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Abstract—It is already well-known that interference alignment
(IA) achieves the sum capacity of theK-user interference channel
at the high interference regime. On the other hand, it is intuitively
clear that when the interference levels are very low, a sum-rate
scaling of K (as opposed toK/2 for IA) should be accessed
at high signal-to-noise ratio values by simple (“myopic”) single-
link multiple-input multiple-output (MIMO) techniques su ch as
waterfilling. Recent results have indicated that in certainlow-to-
moderate interference cases, treating interference as noise may
in fact be preferable. In this paper, we present a distributed
iterative algorithm for K-user MIMO interference networks
which attempts to adjust itself to the interference regime at
hand, in the above sense, as well as to the channel conditions.
The proposed algorithm combines the system-wide mean squared
error minimization with the waterfilling solution to adjust to
the interference levels and channel conditions and maximize
accordingly each user’s transmission rate. Sum-rate computer
simulations for the proposed algorithm over Ricean fading chan-
nels show that, in the interference-limited regime, the proposed
algorithm reconfigures itself in order to achieve the IA scaling
whereas, in the low-to-moderate interference regime, it leads itself
towards interference-myopic MIMO transmissions.

I. I NTRODUCTION

Interference alignment (IA) is a recently proposed transmis-
sion technique for theK-user interference channel which is
shown to achieve a sum-rate multiplexing gain ofK/2 at the
high interference regime [1], [2]. IA is based on appropriate
linear precoding at the transmitters, aiming at post-receiver
processing interference cancellation, and requires only global
channel state information at all participating transceivers.

Exploiting the space dimension of multiple-input multiple-
output (MIMO) systems to perform IA, several research works
presented IA-achieving precoding designs [1]–[10] and investi-
gated the feasibility of IA [11], [12] for theK-user MIMO
interference channel. For the special case ofK = 3, a closed-
form solution for IA was presented in [2] that was further
processed in [6] for increased sum-rate performance. However,
for K > 3 MIMO communicating pairs, closed-form solutions
for IA are in general unknown and several iterative algorithms
have been recently proposed (see e.g. [3]–[10] and references
therein). The vast majority of those algorithms targets at im-
plicitly achieving IA through the optimization of a constrained
objective function. To this end, several objective functions
have been considered, such as for example:i) minimization
of the total interference leakage [5], [9],ii) minimization of
the sum of squared errors [13],iii) minimization of the mean

squared error (MSE) [3], [7], [10],iv) maximization of the
signal-to-interference-plus-noise ratio (SINR) [5], [7]and v)
maximization of the sum-rate performance [4], [6], [8].

Although IA attains the optimum sum-rate scaling at the
high interference regime, there are certain combinations of
SINR levels and channel conditions where it does not [14]–
[16]. For example, the authors in [15] analyzed conditions for
the intended and interference MIMO channels under which
treating interference as noise at the receivers is sum-capacity
achieving. Very recently, the sum-rate performance results of
[16], for K-user MIMO cellular networks with asymmetric
average powers and line-of-sight (LOS) conditions among the
intended and interference links, demonstrated certain regimes
where interference-myopic MIMO transmissions yield supe-
rior sum-rate performance to IA.

Based on the above, it would be desirable to devise a sum-
capacity-achieving transmission design for theK-user MIMO
interference channel that is transparent to the interference
conditions. To the best of our knowledge, the majority of the
available transmission techniques for theK-user interference
channel must know a priori the interference conditions so
as to choose between the two extremes: treating interference
as noise or performing IA. Inspired by the distributed IA
algorithm of [5] and the results of [16], in this paper we present
a distributed iterative algorithm that combines the system-wide
minimum MSE (MMSE) criterion with the waterfilling (WF)
solution [17] to adjust to the interference levels and channel
conditions and maximize accordingly each user’s transmission
rate. Early numerical evidence corroborates our expectation
that the proposed technique reconfigures itself so as to allow
the maximum attainable sum rate for the interference levels
and channel conditions at hand.

Notation: Vectors and matrices are denoted by boldface
lowercase letters and boldface capital letters, respectively.
The transpose conjugate and the determinant of matrixA

are denoted byAH anddet (A), respectively, whereas[A]i,j
represents the(i, j) element ofA and span(A) its column
span.In is then×n identity matrix anddiag{a} represents a
diagonal matrix with vectora in its main diagonal. In addition,
A(n) represents thenth column ofA, ||A||F its Frobenius
norm,Tr{A} its trace and||a|| stands for the Euclidean norm
of a. The expectation operator is denoted asE{·} whereas,
X ∼ CN

(

µ, σ2
)

represents a random variable following the
complex normal distribution with meanµ and varianceσ2.
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II. SYSTEM AND CHANNEL MODEL

We present below theK-user MIMO interference system
model and the wireless channel model under consideration.

A. System Model

A multiuser MIMO system consisting ofK pairs of com-
municating users is considered. In particular, each transmit-
ting user (Tx) k, where k = 1, 2, . . . ,K, equipped with
n
[k]
T antennas wishes to communicate with then

[k]
R -antenna

receiving user (Rx)k. All K simultaneous transmissions of
symbols sk ∈ Cdk×1, with dk ≤ min(n

[k]
T , n

[k]
R ) ∀ k, are

assumed perfectly synchronized and each Txk processes
sk with a linear precoding matrixVk ∈ Cn

[k]
T ×dk before

transmission. In our system model we assume for eachVk that
||V

(n)
k || = 1 ∀ k, n with n = 1, 2, . . . , dk. For the transmitted

power per Txk it is assumed thatE{||VkP
1
2

k sk||
2} ≤ P

with P being the total power constraint per Tx andPk =

diag{[P
(k)
1 P

(k)
2 . . . P

(k)
dk

]}, where P
(k)
n denotes the power

allocated to thenth data stream at Txk. Without loss of gener-
ality, it is assumed throughout this paper thatE{sksHk } = Idk

∀ k. The baseband received signal at Rxk can be mathemati-
cally expressed as

yk = Hk,kVkP
1
2

k sk +
K
∑

ℓ=1,ℓ 6=k

Hk,ℓVℓP
1
2

ℓ sℓ + nk (1)

whereHk,ℓ ∈ Cn
[k]
R ×n

[ℓ]
T , with ℓ = 1, 2, . . . ,K, denotes the

channel matrix between Rxk and Tx ℓ, andnk ∈ Cn
[k]
R ×1

represents the zero-mean complex additive white Gaussian
noise vector with covariance matrixσ2

kIn[k]
R

. After signal
reception, each Rxk is assumed to processyk with a linear
filter Uk ∈ Cn

[k]
R ×dk asUH

k yk.

B. Channel Model

The flat fading channel model of [16] is assumed for which
the channel matrix between Rxk and Txℓ is given by

Hk,ℓ =

{

Hk,ℓ, k = ℓ

αk,ℓHk,ℓ, k 6= ℓ
(2)

where parameterαk,ℓ ∈ [0, 1)1 is used for modeling asymme-
tric average powers among the intended and the interference
links, andHk,ℓ ∈ Cn

[k]
R ×n

[ℓ]
T , which describes Ricean fading,

is defined as

Hk,ℓ =

√

κk,ℓ

κk,ℓ + 1
ak(θr)aℓ(θt)

H +

√

1

κk,ℓ + 1
H

sc

k,ℓ. (3)

In (3), κk,ℓ is the Riceanκ-factor andH
sc

k,ℓ ∈ Cn
[k]
R ×n

[ℓ]
T is the

scattered component ofHk,ℓ such that[H
sc

k,ℓ]i,j ∼ CN (0, 1)

∀ i = 1, 2, . . . , n
[k]
R and ∀ j = 1, 2, . . . , n

[ℓ]
T . Moreover,

aℓ(θt) ∈ Cn
[ℓ]
T ×1 and ak(θr) ∈ Cn

[k]
R ×1 denote the specular

array responses at Txℓ and Rxk, respectively, withθt andθr
being the angles of departure and arrival, respectively.

1For αk,ℓ = 1, (2) results in the one-branch expressionHk,ℓ = Hk,ℓ.

III. A R ECONFIGURABLE DISTRIBUTED ALGORITHM

In this section we present the motivation and mathematical
formulation of the proposed algorithm. A brief discussion on
the characteristics of the algorithm is also included in theend.

A. Motivation

As mentioned earlier, the optimum sum-rate scaling for the
K-user MIMO interference channel depends on the interfe-
rence levels and channel conditions. Treating interference as
noise is preferable at the low interference regime [14]–[16],
whereas IA achieves the sum capacity at high interference [1],
[2]. To this end, choosing between the latter two strategies
requires the a priori knowledge of the interference levels.
However, the vast majority of the IA-achieving algorithms
requires IA feasibility conditions to be met a priori (see e.g.
[1]–[9]). For example, to achieve IA for the3-user4×4 MIMO
interference channel, each Tx must be restricted to send at
most2 data streams to its intended Rx. On the other hand, [16]
demonstrated several low-to-moderate interference scenarios
where interference-myopic MIMO transmissions, each aiming
at the individual user rate maximization, yield higher sum-rate
performance than IA. Finally, a typical feature of the majority
of the IA-achieving techniques is the equal power allocation
at each Tx’s data streams [1]–[5], [7]–[9]. Inspired by the
capacity-achieving strategy for single-user MIMO systems
[17] and the sum-rate results for Ricean fading channels
presented in [16], we intuitively expect that the equal power
allocation per Tx will be suboptimal in the weak interference
regime and under strong LOS conditions.

Motivated by all the above, we present in the following a
reconfigurable algorithm (see also [18]) that implicitly chooses
dk for each Txk accordingly to the interference levels and
channel conditions and jointly designsVk ’s, Pk ’s andUk ’s
for all transceivers to maximize the sum-rate performance.

B. Algorithmic Formulation

The system-wide MSE for the consideredK-user MIMO
interference network is expressed as

JMSE =

K
∑

k=1

E

{

∥

∥UH
k yk − sk

∥

∥

2
}

. (4)

In this paper we designVk andPk for each Txk to maximize
each userk rate under the condition thatUk ’s jointly minimize
(4). In particular, eachVk is obtained as

Vk = GkFk (5)

with Gk ∈ C
n
[k]
T ×dk and Fk ∈ C

dk×dk . Given theUk ’s
minimizing the system-wide MSE, eachGk is derived as
G

(n)
k = E

(n)
k /||E

(n)
k || with Ek ∈ Cn

[k]
T ×dk obtained from

min
{Ek}Kk=1

JMSE s. t. Tr{EH
k Ek} ≤ P. (6)

Note that for theJMSE in (6), (1) withEk = VkP
1
2

k ∀ k was
utilized. Then, for each Txk, Fk andPk are obtained from

max
Fk,Pk

Rk s. t. FkPkF
H
k � 0 andTr{FkPkF

H
k } ≤ P (7)



whereRk is the instantaneous rate at userk given by

Rk = log2

[

det
(

I
n
[k]
R

+Hk,kGkFkPkF
H
k G

H
k H

H
k,kQ

−1
k

)]

(8)
with Qk ∈ Cn

[k]
R ×n

[k]
R denoting the interference plus noise

covariance matrix at Rxk, which is obtained as

Qk =

K
∑

ℓ=1,ℓ 6=k

Hk,ℓGℓFℓPℓF
H
ℓ G

H
ℓ H

H
k,ℓ + σ2

kIn[k]
R

. (9)

Similar to [5] we assume in the following reciprocal forward
and reverse networks and present a distributed iterative algo-
rithm for obtainingVk ’s andPk ’s satisfying (7) withUk ’s
minimizing (4).

1) Forward Network: In the original forward network,
givenVk andPk ∀ k = 1, 2 . . . ,K, thenth column ofUk at
Rx k minimizing (4) is obtained as

U
(n)
k =

B−1k Hk,kV
(n)
k

∥

∥

∥
B−1k Hk,kV

(n)
k

∥

∥

∥

(10)

whereBk ∈ Cn
[k]
R ×n

[k]
R is given by

Bk =

K
∑

ℓ=1

Hk,ℓVℓPℓV
H
ℓ H

H
k,ℓ + σ2

kIn[k]
R

. (11)

2) Reciprocal Network: In the reciprocal network, each Rx
k utilizes Uk to transmit to its intended Txk. Then, each
Tx k computesVk and Pk through the following two-step
procedure.

Step I: Given Uk ∀ k = 1, 2 . . . ,K, each Tx k in the
reciprocal network computes its receive filterEk according
to (6). Hence, thenth column ofGk is derived as

G
(n)
k =

(←

Bk

)−1

HH
k,kU

(n)
k

∥

∥

∥

∥

(←

Bk

)−1

HH
k,kU

(n)
k

∥

∥

∥

∥

(12)

where
←

Bk∈ Cn
[k]
T ×n

[k]
T is given by

←

Bk=

K
∑

ℓ=1

P

dℓ
HH

ℓ,kUℓU
H
ℓ Hℓ,k + µkIn[k]

T

. (13)

In (13), parameterµk is calculated so that the power constraint
at Tx k is satisfied [7].

Step II: After obtaining allGk ’s from (12) and givenPℓ

∀ ℓ 6= k, each Txk computes its optimum precoding and power
allocation matrices for its effective channelHk,kGk assuming
knowledge ofQk, which is given by (9). In particular, the
singular value decomposition (SVD) ofHk,kGk after noise
prewhitening is derived as

Q
− 1

2

k Hk,kGk = WkΛkF
H
k (14)

whereWk ∈ Cn
[k]
R ×n

[k]
R andΛk ∈ Cn

[k]
R ×dk , andFk is the

optimum precoding matrix forHk,kGk to be utilized in (5).
The power allocationPk for each Txk data streams is finally
derived from the WF solution for the channelQ

− 1
2

k Hk,kGk.
The proposed reconfigurable distributed iterative algorithm

is summarized in Algorithm 1.

Algorithm 1 Reconfigurable Precoding

1: initialization: Setdk = min(n
[k]
T , n

[k]
R ) ∀ k = 1, 2, . . . ,K

and start with arbitrary unit-columnVk ∈ Cn
[k]
T ×dk and

Pk = P/dkIn[k]
T

2: Begin iteration
Forward Network

3: ComputeBk at each Rxk according to (11)
4: Obtain each Rxk MMSE filter Uk using (10)

Reciprocal Network
Step I:

5: Compute
←

Bk at each Txk according to (13)
6: Obtain each Txk MMSE-basedGk’s using (12)

Step II:
7: ComputeQk at each Rxk according to (9)

8: Perform SVD to eachQ
− 1

2

k Hk,kGk according to (14)
9: Obtain each Txk precoding matrixVk using (5)

10: ComputePk for each Txk from the WF solution for the

effective channelQ
− 1

2

k Hk,kGk

11: Repeat until sum rate converges, or until the number of
iterations reaches a predefined limit

C. Discussion

The proposed algorithm capitalizes on the reciprocity of
wireless channels, such as when time-division duplexing com-
munication is used, to design, in a distributed manner,Vk ’s
and Pk ’s maximizing the individual user rates as well as
Uk ’s minimizing the system-wide MSE. Similar to [5], in
the forward network each Rxk obtainsUk using only local
information, i.e. Hk,kVk andBk. For the reciprocal network,
in Step I, each Txk computes itsGk using the locally available
HH

k,kUk and
←

Bk. Then, in Step II, each Txk utilizes Qk

available at its intended Rxk to obtainFk andPk maximizing
its own rateRk. More specifically,Step I computes subspaces
span(Hk,kGk) ∀ k whereas,Step II obtains the WF solution

for each effective channelQ
− 1

2

k Hk,kGk. For networks with
low average power interference links and as it will be shown
later on, it is sufficient to useStep II of Algorithm 1 without
Qk. This variation of Algorithm 1, termed as Reconfigurable
Myopic Precoding (Algorithm 2), does not utilize statement
7 in Algorithm 1 and uses statements8 and 10 without Qk.
Obviously, Algorithm 2 does not need each Rxk to feedback
Qk at its Txk and hence the algorithmic complexity is similar
to the algorithms presented in [5].

The adjustment of Algorithm 1 to the interference levels
and channel conditions lies on the WF solution utilized in
Step II. In particular, the algorithm is initialized with the
maximum allowable number of data streams per Txk, i.e.
dk = min(n

[k]
T , n

[k]
R ). In each iteration the receive filters

minimizing the system-wide MMSE are obtained in the for-
ward network and, in the reciprocal network, the WF solution
provides the precoding and power allocation matrices for each
Tx k, thus implicitly dk, that maximizeRk. Our numerous
computer simulation results indicated that the instantaneous
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Fig. 1. Sum-rate performance,R, versus transmit SNR per Tx,P, for 3-user
4× 4 MIMO networks over Rayleigh and Ricean fading withα = 1.

sum-rate performance of our algorithm, obtained using (8) as
∑K

k=1 Rk, converges often to a maximum value.

IV. SUM-RATE PERFORMANCERESULTS

This section presents numerical simulations for the sum-rate
performance of the proposed reconfigurable distributed itera-
tive algorithm for the3-user4×4 MIMO interference channel.
For comparison purposes, sum-rate computer simulations for
the algorithms:i) optimized subspace IA [6, Sec. IV.B.1]
and ii) distributed per stream SINR maximization (Maximum
SINR) [2] are also shown. In particular, we have simulated
the ergodic sum-rate performance defined as [7]

R = E

{

K
∑

k=1

log2

[

det
(

I
n
[k]
R

+Hk,kVkPkV
H
k H

H
k,kQ

−1
k

)]

}

.

(15)
The averaging in (15) was evaluated via Monte Carlo simula-
tions for 100 independent channel realizations and the chan-
nels were normalized asE

{

‖Hk,j‖
2
F

}

= n
[k]
R n

[j]
T ∀ k, j =

1, 2, . . . ,K. Without loss of generality, for the channel model
in Sec II-B, we have assumed thatαk,ℓ = α and κk,ℓ = κ
∀ k, ℓ. For all algorithms,Vk ’s andUk ’s were randomly ini-
tialized with unit norm columns. The proposed algorithm was
also initialized withPk = P/4I4 ∀ k = 1, 2 and3 whereas, for
the optimized subspace IA and Maximum SINR, IA feasibility
conditions were set a priori, i.e. dk = 2 ∀ k = 1, 2 and 3.
In addition, for scenarios with low average power interference
links, we have simulated the ergodic sum rate of a genie-aided
Maximum SINR that utilizesdk = 4 ∀ k = 1, 2 and 3. A
maximum of1000 iterations was used per distributed iterative
algorithm and each algorithm was declared converged when
the difference in its objective function between two successive
iterations was less than10−4.

As shown in Fig. 1 for various Ricean fading channels with
α = 1, the sum rate of the reconfigurable Algorithm 1 is
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Fig. 2. Sum-rate performance,R, versus transmit SNR per Tx,P, for 3-user
4× 4 MIMO networks over Rayleigh fading withα = 10−2.

similar to that of the Maximum SINR. In particular, for low
signal-to-noise ratio (SNR) values, the proposed algorithm
computes Tx filters that maximize signal powers over the
noise power. The latter maximizations include optimum power
allocation, resulting in a slightly higherR than that of the
Maximum SINR in the noise-limited regime. For Rayleigh
fading this behavior happens for SNR values ranging from
−5 to 5 dB whereas, for Ricean fading channels withκ = 10,
the gains from power allocation are higher and for a wider
range of the SNR. To this end, optimum power allocation
seems to result in higherR gains as LOS conditions among
all users in the network become stronger. More importantly,in
the interference-limited regime, the proposed algorithm adjusts
itself so as to achieve IA, which is rate-scaling optimal under
strong interference conditions.

Figures 2 and 3 depict the sum rate versus SNR for Ricean
fading channels withκ = 0 and 10, respectively, and for
low average power interference links withα = 10−2. As
shown, the reconfigurable Algorithm 1 adjusts itself to this
interference scenario as well as to the channel conditions,
and achieves a sum-rate scaling of3 at high SNRs. More
importantly, Algorithm 1 outperforms both the Maximum
SINR and genie-aided Maximum SINR at low-to-moderate
SNRs. As expected, the Maximum SINR, which is restricted to
the IA feasibility conditions, achieves only a sum-rate scaling
of 1.5 at high SNRs whereas, the genie-aided Maximum SINR
results in poor performance at low SNRs due to the equal
power allocation. Within these figures, the performance of the
reconfigurable myopic Algorithm2 is also illustrated and it is
shown that it yields similar sum rate to Algorithm 1. Clearly,
for interference levels withα = 10−2, the low complexity
Algorithm 2 might be used instead of Algorithm 1. Finally,
Fig. 4 depicts the convergence of the instantaneous achievable
sum rate for Algorithm 1 over Rayleigh fading channels with
α = 1 and for various values of the SNR. As shown, the
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Fig. 3. Sum-rate performance,R, versus transmit SNR per Tx,P, for 3-user
4× 4 MIMO networks over Ricean fading withκ = 10 andα = 10−2.

sum rate converges fast to a maximum value and the speed
of convergence depends on the SNR. In particular, as the
SNR increases, more algorithmic iterations are needed for the
convergence of Algorithm 1.

V. CONCLUSIONS

In this paper, a novel reconfigurable distributed iterative
algorithm for K-user MIMO interference networks is pre-
sented. The proposed algorithm combines the system-wide
MMSE with the WF solution to adjust to the interference
levels and channel conditions and maximize accordingly each
user’s transmission rate. As shown, in the interference-limited
regime, our algorithm adjusts itself so as to achieve the IA
scaling whereas, in the low-to-moderate interference regime,
it chooses interference-myopic MIMO transmissions. Fur-
thermore, for all investigated interference cases and channel
conditions, it was shown that the sum rate of the proposed
algorithm is higher than that of all other considered algorithms.
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