
(arg max

ũ
k−1

0
∈Bi

Pr(rn−1
0 |uk−1

0 )), (2)

whereuk−1
0 is short for(u0, u1, · · · , uk−1), and ũk−1

0 is the
decoder estimation for the source vectoru

k−1

0 . Suppose the
channel transfer function is also differentiable (a condition
that is satisfied for most continuous-output channels such as
AWGN channels and fading channels). Suppose there are only
a finite number of local maximums for the target function in
(2) (again a condition that is generally satisfied for linearand
nonlinear mappings), then we will have a finite number of
candidates for possibleuk−1

0 . The ML decoder can compare
all of these candidates to identify the bestu

k−1

0 with the largest
probability. The complexity of the ML decoder will be linear
to the number of candidates (local maximums).

In general, one may find the local maximum in each subsec-
tion by taking a derivative of the target function with respect
to u. Since all chaotic functions are by nature nonlinear, to
keep down the decoding complexity, we focus on those chaotic
functions that are piece-wise linear.

III. E XISTING CHAOTIC ANALOG CODES: TENT MAP

CODES

The tent map code [4] is constructed by employing a single
tent map function as the encoder. The tent map, a simple
1-dimension piece-wise linear function that offers as rich
dynamics as infinite length binary shift register, is definedas
follows.

F (xi) = β − 1− β|xi−1|, (3)

where 1 < β ≤ 2, −1 ≤ xi ≤ β − 1. (4)

Specifically, parameterβ = 2 is used [4], such that the tent
map maps[−1, 1] to itself.

The tent map code has successfully demonstrated the possi-
bility of exploiting chaotic systems to achieve error correction,
but its performance awaits to be desired. In our study, we
performed a careful investigation of the tent map as well
as other chaotic functions. Here, coding gain is generally
attained through expanding aneighborhoodsource (sub)space
and hence magnifying the differences (distances) of two close-
by symbols. Since the entire space is bounded and each neigh-
borhood subspace gets expanded, two or more neighborhood
subspaces that were previously disjoint will have to overlap
to sustain the same bounded space. This gives rise to the
renowned topologically mixing feature of a chaotic function,
at the same time, it also introduces “backward ambiguity.”
That is, a previous state can unequivocally derive a later state
(forward determinism), whereas the reverse operation almost
always leads to ambiguity (backward ambiguity). Specifically,
there are two values ofxi (same magnitude but opposite signs),
both of which can generatexi+1. Thus, to deducexi from
xi+1 in the tent map requires the knowledge of the sign ofxi,
denoted assi. More generally, for parityxn−1 to be useful
in deriving the sourcexo, the sign sequence,s0, s1, ..., sn−2

(termed the “symbolic coding” in the chaos jargon) must be
available. If the symbolic coding sequence isaccuratelyknown
to the decoder, then a parityxn−1, which is distorted by
AWGN with varianceσ2, can guarantee to derive the source
x0 with an impressively small mean square error (MSE) of
σ2/2n−1!

However, symbolic coding is not knowna priori, and
must be estimated from the received symbols. Because of
the forward determinism and the backward ambiguity, state
xi carries information about its own sign and the signs for
all the succeeding states (but not the preceding states). That
is, the information on symbolic coding is actuallyunequally
embedded in the codewordx0, x1, ..., xn, with sn being the
most reliable (sincex0, · · · , xn all bear information ofsn) and
so being the least reliable (onlyx0 bears information ofs0).
Such unequal protection is particularly undesirable, because
the distortion error introduced by erroneouss0 is the largest
of all – that is, exactly where the protection is most needed
actually receives the least of it. This probably explains why
the tent map code by itself does not perform well.

IV. CODE DESIGN I: TENT MAP TURBO CODES

The previous analysis of the tent map code motivates us to
consider a parallel structure that assembles two tent maps in a
turbo-like manner for a much needed enhanced protection of
the symbolic coding. Recall that a fundamental reason for the
remarkable performance of a digital turbo code is that, when
one component code produces a low-weight sequence, the
other will produce a high-weight one (with a high probability).
Recall also that such “complementary protection” is achieved
by means of interleaving. Exploiting these powerful ideas
gives rise to the proposedtent map turbo code.

The first component code:

Tent  Map Code

u x1[0]=u, x1[ 1],  x1[ 2], …, x1[ N-1 ]

s1[0],s1[1],…,s1[N-1]

u

Interleaver

s2[0]=s1[n-1] ,s2[1 ]=s1[n-2],…,s2[N-1]=s1[0]

MUX

The second 

component code:

Tent  Map Code

x2[ N- 1] =u,  x2[N-2], …, x2[0]

Fig. 1. System model for the proposed tent map turbo code.

As depicted in Fig. 1, a second tent map is introduced and
is assigned a pre-determined symbolic coding sequence: the
same symbolic coding sequence generated by the first tent
map but in a reverse order. The detailed coding procedure is
as follows:

1) A source symbolu is used as the initial state and fed
to the first tent map (as defined in (3)), generating a
(half) codeword(x0 = u, x1, ..., xn−1), which has a sign
sequence(s0, s1, ..., sn−1 : si = sign(xi)).

2) The symbolic coding sequence is scrambled through
a “reverse interleaver” to get(sn−2, sn−2, ...so) (here
sn−1 is not needed and therefore discarded), and fed



to the second component tent map to guide encoding.
To make use of the given symbolic coding sequence,
the second tent map code is actually encoded backward:
using the source symbolu as the last statex′

n−1 = u
and subsequently deriving statesx′

n−2, ..., x
′
0 through

the inverse function of the tent map:

x′
i =

1− x′
i+1

β
si. (5)

3) Outputs from both tent maps,(x0 = u, ..., xn−1) and
(x′

0, ..., x
′
n−2, x

′
n−1 = u), together form a length-2n

codeword, resulting in a code rate1/(2n). Here, the
systematic symbolu is transmitted twice, both in the first
and in the second tent map. One may also puncturex′

n−1

and transmit only one copy of the systematize symbol,
leading to a code rate of1/(2n− 1).

With this coding strategy,si with a small indicei, which
gets weak protection from the first tent map, is now gaining
a stronger protection from the second tent map. The encoder
of this tent map follows the general ML concept discussed in
Section II. More detailed discussion, as well as an iterative
decoding approach, can also be found in [8].

The performance advantage of the resultant tent map turbo
code over the single tent map code is verified by computer
simulations. Both codes have rate 1/11 and are operated on
AWGN channels with ML decoding. Analog source symbols
are generated uniformly at random from[−1, 1], and the
performance is evaluated via MSE (plotted inlog2 scale). As
shown in Fig. 2, the proposed tent map turbo code significantly
outperforms the tent map code, with a gain as much as 8 dB.

0 1 2 3 4 5 6 7 8 9 10
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

SNR(dB)

lo
g2

( 
M

S
E

 )
)

 

 

tent map code w/ rate 1/11
Tent map turbo code w/ rate 1/11

Fig. 2. Simulation comparison between tent map codes and tent map turbo
codes. Code rate: 1/11.

V. CODE DESIGN II: BAKER’ S MAP TURBO CODES

The design philosophy exposed in the previous example has
certainly demonstrated an elegant way of exploiting chaotic
functions, but there is room for further improvement – by
exploiting more powerful component chaotic functions.

The less-than-desirable performance of the tent map code
may be attributed, in part, to the insufficient and unequal
protection for symbolic coding, and in part, to the low dimen-
sionality of the underlying chaotic function: The tent map is a

1-dimensional nonlinear function with a scalar input and offers
relatively simple relation between the time-evolving states.
The tent map turbo code strengthens the inter-state relation
by concatenating two tent maps, thus creating a higher level
of protection, but the input is nevertheless a scalar. From
the coding theory, we know that a larger block size will in
general offer a richer correlation context and hence promises
a better error correction capability. In this second constructive
example, we explore a 2-dimensional chaotic function as the
component code. Leveraging the rich literature of the chaos
theory, we identify thebaker’s map, a 2-dimensional nonlinear
function from a unit square to itself, as a desirable candidate.

The baker’s map is a nonlinear chaotic function named after
a kneading operation that bakers apply to dough: the dough
is compressed and cut in half and the two halves are stacked
on one-another. There are two slightly different versions of
the baker’s map: one may fold over or rotate one of the sliced
halves before joining it, or does not fold over the top half. Here
we consider the former, i.e., the folded baker’s map, which
represents a two-dimensional analog of the tent map (see Fig.
3. Mathematically, the folded baker’s map is expressed as:

{xi, yi} = F ({xi−1, yi−1})

=

{

{2xi−1+1, yi−1

2
− 1

2
}, if xi−1<0

{1−2xi−1,
1

2
− yi−1

2
}, if xi−1≥0

(6)

X < 0 X > 0
X < 0 X > 0

X > 0

X < 0

cut and stack
compress

Fig. 3. Illustration of the baker’s map.

Although the baker’s map can be directly employed to con-
struct an analog code, just like the tent map code, it does not
produce a desirable performance2. A close inspection reveals
thatF ({xi, yi}) is not symmetric, i.e.yi+1 carries information
from bothxi andyi, but xi+1 only carries information from
xi.

To effectively improve the weak spot and enhance the
overall performance, we again exploit the parallel structure
of the digital turbo codes. The resultantbaker’s map turbo
code, as depicted in Fig. 4, comprises a pair of baker’s maps,
engineered in a simple mirrored replication structure to protect
against the weaker dimension of each other. Specifically, a pair
of source symbols{u, v} is fed to the first baker’s map as seed
{x, y}, and fed to the second baker’s map as seed{y, x}.

Similar to the case of the tent map turbo code, the systematic
partu andv, may be transmitted only once or in both times,
resulting in a code rate of 2

4n−2
= 1

2n−1
or 2

4n
= 1

2n
,

respectively.
Note that the baker’s map, although being 2-dimensional, is

a piece-wise linear function, and since parallel concatenation

2A single baker’s map performs better than a single tent map, but falls short
of the tent map turbo code.



is also a linear operation, the resultant baker’s map turbo
code remain a piece-wise linear function. Hence, the same
ML decoding philosophy discussed in Section II applies. The
entire decoding algorithm is actually quite simple, and the
exact details can be found in [9].

Baker’s Map I

Baker’s Map II

MUX

u

v

Fig. 4. System model of the proposed baker’s map turbo code.

The simple turbo construction in Fig. 4 turns out to be
extremely powerful, and the resultant code demonstrates a
surprisingly good performance that is not only better than the
tent map turbo codes, but is also comparable to their digital
counterparts!

Fig. 5 compares the simulation performance of a digital
convolutional code, a digital turbo code, and a rate-1/6 analog
baker’s map turbo code, in terms of transmitting analog data,
uniformly distributed over[−1, 1]. The convolutional code
(8 states) and the digital turbo code (with 8-state recursive
systematic convolutional codes as component codes) both have
a source block size of 1000 bits, and the baker’s map turbo
code has a source block size of only 2 symbols (and hence
requires much shorter delay and memory size). Uniform scalar
quantization (either 3-bit/8-level or 6-bit/64-level quantization)
and pulse amplitude modulation (PAM)3 of the appropriate
levels are used together with the digital codes, such that the
overall bandwidth expansion (i.e. rate of the entire system) is
always 1:6.

Several observations can be made. First, the digital systems
is ultimately limited by the quantization error floor (the flat
performance curve), whereas the analog code does not seem
to have this limitation. Second, a performance trade-off is
unavoidable for digital systems. With a high-level quantization
(e.g. 6-bit) and hence fewer bits for coding and modulation,the
overall performance will have a low quantization error floor,
but the waterfall region is also pushed to the far right (the
high SNR level). Alternatively, we may allocate more bits to
coding and modulation, to push the water-fall region towards
the low SNR region, but then fewer bits are available for
quantization, which leads to a coarse quantization and hence
a high quantization floor. Finally, we see that the baker’s map
turbo code actually performs comparable to the digital systems
– it consistently outperforms the digital convolutional coding
systems, and in some SNR regions also outperforms the digital
turbo coding system!

VI. CONCLUSION

Analog error correction codes, by relaxing the source space
and the codeword space from discrete fields to continuous

3PAM is used, because here the analog code outputs real-valued codewords.
Equivalently, one can use QAM for the digital codes, and packtwo analog
codewords to form one complex-valued sequence for the analog codes.

fields, present a generalization of digital codes. By cleverly
exploiting the “butterfly effect” of the chaotic systems, and
by designing practical and effective coding structure, we have
succeeded in constructing two classes of turbo-like chaotic
analog codes: the tent map turbo codes, and the baker’s map
turbo codes. The fundamental idea underpinning the parallel
concatenation is presented, and the general principle of maxi-
mum likelihood decoding is discussed. Computer simulations
show that our new codes outperform the existing chaotic ana-
log codes, and some are even comparable to the conventional
digital systems (turbo or convolutional codes)! We conclude
by advocating turbo-like (higher-dimensional) analog coding
as a new way to encode and protect analog sources. The
analog coding approach is simple, and particularly suitable for
channels that are highly varying, where it is difficult to design
or adapt to an appropriate quantization/digital-coding/digital-
modulation scheme.

0 1 2 3 4 5 6 7 8 9 10
−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

SNR(dB)

lo
g2

(M
S

E
))

 

 
3−bit Q, R−1/2 turbo, BPSK
3−bit Q, R−1/2 convolutional, BPSK
R−1/6 baker’s map turbo code, PAM
6−bit Q, R−1/2 convolutional, 4PAM
6−bit Q, R−1/2 turbo, 4PAM

Fig. 5. Comparison between the proposed baker’s map turbo codes, the
digital convolutional coding system, and the digital turbocoding system. All
have a bandwidth expansion of 1:6.

REFERENCES

[1] J. K. Wolf, “Redundancy, the Discrete Fourier Transform, and Impulse
Noise Cancellation,”IEEE Trans. Commun.,Vol. COM-31, No. 3, pp.
458-461, March 1983.

[2] T. G. Marshall, Jr. “Coding of real-number sequences forerror cor-
rection: A digital signal processing problem,”IEEE J. Select. Areas
Commun.,Vol 2, Issue 2, pp. 381-391, Mar. 1984.

[3] N. Santhi, A. Vardy, “Analog codes on graphs,” submittedto IEEE Trans.
Inform. Theory, arXiv:cs/060808vc1.

[4] B.Chen and G.W.Wornell, “Analog error-correcting codes based on
chaotic dynamical systems,”IEEE Trans. Comm., Volume 46, Issue 7,
July 1998 Page(s):881 - 890

[5] K. Xie and J. Li (Tiffany), “Linear analog codes: the goodand the bad,”
46th Annual Conf. Inf. Science Systems (CISS), Princeton, NJ, March,
2012.

[6] H. C. Papadopoulos and G. W. Wornell, “Maximum likelihood estima-
tion of a class of chaotic signals,”IEEE Trans. Info. Theory, vol. 41,
pp. 312C317, Jan. 1995.

[7] Y. Liu, J. Li, and K. Xie, “Analysis of Linear Channel Codes with
Continuous Code Space,”46th Annual Conf. Info. Science Systems
(CISS), Princeton, NJ, March, 2012.

[8] K. Xie, P. Tan, B. C. Ng, and J. Li (Tiffany), “Analog turbocodes: A
chaotic construction,”IEEE Intl Symp. Info. Theory (ISIT), pp. 894-898,
Seoul, South Korea, June 2009. doi:10.1109/ISIT.2009.5205624

[9] K. Xie, and J. Li, “Chaotic analog error correction codes: The mirrored
baker’s codes,”IEEE Global Commun. Conf. (GLOBECOM), Miami,
FL, Dec. 2010.doi:10.1109/GLOCOM.2010.5683800


	I Introduction
	II Key Idea of Chaotic Analog Codes and ML Decoding
	III Existing Chaotic Analog Codes: Tent Map Codes
	IV Code Design I: Tent Map Turbo Codes
	V Code Design II: Baker's Map Turbo Codes
	VI Conclusion
	References

