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Introduction

e Energy Efficiency of Cellular Systems became a major performance metric:

Increased use of cellular devices -> C0O, emission rise in cellular networks

Information and Communications Technology is responsible for 2-10% of global energy consumption
Access stratum is responsible for 60-80% the whole cellular network energy consumption

Energy Efficiency metric: Bits/Joule should be jointly considered with spectral efficiency metric

e Methods for Energy Efficient Access Networks:
- Energy efficiency in Base Stations
- Energy efficiency using Cooperative Base Station Schemes
- Energy Efficiency using renewable energy resources
- Energy efficiency via heterogonous networks
- Cognitive Radio & Cooperative relaying for Energy Efficiency

e Our contributions
- LTE-A Downlink CoMP used jointly with traditional Cell Switch Off Schemes
- Model energy & spectral efficiency of CoMP + Cell Switch Off Schemes
- Use DL CoMP to serve the users in switched off cell
- Demonstrate CoMP challenges: Estimation Errors + System Delays
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Overview of Green Access Networks

* Cell size adjustments according to traffic load fluctuations
- Cells with the low traffic zoom into zero, and the neighbor cells zoom out by physical adjustments
- Base stations with low Spectral Efficiency are turned off — Spectrally efficient BSs serve the users
- 24- hour traffic routine is analyzed, optimum cell switch off/on periods are found
- Ratio between the dynamic and the fixed power of a base station: Switch Off decision parameter

Cell Switch Off Suggestion by Academia [6]: 3GPP - Small Cell Switch Off Scheme [15].

G night zone

Legacy RAT Cell A/ E-UTRAN Macro Cell A

X=i(1) s

E-UTRAN
Pico/Micro/Femto’
CellB d

Proposal: Replace antenna tilt/Transmit power increase of active cells by DL CoMP
to serve the users in the switched off cell.
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LTE Downlink Transmission and CoMP Procedures
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LTE Downlink Transmission and CoMP Procedures

CoMP Definition: Dynamic coordination among multiple geographically separated
points referred as CoMP cooperating set for downlink transmission and uplink reception

Downlink CoMP Schemes:

1) Joint Processing: User Plane Data available at each Transmission Point

2) Coordinated Scheduling/Coordinated Beamforming: User Plane Data @
Serving Cell

[
CoMP Deployment Scenarios: f:/ﬂ
1) eNB - eNB ey |
) RRH - RRH 1
) eNB — High Power RRH / _
) eNB - Low Power RRH : i %

i & TransmissionPoint 2
-~ =Slave Cell

w N

I
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CoMP + Cell Switch Off Model

1)
2)
3)

4)

5)
6)

7)
8)

Cellular Layout + Parameters:

19 eNBs with hexagonal layout

Center Cell Switched Off,

Remaining 18 eNBs are in CoMP Cooperating
& Measurement Set

Uniform user distribution in the switched off
celli €[1,..,500]

Cooperating Cell IDs: n € [1,..,18]

Channel samples every TTl according to
Winner SCME model: t € [1,..,1000]

Each UE-eNB link is modeled independently
Large scale path loss model according to ITU-
R report M.2135
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RRC Configuration
= = = = 1) CoMP Measurement Set m = = = =
2) Measurement [D

Reference Symbol Transmission

Serving eNB

== 1y CSIRS

2) Measurement [D

Ceniralized Joint CS1 Feedhack

k==« 1) Implicit/Explicit Feadback == =)
2) CaMP Cell ID

Decentralized CSI Feedhack

2) CoMP Cell ID

CSIdelivery to
Serving e-NB

CoMP Transmission Set Decision
1]Serving e NB RRC/MAC Layer
Feedback Processing
2] Thresholded Decision

DL Grant Allocation

(e ===+« 1) E-PDCCH assignment
2) Numbher of RBs assigned

L _Transfer User Plane Data
recefved from PDN-GW

loint Transmission
1] TM-9 PDSCH assignments
2] Multi- point user plane data
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CoMP + Cell Switch Off Model

CoMP Transmission Set Forming:

Time Domain Estimation/Interpolation of CIR. & CTF -

Serving cell configures the UE for multi-point
measurements for each eNB in CoOMP measurement set
CSI-RS enables Multi-Point Channel Estimation
Actual measured received power from eNB n by user
ifatTTlt:
PRx(Tl, L, l) = PTX(n) - PL(TI,, l) - PFading(n: L, t)
Implicit/Explicit multipoint channel feedback obtained at
Serving Cell
Received feedback due to estimation error + delay:
PRX_err (Tl, t: i) = PRX(n: t — A; i) + Perr(.u» J)
Thresholded Decision to Form the CoMP Transmission

[18.0][18.1]

[10.1]

o111

o111

3,0][[13.1] [19.0|[12.1]

ofr14.1]

Frequency Domain Estimation/Interpolation of CIR & CTF

A\

Set: Serving Cell Power — Measured cell < 3dB [=0 =6 =0 =6
Time-varying CoMP Transmission Set: ]T(l, t) - UE Specific Reference Symbols - PDSCH Demodulation
Joint PDSCH transmission + Cross-point scheduling P et specific Reference Symbols - Release 8

over certain tlme/frequency resources [Cell ID, Antenna Port]: CSI Reference Symbols - Release 10

Note: Release-8 devices use CRS for channel estimation (8 REs over RB pair), but Rel -11
CoMP channel estimation uses CSI-RS (1 RE over RB pair per antenna port) = Multi-point
channel estimation is more vulnerable to channel estimation errors due to scarce REs to
track the channel using autocorrelation functions

Carleton University: G. Cili, H. Yanikomeroglu, F. R. Yu ICC 2012 June 15. 2012




CoMP Performance Metrics - Capacity

e Joint PDSCH transmission (TM-9) mitigates the Inter-cell Interference

Single Point Transmission CoMP Downlink Transmission
SINR = _ Pserving SINR _ Pserving + P] + P,
L P: 4+ P CoMP K
i=11i Noise i=1 Pi + PNoise
i#=jm

Total received Power from CoMP Transmission Set

Pir(i,t) = Z Prx(n, t,i)

neJT(i,t)

Perceived Downlink Capacity due to CoMP

Prr(i,t)
Pnoise T+ Zn&]T(i,t) Prx(n, t,1)

C(i,t) = BW(i,t) *log,(1 + )

Note: CoMP transmission set JT (i, t)_is formed according to delayed and inaccurately
estimated channel samples. BW (i, t) is dependent on the number of RBs assigned to UE
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CoMP Performance Metrics — Energy Efficiency

CoMP Power Consumption Model

Signal Processing Power Psp_comp = 58 * (0.87 + 0.1N, + 0.03N2)
' C
Backhauling Power BH 50w

Po., =
BH " 100Mbits/sec "

Additional Data capacity Cryy = Nex(ZNo)*prq bits/sec
: BH T
for CoMP Backhauling S

Total Power Consumption _ Pryx
of an eNB using CoMP Pcomp = Ns * N% & PAy, + Psp | (1 + Cc)(1 + Cpp) + Py

Power Consumption Parameters

N, = Number of Sectors N pa = Power amplifiers per sector Pry = DL Transmit Power, C- = Cooling Loss

sector

Cpp = Battery Backup N, = Number of points in Joint Transmission p = pilot density g = CSl signalling

Ts = Symbol Period PArr = Power Amplifier Efficiency
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CoMP Performance Metrics — Energy Efficiency

Capacity (bits/sec)

Energy Efficiency = = bits/Joule

Power Consumption(Joules/sec)

Time Varying Energy Efficiency

Joint Transmission CoMP Operation (No = 2) EE(i,t)

B C(i,t)
Peomp + (N]T(i,t) - 1) * (Pcomp — Ppase)

Single Point Transmission (N = 1) EE(,t) = C(i,t)

PBase

Notes:
1) Pggse has Pgy = 0 since there is not need for multi-point CSI transfer to serving cell
2) PSP—COMP = 58W since NC =1
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Propagation Model — Large Scale Pathloss

PLLOS(dB) = 2210g10d + 28+ 20 loglofc , 10m<d< dBP;
PLi,s(dB) = 40log,od + 7.8 + 2logyof; — 18logiohps — logiohyr, dgp < d < 5000m;

PLNLOS(dB) = )
161.04 — 7.1logyo L + 7.5log;o hy — (24.37 -3.7 (=) ) ¥ log1o hgs + (43.42 - 3.110g; hys) *

hps

(10g10 d— 3) + 20 loglof; - (32(10g10 1175hUT))2_ 4‘97) ;

18 _a _4
Prob(LoS) = min (? , 1) * (1 —e 63) +e 63,

AY

20 | Urban IMacro Slpatial FfathlosslModel |
BS (Base Station) Antenna Height 24 m = °l
20W 0200 400 600 800 1000 1200 1400

Distance (meter)
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Propagation Model — Small Scale Fading

( Complex Baseband Channel Impulse Responsez]

h,;(t,1;) = A (t)eJ'Zﬂfdl(t)ejanCrlej2n®l5(T

— TI )
(Recelved Multlpath Signal in Time Domain

~N

s(t) = 2/11 * cos(anCt + 2mfqt + qbl)
\ =0 J

Received Power Change Due to Small Scale Fadina

. |ZL: h ,'(t,T)l
Prading(n, 1, £) = 10 * log;o[(=————)]

- J

Received Power Level with respect to RMS (dB)

10

-10

20+

=30+

40!

50+

-60

Slow-Flat Fading Channel Model

1000

2000 3000 4000 5000
Time Elapsed (ms)

e Complex multipath components go through summation due to the narrow band

nature of OFDMA

* Each UE-CoMP measurement set member have independent channels
* Main contributors to the multipath phase are f;, and @,;; 2rf.7; is due to difference

of propagation of each multipath delay tap
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CoMP Set Degree:
— CoMP Set Degree:

CoMP Set Degree:
— CoMP Set Degree:
— CoMP Set Degree:
. — Traditional Scheme .| = Traditional Scheme

0 50 100 150 200 250 300 0 10 20 30 40 50 60 70
Energy Efficiency (kbits/Joule) Received Downlink Capacity (Mbits/sec)

CoMP Set Degree:
— CoMP Set Degree:

CoMP Set Degree:
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— CoMP Set Degree:

o
[
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Cumulative Distribution Function (CDF)
Cumulative Distribution Function (CDF)

e CoMP aided schemes yield both spectrally and energy efficient systems compared to traditional
cell switch off schemes

* Increased CoMP Transmission Set Degree improves the DL capacity due to mitigated ICI

 Non-adaptive increase in COMP set degree decreases the energy efficiency of the system since the
gained capacity is not worth the power consumption overhead

* Proof of Concept: Serving cell needs an adaptive thresholded decision mechanism for Joint
PDSCH transmission set clustering.
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Average Downlink CoMP Set Degree vs. Time for All Users

Performance Subject to Multi-Point Channel Estimation Errors

Downlink CoMP Set Degree Required

T 13

Downlink Capacity versus Time

Average Downlink Data Rate {Mbits/sec)

|

200

400 600 800 1000 0

Half Wavelength Channel Samples (1 sample/TTI)

Impact of Incorrect Channel Estimation on Used Compset Degree

261

24

22

2

18

16

Downlink CoMP Set Degree Required

200 400 600 800
Half Wavelength Channel Samples (1 sample/TTI)

1000

14

Received Downlink Cata Rate (Mbits/sec)

0

Percentage of Users sorted by Ascending Average CoMP Set Degree
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Capacity and Energy Efficiency Degradation due to Channel Estimation Error
80 T T T T

—+— Energy Efficiency Degradation - 4dB Estimation Error
—&— Energy Efficiency Degradation - 8dB Estimation Error
—#— Energy Efficiency Degradation - 12dB Estimation Error
70 —+— Downlink Capacity Degradation- 4dB Estimation Error
—o&— Downlink Capacity Degradation- 8dB Estimation Error
—#— Downlink Capacity Degradation- 12dB Estimation Error

Percentage Performance Degradation

| | | | |
0 10 20 30 40 50 60 70 80 90 100
Percentage of Users sorted by Ascending CoMP Set Degree

° PRX_err (Tl, L, i) = Ppyx (Tl, t —A, i) + Porr (,u, 0)

e Users that require higher Joint Transmission CoMP sets get affected the most

* Channel Estimation Errors decrease the used CoMP set degree, eNBs that are supposed to be
part of joint transmission get down-selected due to estimation errors

* Energy Efficiency and Capacity get affected differently since Capacity degradation is dependent
on CoMP set degree and the choice of points however energy efficiency is reliant on
capacity/power trade-off where power consumption is purely dependent on the set degree
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Performance Degradation Due to CoMP System Delay

CoMP Clustering Decision Delay are due to:
1) Exchange of multi-point CSI feedback between the CoMP measurement

set members and the serving cell (anchor) — lack of aggregate feedback
2) Network Topology Limitations causing latency
3) Node Processing & Decision Delay:
* Received Power Estimation
e Sorting the members of CoOMP measurement set
e Thresholded Decision
4) Exchange of User Plane payload between the transmission points

E[h(tlirl)h(tlrrl)*] E[h(tliTl)h(tNrTl)*]
o Rh(ATM, Tl) =
E[h(tNi Tl)h(tli Tl)*] E[h(tNi 7:l)h(tN' Tl)*]

 Prob(|h(t;, o) — h(tj,TO)l >¢) <
2(Rp(|At = 0,A7 = 0|) — Ry (|t; — ¢, AT = 0]))/&?

* R, (Aty, 1)) is a decreasing function with a maximum value at R (0, 7;)

* Increased System delay or High Doppler shift will yield inaccurate clustering
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Percentage Perfarmance Degradaton

Performance degradation under low mobility conditions

(v=6km/h)
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Performance degradation under high mobility conditions
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60 0 @ [ 0

Percentage of Lisars sorted by Ascanding CoMP Sef Degree

- For low coherence time scenarios, CoOMP clustering gets affected severely

- Multi-point channel estimation errors had a direct impact on decreasing the used
joint transmission set degree, whereas system delays create performance degradation
just by changing the members of the CoMP set for the same set degree
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CONCLUSION & SUMMARY

e CoMP aided cell switch off schemes yield both energy and spectra efficient systems

* Unneccessary increase CoMP set degree decreases the energy efficiency of the system

* Capacity/Power trade-off for the CoMP systems are achieved by Serving cell
thresholding decision for joint PDSCH transmission set clustering

* Traditional Cell switch off schemes have the challenge of proper traffic routine
modeling

e CoMP aided Cell Switch Off schemes are dependent on CSl feedback & clustering
decision accuracy

e Multi-point channel estimation errors degrade the performance by decreasing the
overall average CoMP set degree

e CoMP system delays degrade the performance by inaccurate choice of transmission set
points while keeping the set degree same

* Inter-eNB deployment scenario suffers from faulty clustering under High Doppler
conditions
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Future Work

* Time-varying nature of each multipath delay for each point mentioned in CoOMP measurement
set should be tracked individually using estimation/interpolation filter for CIR

* Tracking will be dependent on multi-point channel estimation each TTl and interpolation of
the results over various subframes

e Estimation Filter length M should be adapted according to the CoMP set degree observed,

especially for low mobility cases that has high CoMP set degrees increased filter length will
improve the performance significantly

o htn,Tl =
2 _ —~
[(Rh(At' Tl) + UnoiseIMxM) 1rh(Atr Tl)]Hhtn n-M+1:71
[h(tnrrl)h(tnrrl)] nozse [h(tn;fl)h(tn M+1;Tl) ‘ l E[h(tnrrl)h(tnrrl)*]
[h(tn—M+1»T1)h(tn»Tl) | - E[h(t,- M+1»T1)h(tn M+ T ] + Ooise E[h(tn—M+1rTl)h(tnrrl)*].

. htnrfl

* htn n-M+1;TL . .

htn—M+1 Tl
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THANK YOU!

QUESTIONS *?
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