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Smart Scheduling and Feedback Allocation over

Non-stationary Wireless Channels

Mehmet Karaca, Tansu Alpcan, Ozgur Ercetin

Abstract—It is well known that opportunistic scheduling al-
gorithms are throughput optimal under dynamic channel and
network conditions. However, these algorithms achieve a hy-
pothetical rate region which does not take into account the
overhead associated with channel probing and feedback required
to obtain the full channel state information at every slot. In
this work, we design a joint scheduling and channel probing
algorithm by considering the overhead of obtaining the channel
state information. We adopt a correlated and non-stationary
channel model, which is more realistic than those used in the
literature. We use concepts from learning and information theory

to accurately track channel variations to minimize the number of
channels probed at every slot, while scheduling users to maximize
the achievable rate region of the network. Simulation results show
that with the proposed algorithm, the network can carry higher
user traffic.

I. INTRODUCTION

In wireless networks, the channel conditions are time-

varying due to the fading and shadowing. Opportunistic

scheduling algorithms take advantage of favorable channel

conditions in assigning time slots to users. Optimal scheduling

in wireless networks has been extensively studied in the

literature under various assumptions. The seminal work by

Tassiulas and Ephremides have shown that a simple oppor-

tunistic algorithm that schedules the user with the highest

queue backlog and transmission rate product at every time

slot, can stabilize the network, whenever this is possible [1].

A common assumption in the literature on opportunistic

algorithms is that the exact and complete channel state in-

formation, (CSI) of all users is available at every time slot.

Hence, these algorithms achieve a hypothetical rate region

by assuming that full channel state information is available

without any channel probing or feedback costs. However,

in practice acquiring CSI introduces significant overhead to

the network, since CSI is obtained either by probing the

channel or via feedback from the users. In current wireless

communication standards such as WiMax and LTE there is a

feedback channel used to relay CSI from the users to base

station. Obviously, this feedback channel is bandlimited and

it is impossible to obtain CSI from all users at the same slot.

Another common assumption that does not hold in practice

is the wireless channel being independent and identically
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distributed (iid), and being governed by a stationary stochastic

process. The most common assumption is that the channel can

be modeled by a stationary Markov chain. The measurement

study in [2] shows that the wireless channel exhibits time-

correlated and non-stationary behavior.

In this work, we develop a joint scheduling and chan-

nel probing algorithm for time-correlated and non-stationary

channels. The channel probing is based on Gaussian Process

Regression (GPR) technique [3], which is used to learn and

track the wireless channel. The scheduling part is based on

well known Max-Weight algorithm. The joint algorithm dy-

namically determines the set of channels that must be probed

at every time slot based on the information obtained from

the previous channel observations, and then schedules a node

based on the obtained CSI and queue states. We show that

GPR-based probing works well for realistic, time-correlated

and non-stationary wireless channels at significantly lower

probing cost.

Our contributions are summarized as follows:

• We use information theoretical concepts to quantify the

uncertainty in the channel state under finite and infrequent

measurements.

• Based on the work in [4], Gaussian Process Regression

learning algorithm is proposed to track the channel evo-

lution.

• A joint scheduling and probing algorithm is proposed

in which the subset of users probed at every slot is

adaptively selected based on the dynamics of the channel

processes.

• We implement a realistic network setting where we sim-

ulate High Data Rate (HDR) protocol in CDMA cellular

networks, and wireless channel is modeled as time-

correlated and non-stationary. We show by numerical

analysis that when our proposed algorithm is used the

network can carry higher user traffic compared to Max-

Weight algorithm with full CSI.

II. RELATED WORKS

In [5], the authors propose a throughput-optimal algorithm

when channel distribution is known. In [6], the authors present

a joint algorithm for multi-channel system with limited feed-

back bandwidth. The joint scheduling and probing problem

is transformed to multi armed bandit problem in [7]. In [8],

channel probing is performed at the beginning of transmission

by taking a portion of time slot. Then, the problem of finding

optimal joint algorithm is transformed into an optimal stopping

time problem and is solved by Markov Decision Process

http://arxiv.org/abs/1911.03632v1
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(MDP). Aforementioned works assume that the underlaying

stochastic process of the channel evolves according to a fixed

stationary process such as ergodic Markov chain. In practice,

such an assumption does not hold most of the time. In addition,

the authors in [9] proposed a technique to estimate future

values of the fading coefficient of a non-stationary channel.

The proposed technique is based on the autoregressive (AR)

model with order p. According to AR model, the current

CSI of a user can only be determined when p previous CSIs

of that user are given. Regarding to a joint scheduling and

probing problem, the corresponding user must be probed at

every previous p slots to obtain p previous CSIs. However,

a joint algorithm does not necessarily probe a user at every

time slot. Therefore, the proposed technique is not suitable for

a scheduling problem with limited feedback.

There are very few studies which propose a scheduling

algorithm for non-stationary channels. In [10], the authors

showed that with Max-Weight algorithm the average queue

sizes increases exponentially with the number of users. It

was assumed that channel state information of each user is

available at the scheduler at every time slot.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a cellular system with a single base station

transmitting to N users. Let N denote the set of users in the

cell. Time is slotted, t ∈ {0, 1, 2, . . .}, and wireless channel

between the base station and a mobile user is modeled as

a time-correlated fading process. The gain of the channel is

constant over the duration of a time slot but varies between

slots. Let Cn(t) denote CSI of user n at time slot t. Cn(t)
is a random process which may or may not have a stationary

probability distribution. Let cn(t) represent the realization of

Cn(t) at time t, n ∈ {1, 2, . . . , N}. In the rest of the paper,

we use channel and user interchangeably.

Let µn(cn(t)), or simply µn(t), denote the transmission rate

of user n which depends on CSI of that user, and is bounded

as µmin < µn(t) < µmax. We assume that at each time slot at

most one user can be scheduled to receive data from the base

station. The base station transmits to users at fixed power, so

transmission rate of each user only depends on cn(t).
Let an(t) be the amount of data (bits or packets) arriving

into the queue of user n at time slot t. We assume that

an(t) is a stationary process and it is independent across

users and time slots. We denote the arrival rate vector as

λ = (λ1, λ2, · · · , λN ), where λn = E[an(t)]. Let q(t) =
(q1(t), q2(t), · · · , qN (t)) denote the vector of queue sizes,

where qn(t) is the queue length of user n at time slot t.

Definition 1: A queue is strongly stable if

lim sup
t→∞

1

t

t−1
∑

τ=0

E(qn(t)) < ∞ (1)

Moreover, if every queue in the network is stable then the

network is called stable.

The operation of the system is as follows. At the beginning

of a time slot, CSI of a subset of users is obtained by the

base station. Then, the base station schedules a single user

out of this subset for transmission. Here, the only overhead we

take into account is the channel bandwidth and the time used

for obtaining CSI. We consider dynamic feedback channel

allocation as follows:

Dynamic feedback channel allocation model: According

to this model, there is no dedicated feedback channel, and

CSI is relayed over the data channel. Hence, depending on

the needs of the algorithm CSI from varying number of users

can be obtained. We quantify the overhead of obtaining the

CSI of a single user in terms of a time fraction of the time

slot. This time duration may include the time spent for pilot

signal transmission, measurement of the signal strength of pilot

signal and the transmission of CSI to the base station. Assume

that β fraction of the time slot is consumed to obtain CSI from

a single user. Hence, only (1−mβ)×Ts seconds are available

for data transmission when m users are probed. The amount

of data that can be transmitted by user n is given by,

dn(t) = (1−mβ)Ts × µn(t). (2)

The joint policy π selects the triplet (n,m, Sm) under this

model at each time slot t, where n is the scheduled user, Sm

is the set of probed users and m is the number of users in Sm.

We assume that the scheduled user at slot t is selected among

the users probed, i.e., n ∈ Sm. Given π = (n,m, Sm), n is

determined according to Max-Weight rule, i.e.,

n = argmax
i∈Sm

qi(t)di(t). (3)

Let F be the set of feasible policies at a given time slot and

π ∈ F .

The amount of data that is transmitted by user j at time slot

t under the joint scheduling and probing policy π, is given as

follows,

rj(π, t) =

{

dj(t) ; if user j = n

0 ; otherwise
(4)

The dynamics of the queue of user n under scheduling policy

π, is,

qn(t+ 1) = max(qn(t) + an(t)− rn(π, t))
+. (5)

where (x)+ = max(x, 0).

A. Problem Formulation

We present the following definitions before discussing the

problem formulation.

B. Hypothetical and Functional Rate Regions

The achievable rate region (shortly, rate region) of a net-

work is defined as the closure of the set of all arrival rate

vectors λ for which there exists an appropriate scheduling

policy that stabilizes the network.

Definition 2: Λun is the hypothetical rate region where full

CSI is available (e.g. by an Oracle) without any channel

probing or feedback costs.

Definition 3: Λfull is the achievable rate region when prob-

ing cost is taken into account and when all users’ channels
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are probed at every time slot according to dynamic feedback

model.

Definition 4: Λ is the rate region under dynamic feedback

model when CSI from a subset of users is available.

C. Optimization Given the Steady-state Channel Distribution

Our aim is to find a joint scheduling and channel probing

policy that stabilizes the network for a given set of arrival rates

within achievable rate region Λ by dynamically determining

a subset of channels probed, and by scheduling a user from

this subset at every time slot. Given the queue state q(t), we

consider the following optimization problem:

max
π∈F

{

E

[

N
∑

n=1

qn(t)rn(π, t)|q(t)

]}

, (6)

D. Tracking the Instantaneous Channel States

In practice, it is not possible to accurately determine the

exact channel distributions a priori to system operation. Hence,

we propose to use a learning algorithm to track the channel

evolution. Let ĉn(t) denote the estimated CSI of user n

at the beginning of time t. Let µ̂n(t) denote the estimated

transmission rate of user n at time t. One can replace the

actual rates µn(t) by µ̂n(t) to obtain a new set of policies

π̂ = (n̂, m̂, Ŝm̂) according to dynamic feedback model. Also

let d̂n(t), denote the amount of data that can be transmitted

by user n by using ĉn(t) at time t. Similarly, the estimated

service rate r̂n(π̂, t) is defined according to (4) by replacing

dn(t) with d̂n(t).
The quality of the estimate of an instantaneous channel state

depends on which users are probed at each slot, i.e., Ŝm̂. Here,

we design a joint algorithm that takes past observations of

the channels as an input and determines a subset of users to

be probed at time t so that the channel estimation error is

minimized and the rate region is maximized.

E. Multi-objective Dynamic Network Control

Note that channel estimation is inherently error-prone. The

degree of uncertainty in the estimate of the current channel

state depends on the previous channel observations, and the

dynamics of the channel. In this context, we define information

of an unexplored channel as the uncertainty in the channel state

given its past observations. This information can be exactly

quantified by using the entropy definition given by Shannon.

Accordingly, the scalar quantity In(t) denotes the information

of channel state of user n at the beginning of time slot t given

past observations of the channel. For instance, the information

about a channel whose state was observed recently and many

times before is less than the channel which has not been probed

for a long time, since the uncertainty in the state of the latter

is higher.

Hence, we have two objectives. First one is to schedule

users so that stability of the network is preserved. The second

closely related objective is to probe users to acquire as much

information about their current channel state as possible.

• objective 1: max
∑N

n=1
qn(t)d̂n(t)

• objective 2: max
∑N

n=1
In(t)

We seek a joint feasible policy π̂ which determines a subset

of users probed by considering both objectives, and schedules

a user out of this subset according to Max-Weight algorithm.

The most common approach to find the solution of multi-

objective optimization problems is the weighted sum method.

The problem under dynamic feedback model is given with a

constraint which ensures at most M channels are probed at a

given time slot:

Problem :

max
π̂∈F

N
∑

n=1

α1qn(t)r̂n(π̂, t) + α2In(t) (7)

s.t. m ≤ M,

Note that the scheduling and probing decision depends not

only on the queue sizes and the estimated channel rates as in

the original Max-Weight algorithm, but also on the uncertainty

in each channel state given its past observations. Also, (7)

exhibits the well-known “Exploration vs. Exploitation” trade-

off, since the first term in the summation aims to stabilize

the network while the second term aims to maximize the

information collected about the channel states. In the following

sections, we deal with a modified version of this problem,

where we divide the objective function in (7) by α1, and define

a single weight ξ = α2

α1

. Note that when ξ is tuned to higher

(lower) values, the channels are probed more (less) frequently.

IV. ESTIMATION OF CSI WITH GPR

The problems given in (7) involves estimating d̂n(t) from a

set of past channel observations. The problem of predicting or

forecasting the value of a variable from observations of other

dependent variables is called regression. There is a plethora

of work for carrying out regression analysis. In this work, we

employ Gaussian Process Regression (GPR) as the technique

for channel estimation. Before explaining how channel state is

estimated with GPR in detail, we first give the main reasons

behind this choice.

• One of the well known methods is autoregressive (AR)

model-based techniques or linear regression. AR is para-

metric, in that the channel function is defined in terms

of a finite number of unknown parameters. However,

determining these parameters is a difficult task especially

when collecting data is costly and the function varies over

time. GPR is a nonparametric regression method model.

Thus, it can offer a more flexible framework for unknown

nonlinearities.

• In contrast to other regression models, GPR provides a

simple way to measure the uncertainty in the estimation

for any given any set of CSI observations. AR model

is lack of providing an analytical way to measure the

uncertainty of the estimation which is important for our

scheduling algorithm and we will mention next.

• The most attractive reason is that GPR can give decisions

with only using the most recent channel observations.

This is especially important for non-stationary channels,
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since previous channel observations may become out-

dated and may not give much information about current

condition.

Let Dn(t) = (cn, τn) denote the set of observations for

channel n at the beginning of time slot t, where cn =
{c1n, c

2
n, . . . , c

w
n } denotes the set of latest w CSI values taken

at times, τn = {τ1n, τ
2
n, . . . , τ

w
n }, and τ in < t, ∀τ in ∈ τn,

i ∈ {1, 2, . . . , w}. We use GPR to predict the value of CSI,

i.e., ĉn(t) at the beginning of time slot t, given Dn(t).
Let p(cn(t)|t,Dn(t)) be a posterior distribution of channel

n. According to GPR, a posterior distribution is Gaussian with

mean ĉn(t) and variance vn(t). Specifically, Gaussian process

is specified by the kernel function, kn(τ
i
n, τ

j
n), that describes

the correlation of channel n between two of its measurements

taken at times τ in and τ jn. It is possible to choose any positive

definite kernel function. However, the most widely used is the

squared exponential, i.e., Gaussian, kernel:

kn(τ
i
n, τ

j
n) = exp

[

−
1

2
(τ in − τ jn)

2

]

. (8)

Given Dn(t), ĉn(t) and variance vn(t) are determined as

follows:

ĉn(t) = kT
n (t)K

−1
n cn, (9)

vn(t) = kn(t, t)− kT
n (t)K

−1
n kn(t), (10)

where Kn is a w×w matrix composed of elements kn(τ
i
n, τ

j
n)

for 1 ≤ i, j ≤ w and kn(t) is a vector with elements k(τ in, t)
for ∀τ in ∈ τn. Hence, the network scheduler can easily predict

the CSI of users at time t by using (9). Furthermore, the

variance vn(t) is used to measure the level of uncertainty in

the estimations, i.e., In(t) as discussed next.

Recall that the entropy of a random variable A is defined

as H(A) =
∑

s ps logs(
1

ps

), where p(.) is the probability

distribution function of A. In our context, the current realiza-

tion of CSI, i.e., cn(t), is a random variable. Accordingly, let

H0
n(cn(t)|t,Dn(t)) and H1

n(cn(t)|t,Dn(t)) denote the entropy

of the random variable cn(t) before and after the probing,

respectively when Dn(t) is given. If channel n is probed at

time t, then H1
n(cn(t)|t,Dn(t)) will be zero since the channel

state is known exactly. Otherwise, the uncertainty increases,

i.e., H1
n(cn(t)|t,Dn(t)) > H0

n(cn(t)|t,Dn(t)). Hence, the

information acquired by probing channel n is the reduction

in its uncertainty, which is simply the difference between its

entropies before and after the probing:

In(t) = H0
n(cn(t)|t,Dn(t)) −H1

n(cn(t)|t,Dn(t)).

The following Proposition is similar to the one given in [4],

and establishes that information obtained by probing a channel

is equal to the variance of the estimate of the state of that

channel.

Proposition 5: Given Dn(t), ∀n = 1, . . . , N , finding the

channel that has the highest information at time slot t is equal

to finding the channel which has the highest variance at that

time slot, i.e.,

i∗ = argmax
n∈N

In(t) = argmax
n∈N

vn(t). (11)

Proof: Since H1
n(cn(t)|t,Dn(t)) = 0 after probing, In(t)

is simply

In(t) = H0
n(cn(t)|t,Dn(t)), (12)

Note that according to GPR a posterior distribution of state of

channel given Dn is

p(cn(t)|t,Dn) ∼ N (ĉn(t); vn(t)). (13)

Then, the entropy of this Gaussian distribution is given by,

H0
n(cn(t)|t,Dn) =

1

2
log(2πevn(t)). (14)

Hence,

i∗ = argmax
n∈N

In(t) = argmax
n∈N

vn(t).

V. JOINT SCHEDULING AND PROBING ALGORITHMS

Here, we define an algorithm for solving problem (7) when

ĉn(t) and vn(t) are calculated as described in the previous

section.

A. Joint Algorithm Under dynamic feedback model

For given, M , ξ, q(t), β, and ĉn(t) and vn(t) determined

by GPR for each user at every time slot t, Algorithm gives

π̂∗
1 = (n̂∗, m̂∗, Ŝ∗

m̂∗):

Algorithm :

(1) probing decision:

For each value of m, m = {1, 2, . . . ,M}, the scheduler

calculates the following weights for ever user n,

Jn
m , qn(t)d̂n(t) + ξIn(t).

Then, the scheduler sorts Jn
m in a descending order and

sums the first m weights. The maximum of the sums is

the maximum of (7). Then, the corresponding m and

the first m users in the order gives m̂∗ and Ŝ∗
m̂∗ ,

respectively.

(2) scheduling decision:

The base station acquires CSI of each user in Ŝ∗
m̂∗ and

user n∗ ∈ Ŝ∗
m̂∗ is scheduled to transmit,

n̂∗ = argmax
n∈Ŝ∗

m̂
∗

qn(t)dn(t).

Proposition 6: Algorithm solves (7).

Proof: The proof is straightforward and it is omitted here

due to lack of space.

VI. NUMERICAL ANALYSIS

In our simulations, we model a single cell CDMA downlink

transmission utilizing high data rate (HDR). The base station

serves keeps a separate queue for each user. Time is slotted

with length Ts = 1.67 ms as defined in HDR specifications.

Packets arrive at each slot according to Bernoulli distribution.

For all simulations, the wireless channel is modeled as corre-

lated Rayleigh fading according to Jakes’s model. Each user
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Fig. 1: Rate regions under dynamic feedback model.

has different Doppler frequency roughly characterizing how

fast its channel changes. The sampling rate for the simulations

is 600Hz which also corresponds to the slot size of HDR.

Finally, the channel process is non-stationary, i.e, the mean of

the channel gain changes over time. The transmission rate and

the number of bits of a user transmits is given as,

µn(t) = BW log2 (1 + SNR × cn(t)) ,

Rn(t) = Ts × µn(t),

where BW is the channel bandwidth set to BW = 1.25 MHz.

The base station has power control to set Signal-to-Noise-

Ratio SNR = 10 dB.

In the first simulation, we demonstrate the rate region of

both algorithms. There are only two users and the probing cost

is β = 0.3. The arrival process for each user is again assumed

to be Bernoulli with a packet size of 631 Bytes. As depicted

in Figure 1, Λun represents the hypothetical rate region which

is obtained when Max-Weight with full CSI is used for

scheduling. The boundary of this region cannot be achieved in

practice since β is never zero. On the other extreme, when all

channels are probed at every slot without neglecting the cost

of probing, we obtain a rate region given as Λfull. Meanwhile,

Algorithm achieves the rate region Λ. Clearly, by predicting

the channel states by employing Algorithm , we can increase

the achievable rate region beyond Λfull. This is because by

reducing the number of channels probed at every slot, we can

use a larger portion of time slot for transmission of data.

Next, we show the performance of Algorithm when there are

20 users in the network. The size of a packet is set to 128 bytes

which corresponds to the size of an HDR packet. Figure 2

depicts the sum of the queue lengths vs. the overall arrival

rate when β = 0.02. Clearly, as the overall arrival rate exceeds

10 packets/slot queue sizes suddenly increase within full CSI

case and the network becomes unstable. However, Algorithm

improves over Max Weight with full CSI by supporting the

overall arrival rate of up to 12 packets/slot. Therefore,the

proposed algorithm can achieve larger rate region.
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Fig. 2: Average total queue sizes vs. overall mean arrival rate.

VII. CONCLUSION

We have developed joint scheduling channel probing algo-

rithms for time-correlated and stationary/non-stationary wire-

less channels. The proposed algorithm has been designed for

the channel probing model where the acquiring CSI of a use

requires β fraction of the time slot. The proposed algorithm

first decides the set of channels that must be probed at the

beginning of each time slot. The set of channels is determined

by considering not only the queue sizes and estimated trans-

mission rate but also the information on each channel. We

apply Gaussian Process technique to predict CSI at each time

slot based on the previous actual CSI observed. In simulation

results, we show that by applying GPR with the proposed

algorithm, the network can carry higher user traffic.
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