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Abstract—The performance in signal detection is evaluated by
the error (false-alarm and missed-detection) probabilities. How-
ever, calculating these probabilities is a difficult task in practice.
This paper studies the asymptotic behavior of the energy-detector
and the estimator-correlator by means of the Stein’s lemma. The
Stein’s lemma is an information-theory result that provides the
best achievable error exponent in the error probabilities when
the number of observations goes to infinity. The derived closed-
form expressions explain how detection performance is driven
by the detector parameters and the second-order statistics of the
problem. More specifically, it is shown that the error exponents
depend on the signal-to-noise ratio (SNR) and the observation
size. The prime focus is to establish a link between the required
observation size for a fixed error probability as a function of the
SNR. Numerical results show the tightness of the lemma.

Index Terms—Stein’s lemma, Kullback-Leibler divergence,
likelihood ratio test, energy-detector, estimator-correlator, spec-
trum sensing, cognitive radio.

I. INTRODUCTION

Signal detection, as well as many other engineering prob-
lems, can be cast as deciding between two alternative expla-
nations of the observations. The error probabilities associated
to the detection are fundamental for understanding the per-
formance of detection problems. In most practical situations
these expressions are not available in a closed-form solution,
because the probability distribution of the sufficient detection
statistics in the test is difficult to obtain. Nonetheless, the
asymptotic properties of the statistics are sometimes useful to
characterize the behavior and to obtain performance bounds.
The Stein’s lemma [1] is a fundamental result that provides
the asymptotic behavior of the error probabilities associated to
detection problems when the number of observations grows to
infinity. More specifically, it shows that the error probabilities
decay exponentially with the number of observations [2],
hence playing the role of error exponent as in coding theory.

The potentials of the Stein’s lemma and the Kullback-
Leibler divergence (KLD) as a measure of distance have been
recently explored in a wide variety of information-theory and
communication problems, from MIMO radar [3] to sensor
networks [4]. In the field of cognitive radio, the Stein’s lemma
has been employed in asymptotic performance analysis in
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collaborative spectrum sensing [5] and quadratic likelihood
detection [6].

In this paper, the error exponents for the energy-detector and
the estimator-correlator are derived. Both the energy-detector
and the estimator-correlator are optimal likelihood ratio tests
under the Neyman-Pearson criterion and have a central role
in spectrum sensing for cognitive radio [7]. It is shown that
the error exponents of the false-alarm and missed-detection
probabilities in detection depend on the observation size and
the second-order statistics of the problem, i.e., the signal-to-
noise ratio (SNR). The main focus of the paper is to establish
an asymptotic relation between the observation size and the
SNR for a fixed error probability. In general, it is shown that
the observation size scales as the inverse of a monotonically
increasing function of the SNR, i.e.,

N ∝ 1

f(SNR)
. (1)

The main contribution of the paper is the derivation of simple,
closed-form expressions of f(SNR) that permit the evaluation
of the main factors yielded in the signal detection task.

The rest of the paper is organized as follows. Sec. II briefly
introduces the Stein’s lemma together with the system model.
Sec. III derives the error exponents of the energy-detector and
the estimator-correlator. Sec. IV provides numerical results to
assess the tightness of the lemma, and Sec. V concludes the
paper.

II. THE STEIN’S LEMMA

In a general framework of binary hypothesis testing prob-
lems based on block signal processing, we are given a set
of i.i.d. vector observations X

.
= (x1, . . . ,xM ), each one

distributed according to the probability density function p(x).
Each vector xm is composed by N consecutive samples, being
N the observation size large enough to arise cross-correlation
between samples and guarantee independence between sam-
ples within two separate vectors. Despite the total available
amount of samples is MN , in this paper we assume that N
is a design parameter, while M can be arbitrarily large. The
probability density function p(x) takes one of the following
forms under the two hypotheses

H0 : p(x) = p0(x) (2a)
H1 : p(x) = p1(x). (2b)



The detection problem consists of designing a decision func-
tion or test T (x) whose output implies accepting either H0

or H1, as a function of the observations and the statistics
of the problem. The test is specified by the detection sets
T0 and its complementary T1 over which H0 or H1 is
decided, respectively. Given the boundary which defines the
aforementioned sets, the error probabilities associated to the
test T (x) are defined as

α = P [T (X) ∈ T1 | H0] (3a)
β = P [T (X) ∈ T0 | H1] . (3b)

In communications problems, the hypothesis H0 denotes the
only noise situation (i.e., x = w), whereas H1 denotes the
signal plus noise situation (i.e., x = s + w). Therefore, α is
called the false-alarm probability,and β the missed-detection
probability. In cognitive radio, α is important to guarantee
opportunistic communication for the secondary users, while β
protects the legacy systems. According to the Neyman-Pearson
criterion, the likelihood ratio test (LRT) T (X) defined as

T (X) =
p1(X)

p0(X)
(4)

provides optimal error probabilities pair (α, β) in the sense
that for one fixed error probability (e.g., the false-alarm prob-
ability), any other test will provide a higher probability pair
(e.g., higher missed-detection probability). The LRT (4) makes
decisions by comparing to a threshold γ, which defines the
decision sets as T0 = {T (X) < γ}, and T1 = {T (X) ≥ γ}.

The Stein’s lemma may be expressed in two versions, which
are summarized in the following lemmas.

Lemma 1 (False-alarm probability Stein’s lemma). Consider
the binary hypothesis testing problem (2) and the likelihood
ratio test (4). For a fixed missed-detection probability β ≤ β0,
the false-alarm probability asymptotically behaves as

lim
M→∞

1

M
logα = −D(H1‖H0) (5)

where D(H1‖H0) evaluates the Kullback-Leibler divergence
(KLD) given by

D(H1‖H0) =

∫
p1(x) log

p1(x)

p0(x)
dx. (6)

Lemma 2 (Missed-detection probability Stein’s lemma). Con-
sider the binary hypothesis testing problem (2) and the likeli-
hood ratio test (4). For a fixed false-alarm probability α ≤ α0,
the missed-detection probability asymptotically behaves as

lim
M→∞

1

M
log β = −D(H0‖H1). (7)

A direct consequence of Lemmas 1 and 2 is that both error
probabilities decay, as M grows to infinity, exponentially with
respect to each associated KLDs, i.e.,

α ≈ u(M)e−MD(H1‖H0) (8a)
β ≈ v(M)e−MD(H0‖H1), (8b)

where u(M) and v(M) are slow-varying functions com-
pared to the exponential, such that limM→∞

1
M log u(M) =

limM→∞
1
M log v(M) = 0. Therefore, given a number of

observations, the detection performance exclusively depends
on the KLD between hypotheses, which in the sequel we show
that it is related to the observation size N and the second-order
statistics of the problem.

III. APPLICATION TO SPECTRUM SENSING

In the sequel, the expressions of the KLDs for the energy-
detector and estimator-correlator LRTs are analyzed.

A. Energy-Detector

Though its simplicity, the energy-detector is a low-
complexity and well-studied test that has been adopted in
recent standards [8] as a fast-sensing algorithm. The IEEE
802.22 standard defines the sensing requirements for detecting
TV white spaces for wireless regional area network (WRAN)
devices opportunities. The spectrum sensing defined in the
standard is based on two stages: fast and fine sensing. The
energy-detector is employed in the fast sensing stage as a
coarse detector, whereas a more sophisticated detector is used
in the fine sensing stage when the fast sensing stage detects the
presence of the signal. Hence, the energy-detector is still an
important statistical test for practical engineering problems as
it allows simple formulations to obtain insights on the required
observation size and SNR.

The energy-detector is the optimal test in the Neyman-
Pearson criterion when the primary signal and noise have
Gaussian white statistics, and is given by [9]

TED(x) = tr(XXH). (9)

Under this assumption, the statistics of the observations are

p0(x) = CN (0, σ2
wI) (10a)

p1(x) = CN (0, σ2
sI + σ2

wI), (10b)

where σ2
s and σ2

w are the signal and noise powers, respectively.
As a consequence, the KLD that define the error exponents in
α and β for the energy-detector are1

D(H1‖H0) = N [SNR− log(1 + SNR)] (12a)

D(H0‖H1) = N

[
log(1 + SNR)− SNR

1 + SNR

]
, (12b)

respectively, where SNR .
= σ2

s/σ
2
w is the signal-to-noise ratio

(SNR) of the problem.
Due to the white statistics under both hypotheses, the KLD

(6) equals N times the KLD of each individual observation.
Hence, the error exponents of the energy-detector (9) grow
linearly with the observation size N in the same way it linearly
grows with the number of observations M , in the sense that

1Let p0(x) = CN (0,R0) and p1(x) = CN (0,R1). The KLD (6) is then

D(H1‖H0) = tr(R−1
0 R1)− log

[
det−1(R0) det(R1)

]
−N. (11)

It follows that the KLD between two Gaussian processes depends on three
terms: the ratio between the second-order statistics, the log-radio of determi-
nants of the covariance matrices, and a penalty term of dimensionality.



the equivalent total number of available samples is MN . In
other words, no correlation needs to be exploited.

The slope of the error probabilities is given by functions of
the SNR, which from (12), are given by SNR− log(1 + SNR)
and log(1 + SNR) − SNR(1 + SNR)−1. The nonnegativity
of the error exponents is guaranteed provided that the former
functions are nonnegative for all SNR ≥ 0. Additionally, they
are monotonically increasing functions in SNR, which ensures
that in the limit of the high-SNR regime the detection is
error-free. Another interpretation of (12) is how SNR and the
observation size scale to preserve the error probabilities in the
asymptotic cases of low-SNR (i.e., SNR→ 0) and high-SNR
(i.e., SNR→∞) regimes.

1) False-alarm probability: The error exponent associated
to the false-alarm probability admits the following approxima-
tions. In the low-SNR regime, it can be approximated by the
second degree polynomial log(1 + SNR) ≈ SNR − 1

2SNR2.
Therefore, (12a) approximates by

D(H1‖H0) ≈ 1

2
N · SNR2. (13)

This means that the required observation size is inversely
proportional to the squared value of the SNR, i.e.,

N ∝ 1

SNR2 (14)

to preserve a target false-alarm probability α0. Contrarily, the
approximation SNR − log(1 + SNR) ≈ SNR is valid in the
high-SNR regime. In that case, the error exponent may be
approximated by

D(H1‖H0) ≈ N · SNR, (15)

for which the required observation size is related to the SNR
by

N ∝ 1

SNR
. (16)

This concludes that the energy-detector is more sensitive to
a change in channel conditions (i.e., SNR) when operating in
the low-SNR regime rather than in the high-SNR regime.

2) Missed-detection probability: Regarding the error ex-
ponent associated to the missed-detection probability, the
following two approximations log(1+SNR) ≈ SNR− 1

2SNR2

and SNR(1 + SNR)−1 ≈ SNR− SNR2 apply in the low-SNR
regime. Hence, (14) holds for β, as D(H0‖H1) ≈ 1

2NSNR2

as well. In the high-SNR regime, the behavior of the error
exponent is more conservative with the SNR, because by the
approximation log(1+SNR)−SNR(1+SNR)−1 ≈ log(SNR)
as SNR→∞ it follows that

D(H0‖H1) ≈ N · log(SNR). (17)

In other words, the missed-detection probability is more re-
strictive in the observation size, in the sense that is inversely
proportional to the logarithm of the SNR,

N ∝ 1

log(SNR)
. (18)

As a common factor in, the observation size is always
inversely proportional to a monotonically increasing function
of the SNR, as claimed by (1), which has the closed-form
expressions in (12)–(18).

B. Estimator-Correlator

The detection of a signal in Gaussian noise describes
many real engineering situations, including the energy-detector
discussed above. In the problem in hand, it is also a valid
assumption that the signal to be detected has Gaussian dis-
tribution. While it facilitates the analysis, it is reasonable in
signal detection problems in low-SNR regimes as the Gaussian
distribution provides optimum second-order treatment [10],
and acts as a worst-case distribution.

Claimed by the KLD, the performance of the detection
in terms of error probabilities depends on the distinctness
between the two hypotheses (2). For zero-mean Gaussian
signals, this distinctness is reflected by the cross-correlation
between hypotheses. The correlation can be found in the time,
frequency, or space domains. In what follows, the temporal
correlation of the signal to be detected is exploited when both
noise and signal correlation matrices are known.

In this setting, the observations are distributed according to

p0(x) = CN (0,Rw) (19a)
p1(x) = CN (0,Rs + Rw), (19b)

under H0 and H1, respectively; where Rs and Rw are the
correlation matrices of the signal and noise, respectively,
defined as Rs

.
= E[ssH ] and Rw

.
= E[wwH ]. The optimal test

in the Neyman-Pearson criterion is the estimator-correlator,
given by [9]

TEC(x) = tr
[
R−1w Rs (Rs + Rw)

−1
XXH

]
. (20)

From (11), it follows that the KLDs that define the error
exponents in α and β for the estimator-correlator are

D(H1‖H0) = tr(S)− log det (I + S) (21a)

D(H0‖H1) = log det (I + S)− tr
[
S (I + S)

−1
]
, (21b)

respectively. The SNR matrix has been defined as
S
.
= R−1w Rs. As it can be appreciated, the KLDs (12)

and (21) share the property that they exclusively depend
on the ratio of signal and noise second-order statistics, as
well as the observation size N . For the estimator-correlator,
however, the effect of temporal correlation and the effect of
the observation size are both inherent in the structure of the
SNR matrix S.

For clarity and comparison purposes, we also provide the
expressions of the error exponents for asymptotically large
observation size, i.e., N → ∞. It is a well-known re-
sult in statistical signal processing that any autocorrelation
matrix asymptotically follows the eigenvalue decomposition
R = UΛUH , where the eigenvectors in U are related to
the Fourier matrix and independent of the process, and the
eigenvalues in Λ are equal to the power spectral density at



the fn
.
= n/N frequency [9]. Therefore, S is asymptotically

equivalent to
S→ UΛ−1w ΛsU

H , (22)

in a weak norm sense. That is, its eigenvalues reflect the SNR
at the fn frequency, denoted by [Λ−1w Λs]nn = SNRn. The
expressions in (21) and the result (22) allow the following
interpretations.

1) False-alarm probability: For (21a), by applying the fol-
lowing Taylor series approximation log det(I + S) ≈ tr(S)−
1
2 tr(S2) when SNR → 0, it follows that in the low-SNR
regime,

D(H1‖H0) ≈ 1

2
tr(S2)→ 1

2
N · SNR2

q, (23)

where the quadratic mean of the SNR has been defined
as SNRq

.
=
√

1
N

∑
n SNR2

n. That is, the error exponent
associated to α is proportional to the squared value of the
quadratic mean of the SNR. Furthermore, the observation size
scales as

N ∝ 1

SNR2
q

, (24)

which shows consistency with (14) for white power spectral
densities. Contrarily, at the high-SNR regime, we can approx-
imate the KLD by

D(H1‖H0) ≈ tr(S)→ N · SNRa, (25)

i.e., N times the arithmetc mean of the SNR defined as
SNRa

.
= 1

N

∑
n SNRn. Therefore, at the high-SNR regime,

the α error exponent of the estimator-correlator scales linearly
with the observation size and arithmetic mean of SNR

N ∝ 1

SNRa
. (26)

2) Missed-detection probability: Regarding (21b), on the
one hand, the same low-SNR approximation aforementioned
can be applied to D(H0‖H1), together with the Taylor series
approximation of the second term tr[S(I + S)−1] ≈ tr(S) −
tr(S2) as SNR→ 0. As a consequence, this leads to the same
approximation (23), i.e., D(H0‖H1) ≈ 1

2 tr(S2) and (24). This
shows that both error probabilities, α and β, show the same
behavior in the low-SNR regime in proportion to the squared
of the second-order statistics. On the other hand, as SNR →
∞, the term tr

[
S (I + S)

−1
]
≈ tr(I) can be neglected in

front of the first term log det(I + S) ≈ log det(S). Therefore,

D(H0‖H1) ≈ log det(S)→ .
= N · log(SNRg), (27)

which coincides with the asymptotic behavior of the channel
capacity formula. We have further defined the geometric mean
of the SNR as SNRg

.
= n
√∏

n SNRn. This concludes that the
error exponent of the missed-detection probability scales with
the logarithm of the geometric mean of the SNR, whereas the
required observation size becomes proportional to

N ∝ 1

log(SNRg)
. (28)

We note that (28) reduces to (18) for white statistics.
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Fig. 1. False-alarm probability versus observation size (left) and simulated
false-alarm error exponent versus the number of observations compared to the
theoretical error exponents (12a) for the energy-detector (9).
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Fig. 2. Missed-detection probability versus observation size (left) and
simulated missed-detection error exponent versus the number of observations
compared to the theoretical error exponents (12b) for the energy-detector (9).

In conclusion, we have shown that signal detection based
on the estimator-correlator asymptotically (as M and N go to
infinity) depends on the quadratic mean of the SNR profile
in the low-SNR regime (i.e., wideband signals), and on the
arithmetic and geometric means in the high-SNR regime (i.e.,
narrowband signals). In general, we have shown that the
required observation size scales as inversely proportional to a
function of the SNR (1), whose closed-form expressions have
been derived.

IV. NUMERICAL RESULTS

Simulation results are provided to assess the behavior of the
error probabilities of the energy-detector (9) and the estimator-
correlator (20) in low-SNR conditions. More specifically, the
linear behavior of the logarithm of the error probabilities as
well as the tightness of the Stein’s lemma are evaluated. In
the sequel, the number of observations M vary from 1 to
1024 and are equally spaced in a base-2 logarithmic scale.
The observation size N is set, as an example, to N = 2, as
in the estimator-correlator case the detection of a signal that
presents correlation only in consecutive samples is considered.



A. Energy-Detector

The Stein’s lemmas on the false-alarm probability and
missed-detection probability for the energy-detector (9) are
evaluated in Figs. 1 and 2, respectively.

As it can be appreciated in both figures, the error probabil-
ities in signal detection obey a linear scaling with the number
of observations as M →∞. Furthermore, the rate at which the
error probabilities diminish with M , i.e., the slope associated
to the error exponents, is asymptotically given by the KLDs
(12) which depend on the SNR of the problem, as well as the
observation size N . As the scenario conditions are in the low-
SNR regime, the asymptotic error exponents depend on the
squared value of the SNR. Therefore, the three error exponents
in the right hand of the Figs. are equally spaced, as the SNR
points are equally spaced as well in the logarithmic scale.
Also, because of the low-SNR regime, both false-alarm and
missed-detection probabilities show very similar performances
in terms of achievable error exponents. This corroborates the
fact that the KLDs (21) have the same approximation in the
low-SNR regime.

B. Estimator-Correlator

Finally, the asymptotic performance of the estimator-
correlator (20) is evaluated in terms of Monte Carlo trials
on the error probabilities in several low-SNR conditions.
In this example, the following simple correlation matrix
Rs = SNR[1 −0.5;−0.5 1] has been employed, and Rw = I.

The false-alarm probability and its associated error exponent
is depicted in Fig. 3, whereas the missed-detection probability
and its associated error exponent is depicted in Fig. 4. Under
the same conditions of SNR, observation size, and number
of samples, the estimator-correlator performs slightly better
than the energy-detector as it is able to exploit the correlation
of the signal in Rs. This is seen in the asymptotic error
exponents (21) which, for white Gaussian noise, reduce to
S = 1

σ2
w

Rs. Finally, as expected, for arbitrarily large M , e.g.,
for M ≥ 100, the linear behavior of the logarithm of the error
probabilities with M is observed, as well as the tightness of
the Stein’s lemma for M ≥ 500.

V. CONCLUSIONS

In this paper, the asymptotic behavior of the error proba-
bilities in signal detection has been addressed by means of
the Stein’s lemma. It has been shown that the error exponents
in the energy-detector and the estimator-correlator depend on
the observation size and the SNR profile of the problem.
Closed-form expressions of the asymptotic relation between
observation size and SNR have been obtained. Simulation
results have been reported to assess the linear behavior of the
logarithm of the error probabilities, as well as to evaluate the
tightness of the lemma.
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