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Abstract

Due to the fine delay resolution in ultra-wideband (UWB) wireless propagation channels, a large
number of multipath components (MPC) can be resolved; and the first arriving MPC might not
be the strongest one. This makes time-of-arrival (ToA) estimation, which essentially depends on
determining the arrival time of the first MPC, highly challenging. In this paper, we consider non-
coherent ToA estimation given a number of measurement trials, at moderate sampling rate and
in the absence of knowledge of pulse shape. The proposed ToA estimation is based on detecting
the presence of a signal in a moving time delay window, by using the largest eigenvalue of the
sample covariance matrix of the signal in the window as the test statistic. We show that energy
detection can be viewed as a special case of the eigenvalue detection. Maxeigenvalue detection
(MED) generally has superior performance, due to the following reasons: 1) MED collects less
noise, namely only the noise contained in the signal space, and 2) if multiple channel taps fall
into the time window, the MED detector can collect energy from all of them. Simulation results
confirm that MED outperforms the energy detection in IEEE 802.15.3a and 802.15.4a channels.
Finally, the selection of the threshold of the MED is studied both by simulations and by random
matrix theory.
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Abstract— Due to the fine delay resolution in ultra-wideband
(UWB) wireless propagation channels, a large number of multipath
components (MPC) can be resolved; and the first arriving MPC
might not be the strongest one. This makes time-of-arrival (ToA)
estimation, which essentially depends on determining the arrival
time of the first MPC, highly challenging. In this paper, we consider
non-coherent ToA estimation given a number of measurement trials,
at moderate sampling rate and in the absence of knowledge of
pulse shape. The proposed ToA estimation is based on detecting
the presence of a signal in a moving time delay window, by using
the largest eigenvalue of the sample covariance matrix of the signal
in the window as the test statistic. We show that energy detection
can be viewed as a special case of the eigenvalue detection. Max-
eigenvalue detection (MED) generally has superior performance,
due to the following reasons: 1) MED collects less noise, namely only
the noise contained in the signal space, and 2) if multiple channel
taps fall into the time window, the MED detector can collect energy
from all of them. Simulation results confirm that MED outperforms
the energy detection in IEEE 802.15.3a and 802.15.4a channels.
Finally, the selection of the threshold of the MED is studied both
by simulations and by random matrix theory.

I. INTRODUCTION

There is a growing demand for accurate location estimation

or positioning, which is a key functionality for location-aware

systems. Wireless radio frequency localization is of significant

interest especially in cluttered indoor environments or under-

ground scenarios where the global positioning system (GPS) is

not suitable. Occupying large bandwidth, ultra-wideband (UWB)

signalling offers great potential for high accuracy positioning,

due to its ability to resolve multipath components (MPCs) and

penetrate obstacles [4] [6]. Most UWB localization systems are

based on range measurements between nodes, obtained from

estimating the Time of Arrival (ToA) of the first path of the

received ranging signal [6]. Ranging is based on the assumption

that the ToA of the first detected MPC equals the geometrical

distance between transmitter and receiver, divided by the speed

of light. Thus, the accuracy of the ToA estimation is affected not

only by noise, but also multipath propagation, and the absence

of true line-of-sight (LOS). In dense multipath channels without

LOS, the first detected path is often not the strongest, and

sometimes considerably weaker than later MPCs, thus making

its identification challenging [9].

This work was conceived and completed during the first author’s internship
at MERL.

Considerable research has been done on ToA estimation in

multipath environments that is closely related to traditional

channel estimation where channel amplitudes and delays are

jointly estimated. Examples include the maximum likelihood

method (ML) [3] and a generalized ML ratio test [4]. However,

such estimators require fast sampling (at least at the Nyquist

rate), which increases the required hardware effort and energy

consumption, and suffer from high computational complexity

due to large number of multipath components. Furthermore, they

do not necessarily perform better than simpler threshold-based

estimators (see [9] and reference therein).

A non-coherent and low-complexity alternative is the

threshold-based energy detector (ED) [8] [9]. The ED detects the

signal by comparing the received signal energy to a threshold.

The main advantages of the ED are possibility for sub-Nyquist

sampling rate, the potential for analog implementation, and no

requirements on the knowledge of the signal shape. Another

threshold-based detector is the classical correlation (or matched

filter) estimator. The received signal is correlated with the

transmitted signal template and then the peak of the correlator

output is detected as the estimated ToA. The correlation estimator

achieves the Cramer-Rao lower bound (CRLB) at high signal-to-

noise-ratios (SNRs). However, the correlation method requires

knowledge of the arriving pulse shape and fine clock timing.

A dense multipath channel and frequency-selective propagation

effects [13] make the received pulse templates different in shape

from the transmitted ones, and thus degrade the performance of

the correlation estimator.

In this paper, we propose a new threshold-based estimator

for the non-coherent ToA estimation problem given a number

of measurement trials, a moderate sampling rate and absence

of knowledge of the pulse shape. The proposed ToA estimator

is based on the largest eigenvalue of the covariance matrix of

the received signal in a moving window. Operating at a few

times (e.g., 5 times) the sampling rate of ED, the max-eigenvalue

detector (MED) exhibits significant performance improvement

over ED. The superior performance of MED is explained by

that the largest eigenvalue contains less noise energy and higher

signal energy is collected from multiple channel taps. Compared

with ED that collects the noise energy in all the subspaces, MED

only collects the noise energy contained in the signal subspace.

The better energy collection comes from a longer window to

cover several adjacent MPCs while the noise energy collected

remains unchanged as the window size changes. As a further
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contribution, this paper presents the threshold of MED for a

given false alarm rate, based on random matrix theory. Finally,

we show that MED is a generalization of ED since it includes

the latter as a special case. Many advanced techniques originally

designed for ED, such as the leading edge search algorithms [7],

can also apply to MED with little modification.

It is worth noting the differences between MED and the so-

called super-resolution ToA estimation [12]. The super-resolution

approach takes the Fourier transform of the time-domain signal,

and applies, e.g., the multiple signal classification (MUSIC)

algorithm to resolve MPCs. First, while MUSIC and similar

algorithms intend to use the super-resolution array algorithm to

resolve MPCs from each other, our work focuses on improving

the ability to detect the presence of either one channel path or a

cluster of multiple channel taps. Indeed, our approach works par-

ticularly well in dense multipath environments in which energy

from adjacent channel paths are close enough to be collected in

one window. Secondly, the MUSIC algorithm requires accurate

estimation of the number of signals, which is difficult when some

MPCs are weak or there exists a large number of MPCs. Our

work, on the other hand, simply determines whether a signal

exists in a certain window or not and thus does not require such

order estimation. Finally, the MUSIC algorithm needs to know

the pulse shape, which may be impractical for the reasons stated

in the previous paragraph.

II. THE TOA ESTIMATION

A. Multipath Channels

The impulse response of a UWB multipath channel can be

written as [13]

h(t) =

L
∑

l=1

αlξl (t− τl) , (1)

where L is the number of multipath components, {a1, · · · , aL}
and {τ1, · · · , τL} are the sets of the channel gains and path

delays, respectively, the ξl(τ) are the pulse distortion functions

due to frequency selectivity of the propagation effects, and τ1
is the ToA to be estimated.1 Let the transmitter send a pulse√
Ep(t) where E is the pulse energy and p(t) is a unit-energy

pulse shape, Assuming the transmitter and the receiver are

synchronized, the received signal can be written as

r(t) = s(t) + n(t) =
√
E

L
∑

l=1

αlp (t− τl) + n(t), (2)

where s(t) denotes the signal after distortion by the multipath

channels, n(t) is additive white Gaussian noise with mean zero

and two-sided power spectral density N0/2.

The ToA estimation is based either on the received signal

resulting from a single transmitted pulse or a number of con-

secutive pulses. A large number of pulses can be transmitted

within one coherence time of the channel (i.e., during a time

over which the channel stays essentially constant: the typical

channel coherence time for a UWB channel is of order of tens

1by this formulation, we assume that the runtime of the first MPC is a
measure of the distance between transmitter and receiver. If a direct component
is completely blocked, and/or slowed by being transmitted through a dielectric
medium, the ToA of the first component will not correspond to the geometric
distance. This effect, while important, is beyond the scope of the paper and will
not be considered further here.
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Fig. 1. Block diagram of (a) the energy detection based ToA estimator and (b)
the max-eigenvalue based ToA estimator.

of milliseconds (ms) [14], while the largest channel delay for

the weakest multipath component is about 100 nanoseconds (ns),

observed from channel realizations of UWB channel models [1],

[2]. This means that the total transmission time for 500 pulses

is only 0.05ms, which is much smaller than the coherence time.

However, due to the lack of a phase-locked loop in the non-

coherent UWB receiver, the received signals from different trial

is assumed to have independent unknown phases, that is,

rj(t) = eiϕj

√
E

L
∑

l=1

αlp (t− τl) + nj(t), j = 1, · · · ,M (3)

where j is the trial index, M is the number of trials, and {ϕj}Mj=1
are unknown phases. Both ED and MED are immune to the

unknown phases, as seen later.

B. Energy Detection (ED)

ED is a low-complexity detection method that does not require

knowledge of the pulse shape and operates at symbol-time

samples. As shown in Fig. 1 (a), the received signal is first passed

through a bandpass filter to eliminate out-of-band noise, then

a square-law device and an integrator to collect energy within

a chosen time window. The integrator output samples can be

expressed as

z(ED)[n] =
1

M

M
∑

j=1

∫ nTb

(n−1)Tb

|rj(t)|2 dt, (4)

where n denotes the sample index, Tb denotes the integration

length, and the output samples are averaged over M trials to

reduce the noise contribution. For later comparison with MED,

let Ts denote the sampling period of MED and assume Tb =
W (ED)Ts. We call W (ED) the window size of ED.

The ToA is then estimated based on the energy samples.

One of the low-complexity first path detection techniques is the

threshold-based estimation. In the threshold-based approaches,

each energy sample z(ED)[n] is compared with a threshold to

decide whether signal is present or not. If z(ED)[n] > γ(ED)δ2n
where δ2n is the noise variance and γ(ED) is a threshold, signal

presence is assumed. Note that the maximum energy sample may

not be the true ToA in multipath condition. This motivates many

leading edge search algorithms such as largest-N peak detection,

jump-back-and-search-forward and serial-backward-search etc.

(see [6], [7] and the references therein). In this paper, we only

consider a simple leading edge detection that simply chooses the

earliest larger-than-threshold sample as the estimated ToA.
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C. Max-eigenvalue Detection (MED)

In this subsection, we first discuss the preliminaries on the

max-eigenvalue method for array signal detection. Then we

propose a new ToA estimation method by casting signal detection

within a time window as an array signal detection problem.

The maximum eigenvalue can be used as a test statistic for

array signal detection [5]. There are two hypotheses for the

received array signal:

H0 : y = n,
H1 : y = s+ n,

(5)

where y denotes the received array signal, n ∼ N (0, σ2
nI) rep-

resents real-valued Gaussian noise or n ∼ CN (0, σ2
nI) complex-

valued Gaussian noise, and s is the received source signal. Note

that s can be either s = as representing one source signal s
associated with a steering vector a, or s = a1s1 + a2s2 + · · ·
representing superposition of multiple sources.

The statistical covariance matrix of the received signal is

defined as Ry = E
{

yyH
}

, and it can be verified that under

the two hypotheses Ry is

Ry = σ2
nI, for H0,

Ry = Rs + σ2
nI, for H1,

(6)

where Rs = E
{

ssH
}

. Since the above equations apply to both

the complex and the real-valued case, redundant discussions for

the real-valued case are omitted. The largest eigenvalues of R

under the two hypotheses are

λmax (Ry) = σ2
n, for H0,

λmax (Ry) = λmax (Rs) + σ2
n, for H1,

(7)

Thus λmax (Ry) can be used to detect the presence of a signal.

If the signal s is not present, then λmax (Ry) = σ2
n. If the signal

exists, then λmax (Ry) > σ2
n.

In practice, the decision of array signal detection is made

after observing a number of snapshots {y1, · · · ,yM} where yj

denotes the received signal at the j-th snapshot and M is the

number of snapshots. Because M is limited, a perfect statistical

covariance matrix is not available. The statistical covariance

matrix can be approximated by the sample covariance matrix,

defined as R̂y = 1
M

∑M
j=1 yjy

H
j . The sample covariance matrix

will approach the statistical covariance matrix as M increases.

Moreover, note that the sample covariance matrix is Hermitian

and thus only upper or lower triangular elements need to be

calculated.

Next we return to the ToA estimation problem given the re-

ceived signal {r1(t), · · · , rM (t)} from the M trials. The received

signal is sampled at a moderately high sampling rate. Let

rj [k] = rj(kTs) = sj(kTs) + nj(kTs), j = 1, · · · ,M (8)

denote the discrete-time samples of the j-th trial, where k
denotes index and Ts denotes the sampling period, and let σ2

n

denote the variance of the noise sample nj(kTs). Consider the

signal samples within a moving time window [k0Ts, k1Ts], where

the window size is defined as W (Eig) = (k1−k0+1). From (3),

the windowed samples at the j-th trial can be written as2

rj [k0, k1] =







rj [k0]
...

rj [k1]






=







rj(k0Ts)
...

rj(k1Ts)







= eiϕj

√
E [p1, · · · ,pL]







α1

...

αL






+







nj(k0Ts)
...

nj(k1Ts)






(9)

where

pl =







p (k0Ts − τl)
...

p (k1Ts − τl)






(10)

is the pulse shape for the l-th channel tap appearing in the

window. Because the pulse has limited duration, (9) can be

reduced into two hypotheses: H0 means all channel taps are far

away from the window and thus no signal appears in the window,

and H1 there exists at least one channel tap whose distance to

the window is less than the pulse duration.

H0 : r[k0, k1] = n,
H1 : r[k0, k1] = s+ n.

(11)

After observing M trials, the sample covariance matrix for a

window [k0Ts, k1Ts] can be estimated by

R̂[k0, k1] =
1

M

M
∑

j=1

rj [k0, k1] (rj [k0, k1])
H
, (12)

and its largest eigenvalue can be used to detect whether there

exists a channel tap near the window. As the window moves, the

sequence of the largest eigenvalues is

z(Eig)[k0, k1] = λmax

(

R̂[k0, k1]
)

, (13)

which will be compared with a threshold γ(Eig)σ2
n. The leading-

edge window is the earliest one that detects the presence of

signal. The end time k1Ts of the leading-edge window is chosen

as the estimated ToA. An example of the ToA estimation is given

in Fig. 2. Furthermore, note that the advanced leading edge

search algorithms originally designed for the energy samples

z(ED) can also apply to the max-eigenvalue sequence. Also it is

possible to make more accurate adjustments, such as considering

several consecutive windows with positive detection outcomes,

or further refining within one window. These further techniques

are not discussed here for not being the main focus of our paper.

III. IMPLEMENTATION OF THE MED

A. Reducing Duplicate Calculation of the Sample Covariance

Matrices

In calculating the sample covariance matrices of adjacent win-

dows, it can be seen from (12) that R̂[k0, k1] and R̂[k0+1, k1+1]
have a large number of common elements. Thus it is desired to

reduce the computational load by avoiding duplicate calculation.

In fact, if we define a full covariance matrix R̂ as

R̂[0,K] =
1

M

M
∑

j=1

rjr
H
j , (14)

2This model of the received signal assumes that the phase drift of the receiver
is negligible for the duration of the time window.
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where rj = [rj (0) , rj (Ts) , · · · , rj (KTs)]
T

denotes the full

samples and [0,KTs] is the total observation time, then R̂[k0, k1]
will be a sub-matrix of R̂. When moving the time window, a

series of R̂[k0, k1] covers a band region of R̂. The bandwidth3

is equal to two times the window size minus one. Also note that

only the diagonal elements plus half band needs to be calculated,

because R̂ is a Hermitian matrix. As a result, we replace the

calculation of a series of R̂[k0, k1] (12) by two stages:

1) Calculate half of the band region of R̂[0,K] us-

ing that the i, j-th elements of R̂[0,K] is given

by 1
M

∑M
j=1 rj ((i− 1)Ts) r

∗
j ((j − 1)Ts). Complete the

other half by conjugate transpose.

2) Extract the covariance matrix R̂[k0, k1] from the band

region and calculate (13).

B. Threshold Selection for Max-eigenvalue Detection

The selection of the threshold carries critical importance for

accurate ToA estimation. For different channel models and at

different SNRs, an optimal threshold can be selected to minimize

the average estimation error. The evaluation of the average error

is usually done by numerical simulation or experiments.

An alternative way to set the threshold is to choose a threshold

to achieve a certain false alarm rate for the noise-only time

window. From random matrix theory, the distribution of the

largest eigenvalue of a real-valued (complex-valued) noise-only

Wishart matrix approaches a Tracy-Widom distribution of order

1 (order 2) as both the dimensions go to infinity [11]. In ref.

[11] it is reported that for a moderate number of dimensions this

distribution also fits the actual distribution.

Real-valued case [11]: Denote the Wishart matrix A1 = XXT

where X = (Xi,j)W×M has i.i.d. entries Xi,j ∼ N (0, 1). The

distribution of
λmax (A1)− µ1

υ1
where

µ1 =
(√

M − 1 +
√
W
)2

υ1 =
(√

M − 1 +
√
W
)(

1√
M−1

+ 1√
W

)1/3 (15)

approaches a Tracy-Widom distribution of order 1 (TW1), whose

cumulative distribution function (CDF) is given by

F1(s) = exp

{

−1

2

∫ ∞

s

q(x) + (x− s)q2(s) dx

}

(16)

where q solves the non-linear Painlevvé II differential equation

q′′(x) = xq(x) + 2q3(x). (17)

When the number of trials is M and the window size

is W , the noise-only sample covariance is given by R̂n =
1
M

∑M
j=1 njn

T
j = M

σ2
n
A1 where nj ∼ N (0, σ2

nI). For the MED

to have a false alarm rate P
(Eig)
fa , the threshold should satisfy

P
(Eig)
fa =Pr

{

λmax

(

R̂n

)

> γ
(Eig)
1 σ2

n

}

=Pr

{

σ2
n

M
λmax (A1) > γ

(Eig)
1 σ2

n

}

≈ 1− F1

(

γ
(Eig)
1 M − µ1

υ1

)

. (18)

3The bandwidth of a band matrix is defined as the number of diagonals.

This results in the threshold to be

γ
(Eig)
1 =

µ1 + υ1F
−1
1

(

1− P
(Eig)
fa

)

M
. (19)

Complex-valued case [11]: For A2 = XXH where Xi,j ∼
CN (0, 1), the distribution of

λmax (A2)− µ2

υ2
where

µ1 =
(√

M +
√
W
)2

υ1 =
(√

M +
√
W
)(

1√
M

+ 1√
L

)1/3 (20)

approaches to Tracy-Widom distribution of order 2 (TW2),

whose CDF is given by

F2(s) = exp

{

−
∫ ∞

s

(x− s)q2(s) dx

}

(21)

where q is still the Painlevé II function defined in (17).

The threshold for the complex case should be set to

γ
(Eig)
2 =

µ2 + υ2F
−1
2

(

1− P
(Eig)
fa

)

M
. (22)

It is generally difficult to evaluate F1, F2 or F−1
1 , F−1

2 .

Fortunately look-up tables for both F1 and F2 are already

computed off-line [10].

C. Comparison between ED and MED

The full description of the detection performance are generally

characterized by probability of detection Pd and probability of

false alarm Pfa. For the energy detector, the noise-only and

the signal-plus-noise energy samples have a centralized and a

non-centralized Chi-square distribution, respectively, based on

which P
(ED)
fa and P

(ED)
d can be expressed in closed form [8].

Aside from these complex closed forms, approximated Gaussian

distributions for the energy samples are given in [7], based

on which P
(ED)
fa and P

(ED)
d can be expressed in simple forms

of Q-function. However, for the max-eigenvalue detection, the

expression of P
(Eig)
fa is difficult to compute, and the distribution

of the largest eigenvalue of signal-plus-noise covariance matrix

is unclear so that P
(Eig)
d remains an open problem. For these

reasons, we do not compare in terms of Pd and Pfa, but only

compare the means of the test statistics of the two hypotheses.

To facilitate the comparison to MED, we rewrite the inte-

gration (4) of ED in terms of discrete samples. Assume that

the sampling period Ts is high enough, so (4) can be well

approximated by

z(ED)[n] =
1

M

M
∑

j=1

∫ nTb

(n−1)Tb

|rj(t)|2 dt

≈ Ts

M

M
∑

j=1

{

|rj((n− 1)Tb)|2 + |rj((n− 1)Tb + Ts)|2
+ · · ·+ |rj(nTb)|2

}

,(23)

where Tb = W (ED)Ts is the window size of the energy detection.

1) For ED, the means of the energy outcomes are

E
{

z(ED)
}

/Ts = W (ED)σ2
n, for H0,

E
{

z(ED)
}

/Ts = Es +W (ED)σ2
n, for H1,

(24)
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where Es denotes the energy of the signal within the considered

window. For MED, the means of the max-eigenvalue are

E
{

z(Eig)
}

≈ σ2
n, for H0,

E
{

z(Eig)
}

≈ Es + σ2
n, for H1,

(25)

where the approximate equalities becomes strict equalities as the

number of trials approaches infinity. Comparing (24) with (25),

the noise energy gathered by ED is W (ED) times that of MED.

MED only collects energy on the 1-dim subspace (which is the

signal subspace) of the eigenvector corresponding to the largest

eigenvalue, while ED does not make such distinction. ED collects

the total energy distributed in all subspaces. Related to MED, ED

uses the sum of all the eigenvalues to detect, i.e.

z(ED)[k0, k1] = Tr
(

R̂[k0, k1]
)

=
∑

λi

(

R̂[k0, k1]
)

, (26)

where Tr(·) denotes the trace of a matrix and λi the i-th
eigenvalue. Thus ED can be interpreted as a special case of MED.

2) For dense multipath channels, several paths arrive succes-

sively in the form of a cluster. Each path may have too low

energy to be detected individually, but their energy together

may be high enough to enable detection. ED has to choose a

short window size, usually the same as the pulse duration, since

the longer the window size the more noise energy. However,

MED can choose a longer window size in order to cover

multiple channel taps, as long as the number of trials is large

enough to stabilize the eigenvalues. For this reason, MED is

able to collect energy from several adjacent channel taps to

avoid missing detection of an entire cluster. In the presence of

multipath or at low SNR conditions, missing detection, resulting

in large errors with magnitudes much larger than the pulse width,

dominates the ToA estimation errors. In such harsh conditions,

MED outperforms ED by successful detection of a cluster and

avoidance of the large errors, although the ToA ambiguity (small

errors) within a cluster may not be resolved.

IV. SIMULATION RESULTS

This section shows simulations to compare the ToA estimation

performance of MED and ED. The simulations are done using

channel model CM2 (NLOS 0–4m) of IEEE 802.15.3a [1] and

CM2 (residential NLOS 7–20m) of IEEE 802.15.4a [2], which

are two of the most comprehensive standardized UWB channel

models currently available.

Fig. 2 compares the output of MED and ED. The top subfigure

shows a realization of the noisy received signal under the

802.15.3a CM2 channel model, where two channel paths have

delays τ1 = 1.1ns and τ2 = 3.3ns, the signal pulse after the

multipath channel is plotted red and the noise black. Given

M = 1000 measurements of the received signal, the sequence

of the largest eigenvalue and the energy output is calculated and

displayed in the middle and lower subfigures, respectively. The

2nd subfigure shows z(Eig)[k0, k0 +W (Eig)] where W (Eig) = 10
with sampling period Ts = 0.1ns. As the window moves, the

max-eig output shows a distinct rise when the window is located

at [0.0, 1.0], and reaches its maximum when the window is

located at [0.3, 1.3]. If the threshold is properly selected, such as

λmax > 1.4σ2
n, then the window [0.1, 1.1] is the earliest larger-

than-threshold window and the estimated ToA is chosen as the

end time 1.1ns. In the 3rd subfigure, ED chooses a window size

of Tb = 3Ts = 0.3ns to cover the majority of the pulse shape
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Fig. 2. a) A realization of the received signal under 802.15.3a CM2, where there
exist two channel taps at 1.1ns and 3.3ns, the red stems represent the signal after
the multipath channel and the black ones noise. b) The max-eigenvalue samples,
where the x-axis indicates the start time of the moving window. For a threshold
1.4σ

2
n, the earliest larger-than-threshold window is located at [0.1,1.1], and then

the ToA is estimated as the end time 1.1ns. c) The ED output. It is seen that
MED has more contrast energy separation between the signal-plus-noise and the
noise-only hypotheses.

and in the meanwhile to avoid collecting too much noise energy.

As expected from the reasons given in the previous section, the

energy separation of MED is more pronounced than that of ED.

Fig. 3 compares the root mean square errors (RMSE) of MED

and ED under 802.15.3a CM2, and Fig. 4 under 802.15.4a CM2.

The performance of MED is significantly better than that of ED.

The cost of MED in terms of the sampling rate is reasonable:

the sampling rates are f
(Eig)
s = 1

Ts
, f

(ED)
s = 1

Tb
= 1

W (ED)Ts
and

f
(Eig)
s

/

f
(ED)
s = W (ED) = 3.

Finally, we discuss the impact of different window sizes on

the ToA estimation accuracy. For ED, the window size obviously

changes the noise energy collected by the window. The window

W (ED) has to be large enough to be able to cover the major pulse

shape, and on the contrary, has to be small in order to avoid too

much noise energy. Fig. 5 shows that the choice of window size

does impact the estimation accuracy. For MED, the window size

can be large to cover multiple channel taps, but not too large

for stabilizing the eigenvalues, given limited number of trials.

However, the problem of choice of window size for MED is not

as critical as the that of ED, as long as the window size is large

enough to cover the whole pulse shape. Fig. 6 plots the effect

of different window sizes on the estimation accuracy. As seen

in the figure, for different window size W (Eig) = 5, 8, 10, the

minimum achievable RMSEs are almost the same.

V. CONCLUSION

We have proposed a threshold-based ToA estimator based on

the largest eigenvalue of the covariance matrix of a moving

window. The proposed method operates at moderately high

sampling rate, does not need the knowledge of the pulse shape

and imposes little computational complexity. The proposed max-

eigenvalue method only collects the noise energy distributed

in the signal subspace, which is the main advantage over the

energy-detection method. We have provided a calculation scheme

that avoids duplicate calculations for adjacent time window to

reduce the computational load. The selection of the threshold is

also discussed using random matrix theory. Simulation results
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Fig. 3. Comparison of RMSE of ToA estimation errors of MED and ED,
under 802.15.3a CM2 and M = 500 trials. The other parameters for MED
are Ts = 0.1ns and W

(Eig)
= 5, and those for ED are W

(ED)
= 3 and

Tb = W
(ED)

Ts = 0.3ns. The thresholds used in the figure are of the best
performance chosen from a larger set of thresholds.
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Fig. 4. Comparison of RMSE of ToA estimation errors of MED and ED,
under 802.15.4a CM2 and M = 500 trials. The other parameters for MED
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= 5, and those for ED are W
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= 3 and
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(ED)
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in IEEE 802.15.3a and 802.15.4a channel models validate the

higher accuracy of the max-eigenvalue method. Our new method

thus represents an attractive alternative for low-complexity re-

ceivers in UWB ranging systems.
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