

Towards an Ontology and DHT-based
publish/subscribe scalable system

Amina Chaabane 1,2,3,4, Wassef Louati 1,2, Mohamed Jmaiel 1,2, Jorge Gómez-Montalvo 3,4,5, Codé Diop 3,4, Ernesto Exposito 3,4
1 University of Sfax, ENIS, ReDCAD Laboratory, Route de la Soukra, B.P. 1173, 3038

2 University of Sfax, Sfax, Tunisia
3 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

4 Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
5 Facultad de Matemáticas, UADY, México

 {amina.chaabane, jgomez, cdiop, eexposit}@laas.fr ; louatiw@gmail.com,Mohamed.Jmaiel@enis.rnu.tn

Abstract—In the context of Publish/Subscribe systems (Pub/Sub),
Peer-to-Peer (P2P) solutions based on Distributed Hash Tables
(DHT) offer efficient functionalities such as event routing flexibility,
scalability, load balancing and fault tolerance. For event routing, it
uses event identifiers computed by event encryption. Likewise,
Pub/Sub systems based on ontologies offers well adapted semantic
expression capabilities allowing consumers and providers to easily
describe services’ requests and properties. Thanks to the ontologies,
semantic reasoning allows to provide enhanced event discovering.
Indeed, DHT-based systems are based on traditional matching
algorithms while in ontology-based systems, users can use various
literals semantically equivalent but syntactically different expressions
in order to describe their requirements. However, both approaches
present limitations in terms of: semantic expression restrictions for
the first one and scalability issues for the second one. Our solution
consists in combining the advantage of both of them, by taking
advantage of the semantic capabilities of ontologies at local domain
level and the scalable P2P-DHT solutions at inter-domains level. This
paper proposes an approach based on a community-wide ontology in
order to allow publishers and subscribers to use a common semantic
space to characterize production and consumption of resources and
services. Based on this ontology, a P2P network based on distributed
reasoners (i.e. inference engines) will be able to evaluate if a specific
content belongs to an ontology-based community topic. Thus, we use
these topics to compute keys for routing events in a DHT.

Keywords: Pub/Sub systems, P2P networks, DHT, Ontologies,
reasoners.

I. INTRODUCTION
Event-based systems require an efficient communication

model that usually is deployed on large distributed
infrastructures. These systems ensure interaction between two
actors: consumers and providers (based on consumers’ needs)
[5]. These actors can be represented by a simple user or a
personal network's (PN) user which is located in his cluster
composed of personnel devices [13]. Consumers are concerned
on expressing their interests in the form of a subscription (i.e.
filter). Consumers need to personalize their subscription
according their profiles and preferences. A provider publishes
some data to the intermediate event service which is
responsible to sort and filter publication only to interested
consumers. Pub/Sub systems are classified according to event
service topology which describes the brokers’ relationships.
This topology is classified on three basis categories: the
hierarchical, the P2P cyclic (structured, unstructured) and the
P2P acyclic [4]. The preferred topology is P2P cyclic as much

as it ensures scalability. In particular, the structured P2P cyclic
takes the opportunity of using DHT deployed on large
infrastructure to facilitate event routing. Based on DHT, we
must compute an event ID as a key to store and to lookup each
event in and from the root node (responsible node)
respectively. The first class is the topic-based system in which
subscriptions contain only the name of a class of messages.
Each class describes a topic which regroups objects expressing
an affiliation through their subject. The second class of systems
is the type-based subscription scheme. It is very close to the
subject-based scheme. Instead of using additional subjects to
logically group data, the type-based scheme uses the objects
types to differentiate between logical groups. These two classes
of Pub/Sub systems offer only restricted expressiveness.
Finally, the content-based Pub/Sub system fills this gap by
introducing a subscription scheme based on the content of the
published information. With this class, Pub/Sub systems are
most expressive and allow users to obtain just events to which
they are interested on. Subscribers can define, by using a triple
(attribute, operator, value), the criteria that the content of a
published event should satisfy. This is the basic format
subscription of the content-based system. Other formats are
proposed with XML, RDF and OWL in order to enhance the
event semantic. Nevertheless, content-based Pub/Sub are not
simple to be implemented with DHT since it is necessary to
define standardized event IDs. Thus, there is not enough
semantic in current content-based Pub/Sub system based on
DHT.

In this paper, we handle the expressiveness limits of
Pub/Sub systems such as Scribe built on top of Pastry nodes [6,
16]. Scribe is a well scalable topic-based system. However, it
does not support semantic subscriptions and publications.
Despite of the fact that some solutions handle expressiveness
limits in Scribe, these solutions are not sufficient when
dividing the content into several topics for its submission to a
topic-based system. To support more expressiveness, we
propose an ontology-based approach with a numerically
encoding procedure applied to the used ontology allowing
ontology-based event to be routed through DHT nodes and a
semantic matching for subscription discovery. This procedure
is inspired from EASY approach proposed by S. Ben Mokhtar
et al. [14].

The remainder of this paper is organized as follows.
Section II presents a broad overview of related works. In

3rd IEEE International Workshop on SmArt COmmunications in NEtwork Technologies

U.S. Government work not protected by U.S. copyright 6499

section III, our solution aimed at coping with expressiveness
limits of Pub/Sub systems is presented. Section IV presents
several use cases and how our method ensures semantic
matching efficiency in DHT-based Pub/Sub system. The last
section concludes this paper and gives future directions of this
work.

II. RELATED WORK
There has been little research on semantic Pub/Sub system

based on DHT in scientific literature. Several research works
have introduced different solutions to improve scalability and
semantic matching. We find two types of approaches which
generally cope these two Pub/Sub properties. The first
approach satisfies the scalability property using structured P2P
event service on DHT but fails in maintaining the semantic.
The second kind of approach improves the semantic matching
based on ontologies but it loses the scalability of the system.

A number of research works have been conducted in the
area of DHT-based Pub/Sub system such as Scribe [6], p2p-
ToPSS [18], Willow [19] and PastryStrings [1] and Meghdoot
[11]. Scribe is built on Pastry DHT to construct a multicast tree
for each topic. It is scalable and repair peer failure but the main
point of failure is the expressiveness. In fact, it is topic-based
with subscription in the simple form: “topic=x”. P2P-ToPSS
extends Scribe by enhancing subscription form only for
numeric values. It defines schema to fix numeric value on
interval. Then, when user defines subscription with numeric
range, it uses defined schema for dividing this range into
possible values which will be simple topics. This approach
presents some drawbacks. First, P2P-ToPSS overloads Pastry
and several multicast trees when dividing one subscription on
several topics. Second, it is efficient neither for open interval
nor for real values. Thus, it is not expressive and scalable.
PastryStrings handles String and numerical subscriptions with
simple comparison operators. Only, with limited number of
messages, this system is scalable but it is still semantically
inefficient. Meghdoot is a content-based system over structured
P2P networks. It is built on CAN DHT [15]. Meghdoot
subscription is defined through attributes of a defined schema
S= {A1, A2, . . . , An}, where each attribute Ai has a name, type
and domain, and can be described by the set {Name: Type,
Min, Max}. Thus, semantic subscription is not allowed in
Meghdoot and all content-based Pub/Sub over structured P2P
networks. To overcome expressiveness problem, A. Carzaniga
et al. [4] propose SIENA as a content-based system with
hierarchical and unstructured P2P topology. SIENA improves
expressiveness with various subscription types as integer, float,
string, byte, etc. and various comparison operators. The main
shortcoming in SIENA is scalability and load balancing
between event servers. Then, J. Keeney et al [12] extend
SIENA with ontology-based subscription and publication and
introduce simple covering relationships with some operators to
reduce the subscription matching and routing overhead. Thus,
scalability and load balancing problems persist. J. Skovronski
et al. [17] use ontology to describe published data and
SPARQL query as subscription. They classify exchanged data
into domains as topics. For each domain, they define an
ontology model and a responsible agent. This approach
proposes a centralized router which maintains all agents
responsible to various domains. The major advantage of this

work is the semantic description using ontology model.
However, this approach is centralized which inhibits the
scalability.

In this paper, we propose a scalable solution based on
semantic encoding algorithm to overcome limits raised by the
two classes of existing solutions. Our approach satisfies
semantic and scalability properties within an efficient content-
based Pub/Sub middleware.

A.Background on Scribe and Expressiveness Limits
The Scribe multicast tree is built over Pastry DHT. Each

broker is presented by a Pastry peer which is identified by an
unique digit sequence (128 bits).

Figure 1. Scribe multicast tree

In subscription phase, users create different topics to which
other users can subscribe (see Figure 1). When creating a new
topic, a new multicast tree will be created and a new broker
will be selected as responsible for the new topic. The selected
broker must have the closest ID to the subscription’s key.
While going from the subscriber to the responsible broker, a
new branch of the tree is added. Each branch is made up of
intermediate brokers. When a topic is already created, if a
subscription reach a broker already reached, then the
subscription doesn’t continue the path worm the target
(responsible broker). In publication phase, the created
multicast tree is used as follows: the published topic reach the
responsible broker (root) which will be responsible to forward
the notification to interested users through branches of its
appropriate tree.

The expressiveness shortcoming in Scribe is very
apparent. In fact, it only allows filter with equality operator
and an exact matching in view of the fact that DHT encodes
event for routing in P2P. Besides, the Scribe routing does not
consider the semantic equality e.g. if a user subscribes to
“topic=video” and later a publication with “topic=film” is
produced, the subscriber can not be notified in spite of the
equivalence between “film” and “video”.

III. ONTOLOGY-BASED P2P PUB/SUB SYSTEM
In this section, we detail our approach based on a

multimedia delivery use case scenario. Our approach follows
three steps. First, we define the largest taxonomy possible with
ontology description by extending an existent domain ontology
as the Multimedia Web Ontology Language that we use in this
example. This ontology description must be well structured for

6500

organizing services according to their semantic similarity. This
allows efficiently concept and class encoding for event routing
and localization through DHT. Second step consists in
instantiating this ontology for subscription or publication
events. Third, based on the domain ontology, the topic classes
will be defined by axioms expressing the properties that need
to be satisfied by the events belonging to the topics. Inference
engines use these descriptions in order to dynamically compute
topic publishing and subscription. Once the topic is
determined, we follow the routing phase on DHT. We detail
each step in following sections.

A. Domain Ontology Definition
We define a domain ontology that covers the application

domain including the definitions of several concepts organized
in a large taxonomy (see Figure 2). In the domain ontology,
classes are structured according to inheritance relationships
similarly to the object-oriented inheritance hierarchies. In a
multimedia scenario, the root node of ontology graph
represents the multimedia element which is more generic
literal. Then, we find multimedia element types which are
generic and can match a larger number of multimedia content
compared with the types contained in the rest of the ontology
graph. On the contrary, leaf nodes of a graph contain
multimedia types that are said to be more specific than the
other types. Thus, when a user subscribes to the topic “video”,
then a publisher produces a “film”, our system must detect that
the “film” is a “video” and thereafter notify the subscriber. In
this way, DHT nodes that are responsible for the specific topic
(child topic) must know and communicate with others nodes
that are responsible for parent topics. Consequently, the
proposed structure is proven. Besides, this ontology structure is
feasible (possible in real life domain) especially if it is defined
from a well taxonomy. When domain ontology is well
structured and defined, it will be shared with all users. Each
user (subscriber or producer) must create an individual as a
subscription or a publication event.

Figure 2. Ontology instance example

Then, we use a reasoner to infer topics from described
composed content of publication/subscription for each user
(locally). Thus, our approach combines semantics and
scalability, which are provided by the ontology and DHT
respectively. The following step consists on routing
subscription/publication according to topic ID. In the following
section, we detail topic ID calculation.

B. Semantic Encoding Using Prime Numbers
For the DHT routing, we have said that DHT nodes that

are responsible for a specific topic (child topic) must know
and communicate with others nodes that are responsible for
generic topics. For this reason, ontology semantic encoding is
crucial for DHT nodes communication. In this step, we have
followed the approach proposed by S. Ben Mokhtar et al. [14]
for ontology encoding. As shown in Figure 3, we use prime
numbers to assign IDs to topics in the domain ontology. We
start enumeration from the parent to the leaf with prime
numbers. We grant prime number to parent as an ID. And for
children, we grant the multiplication of parent IDs with the
next prime number. Thus, the IDi of class Ci is given by the
expression: IDi = πi x pi when πi is the multiplication of parent
class IDs of class Ci (underlined numbers in Figure 3) and pi is
the prime number of Ci. Which enables us to deduce from a
class ID its parents (generic topic) by simple computing
divisors of the ID which are prime numbers. Once the class ID
is calculated, it will be used for routing on Scribe.

Figure 3. Semantic encoding ontology

C. Routing phase on Scribe
For the subscription/publication phase, consumers use a

GUI for ontology description. Then, we use a reasoner to find
topics. After that, we search the corresponding class ID. Thus,
this class ID will be used as a key and the ontology description
as a value and we use Scribe for subscription and publication
routing as explained in background section. We improve Scribe
by modifying publication phase. In fact, when publication
reaches responsible node (root) in the multicast tree, the root
can handles his ID:

- If the ID is a prime number then it is a leaf class in the
domain ontology and we finish Scribe notification
phase normally.

- If the ID is not a prime number then it computes its
divisors which are prime numbers. From these prime
number divisors, we can find IDs of more specific
classes. These prime number divisors are IDs of more
specific classes. Therefore, the root sends the
publication to roots responsible to the specific classes.
In fact, these roots can have subscribers to more
specific topics and this publication matches it.

IV. USE CASES
In this section several contexts where our solution could be

used will be introduced and illustrated.

6501

D. Home Networks
The explosion of mobile devices with communication

service capabilities has contributed to the apparition of
ubiquitous multimedia scenarios where users can easily create
ad hoc multimedia sessions. Moreover, the increasing use of
social networks has facilitated the apparition of new scenarios
including new ways of sharing and communicating multimedia
information. Within the vast diversity of ubiquitous multimedia
scenarios, we have found that multimedia scenarios in home
networks are particularly important because users produce,
consume, and share a considerable amount of multimedia
information in home networks. The UPnP Forum [20] and
DLNA [2] have envisioned such scenarios and they have
proposed a set of technologies such as [8, 7, 9] in order to
facilitate the integration of home devices in the digital living
experience. Users can also produce, consume, and share
multimedia information when they are away from their home
networks. Furthermore, users expect as good quality of service
from their multimedia services as when they are in their home
networks. The Extended Home concept deals with scenarios
where home based services are accessible to the home user
whether he is inside or away from his own home. In an
extended home, the user not only has access to his services
from his car, office, or other homes but also he has similar
experience no matter his location. Projects like Feel@Home
[3] and EnComPas [21] have targeted and developed such kind
of scenarios. Recently, the UPnP Forum has proposed the
UPnP Remote Access Architecture [10] which aims to allow
generic UPnP devices, services and control points to remotely
interact with the corresponding UPnP devices, services and
control points in a UPnP home network.

We have identified two scenarios in which semantic
description (based on ontologies) facilitates searching of
multimedia content according to user preferences. First
scenario (Fig. 4) shows the home user uses a graphic user
interface to provide a description about the topic in which he is
interested. The GUI shows topic’s options and parameters
according to the content of the ontology-based models (1).
Once the user has provided its preferences, this information is
used by a reasoner and rule engine in order to infer a list of
topics which satisfy user’s demand (2). The results obtained by
the reasoner and rule engines are presented to the user through
a GUI from which he can select the desired content (3).

In the second scenario illustrated by Figure 5, the user
makes a wide search which includes multimedia content
located not only at his home but in other home networks. In
this case, the proposed P2P DHT solution helps to find a route
to the home networks containing the desired topic(s). In Figure
5, we can see that the user is able to obtain desired topics
stored in other homes by using the UPnP DHT (4). In the
Home Network B, the local reasoner and rule engines can
refine the user search (5) based on the semantic topic
description provided by the user in (1).

E. Service Oriented Architectures
Other potentials use case scenarios are the Service Oriented

Architecture (SOA). SOA is an architectural framework or
referential model for building software systems based on
distributed services which may be offered by different service

providers [22]. In a SOA framework, a service exposes its
functionalities in the form of services that can be reused across
different applications, and services consumers are loosely
coupled to the service producers and can bind to the service at
development-time or runtime. To implement this binding,
several methods exist. But for each case, a service repository
which provides the required facilities to discover and use
services is needed [23]. The service repository stores the details
about the services that can be invoked and how to invoke them.
We present hereafter two SOA scenarios in order to illustrate
the use of our proposed solutions.

Figure 4. Topic access by providing semantic description

Figure 5. Remote access of topic using P2P DHTUnits

1) UDDI
Universal Description Discovery & Integration (UDDI) is

the definition of a set of services supporting the description and
discovery of (1) business, organizations, and other Web
services providers, (2) the Web services they make available,
and (3) the technical interfaces which may be used to access
those services [24]. By using our proposed approach (see
Figure 6), a multimedia service provider can use the defined
ontology to register to the UDDI repository and to publish the
semantic expression of capabilities and properties of the
provided services. Thank to DHT, many service providers may
register to the UDDI repository. By using semantic encoding
prime number, scalability issues will be taken into account.
When customers need a service, they will invoke the UDDI
repository by describing service requests and properties. The
resulting discovery service will be more efficient by taking into
account service semantic while using DHT for reducing
response time.

2) JNDI
Another way to bind service user and service provider is by

replacing synchronous messages by asynchronous message. It
aims at dealing with synchronization and reliability. In the

6502

Publish/Subscribe model, entities check on a certain topic.
JNDI (Java Naming and Directory Interface) repository is used
to find out the requested topic. JNDI is a Java API that offers a
naming service and a directory interface. The discovery of
topics will be made from the JNDI. So, it is possible to use our
proposed ontology as a naming service to associate previously
a clear semantic to the topics in the case of federated domains.
By using this ontology combined to the DHT proposition topic
search, message routing efficiency will be improved.

Figure 6. UDDI with ontologies and DHT

CONCLUSIONS AND PERSPECTIVES
In this positioning paper we have proposed a solution

aimed at offering semantic richness and scalability guarantees
for large publish/subscribe systems. Our solution consists in
taking advantage of semantic capabilities of ontologies at local
domain level and scalable P2P-DHT solutions at inter-domains
level. Our approach is based on using well-established and
adopted community-wide ontologies in order to allow
publishers and subscribers to use a common semantic space to
characterize production and consumption of resources and
services. Based on this ontology, a P2P network based on
distributed inference engines are able to evaluate if specific
content belongs to an ontology-based community topic. These
topics are used to compute keys for routing events in a P2P-
DHT system.

In order to illustrate the advantages and the feasibility of
our approach, we have developed two kind of generic use case
scenarios: home networks and service oriented architectures. In
home network scenarios, consumers and providers uses a
common multimedia web ontology in order to describe intra-
home multimedia content publishings and subscriptions. In
such way, a P2P-DHT system will allow to share multimedia
content between large inter-home networks. The second
scenario illustrates how UDDI or JNDI distributed directories
could be defined using domain-level ontologies and inter-
domain P2P-DHT systems in the framework of large SOA
architectures. Our work is still in progress and the current and
the future efforts will be intended to completely develop and
deploy the introduced use case scenarios in the framework of 3
PhD thesis during the FP7-ICT IMAGINE european project.

ACKNOWLEDGMENT

This work has been supported by FP7-ICT IMAGINE research and
development project, funded by the European Commission under the
“Virtual Factories and Enterprises” (FoF-ICT-2011.7.3, Grand
Agreement No: 285132).

REFERENCES
[1] I. Aekaterinidis and P. Triantafillou. Pastrystrings, “A comprehensive

content-based publish/subscribe dht network,” In ICDCS, page 23. IEEE
Computer Society, 2006.

[2] D. L. N. Alliance, “DLNA Overview and Vision Whitepaper,” White
paper, DLNA, 2007. Available online (23 pages)
http://www.dlna.org/news/DLNA white paper.pdf.

[3] M. Bel-Martin, G. Maestro-Molina, M. Mahdi, and O. Dugeon, “ Digital
Home Networking, chapter The Feel@Home System,” ISTE Ltd, Wiley,
2011.

[4] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “ Interfaces and
algorithms for a wide-area event notification service,” 2000.

[5] A. Carzaniga, D. S. Rosenblum, and A. L.Wolf, “Design and evaluation
of a wide-area event notification service,” ACM Trans. Comput. Syst.,
19:332–383, August 2001.

[6] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “Scribe: A
large-scale and decentralized application-level multicast infrastructure,”
IEEE Journal on Selected Areas in Communications (JSAC), 20, 2002.

[7] U. Forum, “UPnP AV Architecture for Universal Plug and Play Version
1.0,” Sept. 2008.

[8] U. Forum, “UPnP-Device Architeture 1.1,” Oct. 2008.
[9] U. Forum, “UPnP-QoS Architecture:3 For UPnP Version 1.0 Status:

Standardized DCP,” Nov. 2008.
[10] U. Forum, “Remote Access Architecture 2,” Apr. 2011.
[11] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi, “Meghdoot:

Content-based publish/subscribe over p2p networks,” in H.-A. Jacobsen,
editor, Middleware, volume 3231 of Lecture Notes in Computer
Science, pages 254–273. Springer, 2004.

[12] J. Keeney, D. Roblek, D. Jones, D. Lewis, and D. O’Sullivan,
“Extending siena to support more expressive and flexible subscriptions,”
in R. Baldoni, editor, DEBS, volume 332 of ACM International
Conference Proceeding Series, pages 35–46. ACM, 2008.

[13] W. Louati and D. Zeghlache, “Personal overlay networks management
using a p2p-based publish/subscribe naming system,” in Proceedings of
the 16th Euromicro Conference on Parallel, Distributed and Network-
Based Processing (PDP 2008), pages 95–99,Washington, DC, USA,
2008. IEEE Computer Society.

[14] S. B. Mokhtar, D. Preuveneers, N. Georgantas, V. Issarny, and Y.
Berbers, “Easy: Efficient semantic service discovery in pervasive
computing environments with qos and context support,” Journal of
Systems and Software, 81(5):785–808, 2008.

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” SIGCOMM Comput. Commun.
Rev., 31:161–172, August 2001.

[16] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,” in
Middleware’01, pages 329–350, 2001.

[17] J. Skovronski and K. Chiu, “Ontology based publish subscribe
framework,” in iiWAS, pages 49–58, 2006.

[18] D. Tam, R. Azimi, and H. arno Jacobsen, “ Building contentbased
publish/subscribe systems with distributed hash tables,” in International
Workshop On Databases, Information Systems and Peer-to-Peer
Computing, pages 138–152, 2003.

[19] R. van Renesse and A. Bozdog, “Willow: DHT, aggregation, and
publish/subscribe in one protocol”.

[20] The UPnP Forum. http://www.upnp.org/
[21] The EnComPAs (Enabling Community Communications - Platforms

and Applications) project website, http://encompas.org/
[22] Reference Model for Service Oriented Architecture1.0, OASIS

Standard, October, 2006.
[23] D. Krafzig, K. Banke, D. Slama, “Enterprise SOA: Service-Oriented

Architecture Best Practices,” Prentice Hall, November 09, 2004.
[24] “UDDI Spec Technical Committee Draft 3.0.2,” OASIS Standard,

October 2004.

6503

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

