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Abstract—This paper considers linear precoding for constant
channel-coefficientK-User MIMO Gaussian Interference Chan-
nel (MIMO GIC) where each transmitter-4 (Tx-7), requires to
sendd; independent complex symbols per channel use that take
values from fixed finite constellations with uniform distribution,
to receiver (Rx-7) for i = 1,2,--- , K. We define the maximum
rate achieved by Tx< using any linear precoder, when the
interference channel-coefficients are zero, as the signab toise
ratio (SNR) tends to infinity to be the Constellation Constraned
Saturation Capacity (CCSC) for Tx-i. We derive a high SNR
approximation for the rate achieved by Tx- when interference
is treated as noise and this rate is given by the mutual inforration
between Tx4 and Rx-i, denoted as/[X;;Y;]. A set of necessary
and sufficient conditions on the precoders under which/ [ X;; Y;]
tends to CCSC for Tx- is derived. Interestingly, the precoders
designed for interference alignment (IA) satisfy these nexssary
and sufficient conditions. Further, we propose gradient-asent
based algorithms to optimize the sum-rate achieved by precing
with finite constellation inputs and treating interference as noise.
Simulation study using the proposed algorithms for a3-user
MIMO GIC with two antennas at each node with d; = 1 for
all 7, and with BPSK and QPSK inputs, show more than0.1
bits/sec/Hz gain in the ergodic sum-rate over that yielded ¥
precoders obtained from some known IA algorithms, at moderge
SNRs.

Index Terms—Gaussian Interference channel, Treating inter-
ference as noise, Precoding, Finite constellation, Integfence
Alignment.

I. INTRODUCTION

Interference Alignment (IA) has been a focus of inten
research on Gaussian interference channels (GICs) in

recent years on the account of the capacity of interferen
channels being unknown in general and the potential of 1A o4
get close to the sum-capacity for a broad class of intertarer?

channels as the signal to noise rat&\(R) tends to infinity.
The scaling of the sum-capacity withg SN R is known as
the sum degrees of freedom (DoF) of the GIC [1]. The su
DoF is known to beK /2, with probability 1, for the K-user

GIC [1] when all the nodes are equipped with a single anter&%tgrference channel [11].T12], and i [10], a metric to find

and time-varying channel gains are assumed. The result
proved by using linear precoding at the transmitters over
arbitrarily large number of symbol extensions and zeroifayc
at the receivers. In a later work! [2], the sum-DoF is shown

Part of the content of this paper appeared in the Proceedht=EE ICC
2013 held during June-13, 2013 at Budapest, Hungary.

be K'/2 with probability1 even in the case of constant channel-
coefficients (that are drawn from a continuous distribgtion
i.e., the channel gains do not vary with time, using a non-
linear 1A technique. When all the nodes are equipped With
antennas, the sum-DoF was shown to3idé/2 for the 3-user
GIC [1]. This result was proved by linear precoding over the
transmit antennas without the use of symbol extensions and
holds true even in the case of constant channel coefficients.
Later [3], with the assumption of constant channel coeffitse
and using a non-linear IA technique, the sum-DoF when
K > % was found to be equal tq\%K where,
ged(M, N) denotes the greatest common divisof\éfand N,
with M being the number of antennas at each transmitter and
N being the number of receive antennas at each receiver. All
the works cited above assumed full channel state informatio
at all the transmitters (CSIT) and receivers (CSIR). Théomot
of sum-DoF involves scaling of sum-rate &sg SNR at
high SNR and therefore, Gaussian input alphabets or lattice
codes are always used in the study of sum-DoF. However, in
all practical scenarios finite constellations liké-QAM and
M-PSK are used at the inputgvith the constraint of finite
constellation inputs, it is not known whether IA is optimal i
some sense

Linear precoding for optimizing the mutual information
between the input and the output has been studied for the
single user MIMO channel with finite constellation inputs in
[4]- [B]. Constellation rotation for optimizing the sumzcity
fé)r SISO Multiple Access Channel (MAC) with finite constel-

S[ﬂgon inputs has been examined|in [7] and linear precoddng f

\elgighted sum-rate maximization in MIMO MAC with finite
nstellation inputs has been studied[in [8]. Note thataine
recoding for the SISO MAC corresponds to constellation
rotation at the transmitter.

Recently, there has been some progress on the analysis of

r,ﬁpite constellation effects if-user SISO GIC[9],[[10]. In[9],

constellation rotation was found to increase the consietfia
gnstrained sum-capacity df-user SISO Gaussian strong

g?]e optimum angle of rotation was proposed. In this paper,
we examine achievable rate-tuples with linear precodirrg fo
{6—user MIMO Gaussian Interference Channel (GIC) with
Inite constellation inputs. Specifically, we treat inteefiece

as noise, i.e., each transmitter reveals its codebook onilg t
intended receiver. The maximum rate achievable under such
a circumstance for transmitter{Tx-:) is given by mutual
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information between the input generated by iDand the finite constellation inputs. We point out that optimizatioh
output at receiver Rx- The channel conditions and values ofmutual information between the input and output in single
SNR under which the decoding scheme of treating interfereneser MIMO channels with finite constellation inputs was
as noise with Gaussian alphabet inputs is sum-capacitsnapti recently solved in[[6]. Prior to this work, gradient-ascent
was found for the2-user SISO GIC in[[13]-[[15], for thé- based algorithms were proposed for optimization of mutual
user SISO GIC in[[16] and for the-user MIMO GIC in [17], information between the input and output in single user
[18]. In a K-user SISO GIC, for given values of channel gainBlIMO channels with finite constellation input iriI[4].[5].
with Gaussian input alphabets, as the SNR tends to infinifurther, optimizing the minimum Euclidean distance metric
treating interference as noise is not sum-capacity optill®! using linear precoding in single user MIMO channels was
With the constraint of finite constellation inputs, it is mié¢ar pursued in[[28]-[[26]. The connection between optimizing th
whether treating interference as noise is optimal in sormsse minimum Euclidean distance metric using linear precoding
First, we need to define a notion of optimality under thand optimizing the mutual information using linear precuyi
constraint of fixed finite constellation inputs and then geal with finite constellation input was revealed inl [5]. It was
decoding and transmit schemes with that notion of optipalitshown that the precoding matrix that maximizes the mutual
Consider a scenario where each transmitt€fx-i), requires information with finite constellation input converges toeth
to sendd; independent complex symbols per channel use thagtrix that maximizes the minimum distance between the
take values from fixed finite constellations with uniformtdis received constellation vectors, at large SNR. We generaliz
bution, fori = 1,2,--- , K, to receiver: (Rx-i). Throughout this connection in the context éf-user MIMO GIC (Theorem
this paper, we assume that none of the direct channel gainsi@r Sectior IV-A).
zero. For ai-user MIMO GIC with finite constellation inputs, The main contributions of the paper are summarized below.
as a measure of optimality of linear precoding in the high SNR

Zer:se,t_we gtrodgfecglgcnotlzn r?t_)n(sjtefl_latlgn Cgr:;stramed tion inputs with precoding, a high SNR approximation for
a ur]f\ 'on a.paﬁl X , ) which is h? med ;S OTIOWS. the rate tuples achieved by treating interference as noise
Definition 1: The maximum rate achieved by xas SNR at the receivers is derived (Theordth 1 in Secfioh IlI).

tends tﬁ |nf|n||ty, u?;_ng any linear pr_ecoder, v(;/hen Lheclzre!]erf I Based on this approximation, we derive a set of necessary
ence channel-coefficients are zero Is termed as the Canstell o,y g fficient conditions under which the precoders are

tion Constrained Saturg-tion Capacity (CCSC) foriTx- CCSC optimal (Theorefd 2, Sectibnl ). These conditions
For the ease of exposition, throughout the paper, we assume ,re gatisfied with probability when the entries of the
that the constellations used for the symbols are all the ssime precoders are chosen from any continuous distribution. It

all the transmitters, and is of cardinality. Hence, the CCSC is observed that the precoders that achieve IA, if feasible,

o For a constanf{-user MIMO GIC using finite constella-

for Tx-i is given bylog, M®:. are CCSC optimal.

In this paper, with the assumption of constalituser  , For the finite SNR case, we propose a gradient-ascent
MIMO GIC with full global knowledge of channels gains, based algorithms to improve the sum-rate achieved by
and finite constellation inputs, we derive a set of necessary treating interference as noise using finite constellation i
and sufficient conditions on the precoders under whichitrgat puts with precoding. Simulation study using the proposed
interference as noise at Rxwill achieve a rate for Tx-that algorithms for a3-user MIMO GIC with two antennas
tends to CCSC for Tx; for all i, as SNR tends to infinity. at each node withi; = 1 for all i, and with BPSK
Precoders satisfying these necessary and sufficient comslit and QPSK inputs, shows an improvement of oder
exist for all direct and cross channel gains, and are termed pjts/sec/Hz in the ergodic sum-rate over that obtained
as CCSC optimal precodersHence, in the case of finite using some known IA algorithms, at moderate SNRs

constellation inputs with the use of appropriate precqders (SectioTV-B).
the rate tuples obtained by treating interference as noise

tend to values that are independent of the channel gains!N€ Paper is organized as follows. The system model is

For a K-user SISO GIC, this result is in contrast with thdormally introduced in Sectiofilll. In Section Jll, a set of
Gaussian input alphabet case where the rate tuples obtaii€gessary and sufficient conditions for CCSC optimal pre-
&y coders is derived. In Sectidn ]IV, our gradient-ascent based

by treating interference as noise tend to values dictateithdy ; ) )
channel gains, as the SNR tends to infiflitynterestingly, the algorithms for optimizing the sum-rate using precoders and

precoders that achieve IA, if feasible, are also CCSC optinfi€ating interference as noise at the receivers is gived, an
precoders. However, finding precoders that align interfeze Simulation results comparing their performance with respe
is known to be NP-hard [22] in general whereas, the precod&?ghat of precoders obtained using some known IA algorithms
that satisfy the derived necessary and sufficient conditipe 1S Presented. Sectidn] v concludes the paper.
easy to find for any given channel-coefficients. Notations:For a random vectoX which takes value from
Since finite SNR is of more practical interest, we propoé@e sett, we assume some ordering O.f |ts.elements andrtise
gradient-ascent based algorithms to optimize the presdder [0 represent the-th element oft'. Realization of the random
the sum-rate achieved by treating interference as noide wector X is denoted as:. The notationdiag(V1, V2, - -, Vi)
denotes a block diagonal matrix formed by the matriegs

. th .
These results appeared first in an olderxiv version of this papef[20]. * = 1,2,---,n. Thei" coordinate of a complex VeCtOX
Similar results also appeared recently[in|[21]. is denoted byX (¢). The 2-norm of a complex vectoX is



denoted by| X||. The cardinality of a set’ is denoted byX'|. point given byI[X;;Y;], foralli. LetX = [X; X --- Xg]7T.

For a complex numbet, R{a} and3{a} denote the real and The effective channel matrix from all the transmitters to-Rx

imaginary parts ofz respectively. For two complex numberss given by H; = [Hy; Ha; - -+ Hg;]. Define

a andb, the notatiorn > b denotes thafR{a}| > |R{b}| and ,

13{a}| > |3{b}|. The notation0 represents the zero vector V = diag(V1, V2, -+, Vk).

whose size will be clear from the context. All the logarithmg)sing the chain rule for mutual information [27],

in the paper are to the bage

Il. SYSTEM MODEL IXas Y] = 1[X0, Xa, o, Xi Vil = [ X0, X, oo, X Vol Xl
With uniform distribution assumed over the elements of the
constellation, the expression faf[X;, Xo, -, Xk;Y;] is
given by [3) (at the top of the next page) which is derived

X; I Rx-i in a similar way as in[[10]. Define the matrix
X@| 1 y 1 Ai-“’kz = H,V (xkl - xkz) : 1)
X',(Z) 5 Y ~ 5 Y, The following theorem gives a high SNR approximation for

I[X17X27"' 7XK5}/Z]
: . Theorem 1:At  high P, the mutual information
j . I1[X1,X,, -+, Xk;Y;] can be approximated by
n

X(d)
‘ lnr. l S dk
ogM#i=1 2)
K K
Fig. 1. System Model. 1 Mkt ] prko fe 7“\/?Af1xk2“2
M SE di kgo °9 k;) €
Tx-i intends to communicate with Rxfor: =1,2,--- , K,
as shown in Fid.11. Without loss of generality, letdenote the Proof: Define the sets
power constraint at all the transmitters. The signal resmbist L ek
Rx-j is given by At = {kz #Fki| A7 = 0}, (11)
At = {r]Apt ) = o} (12)

K
Y} - Z \/ﬁH”V;XZ + Nj
i=1 The expression in(3) is re-written as @ (4) abd (5). At high
where, H;; denotes the constant channel matrix from iTxvalues ofP, the following igeguality holds good fdk, # k1,
to Rx-j, V; denotes the precoder at Tx-X; denotes the k2 ¢ Afl, and for alll ¢ A;"™.
complex symbol vector generated at 7x#; denotes the
noise random vector whose coordinates represent independe /P A" %2 (1)}| >> 3 and IS{VPARE2 ()] >> 3
and identically distributed zero mean unit variance caciyl V2
: ‘ . ; (13)
symmetric complex Gaussian random variables. The sizes of
the matricesH;;, V;, X;, and N; are given byn,, X ni,  Now, note that forky # ki, ko ¢ A, and for alll ¢ Afl’kz,
ng, X di, d; x 1, andn,, x 1 respectively, where:,, and @Afl,kz(l) >> n,(1) when |nz(1)] < 3 and|n;;(l)] < 3
n;, denote the number of receive and transmit antennas@ere, n; (1) and'njl(l) represent the real and imaginary
Rx-j and Tx+ respectively, andl; denotes the number of parts of n;(1). The value ofn,(i) becomes comparable to
independent complex symbols per channel use thatwWants \/]_aAflv’W (1) only if either|n;z(1)| > 3 or|n,;({)| > 3. How-
to transmit to Rx:. These complex symbols are assumed ®yer, the probability of such an event occurring is extrgmel
take values from finite constellations with uniform distiion  small because the variances of the Gaussian random variable
over its elements. For simplicity of exposition, we assume. . (1) and n;;(l) are equal to%. Hence, the contribution
that the finite constellations used are all the same at all the sych an event to the integral il (6) is very small that it
transmitters and are of cardinalify. The results of this paper can pe neglected at higR. Therefore, on account of {IL3),
apply with simple modifications when this is not the case. Thge approximations i {7) an@l(8) are valid. The equatidn (9)
finite constellation used is denoted Byand is of unit power. fo|iows from the fact that probability distribution intemfes to
1, (T0) follows from [12), and the proposed approximation in
l1l. CCSC OPTIMAL PRECODERS @) is obtained directly by re-writind (10). [

In this section, we derive a set of necessary and sufficientRemark 1:Note that we cannot straightforwardly argue that
on the precoders for CCSC optimality which is taken to beat high powersP, the noiseN; in (@) can be neglected. This
measure of optimality for linear precoding in the high SNRs because the value ¢fV;|| can be of the order df A*1-*2||.
regime for the finite constellation input case. Rate acliikva The proof uses the fact that the probability of such an event i
for Tx-i by treating interference as noise at RxXor all 4, is very small and hence, can be neglected. The greater the power
given by R; < I[X;;Y;]. Our focus will be on the boundarythe better is the approximation. A similar approximatiorswa
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developed for the SISO case In [10]. The approximation given
in Theoreni 1 is a generalization of the approximation derive T di
in [10]. log M =1 (15)
Let X, = (X7 X2 - X5 1 Xiaq -+ XK]T- The channel | MEZi#i g _q MZi#idj _q Pz |2
matrix from all the transmitters, with the exclusion of Txto abyoTH > log > e llvPE|]
e i#i b :
Rx-i is given by ! i1=0 in=0

Hy=[Hun Hi2

Define the matrices

Vy = diagVh, Va, - -

cHi1 Higa

B = HV; (Ii - xi) ,

for i1,i2 = 0,1, - ,szﬂdj — 1. Similar to [2), we have
the following approximation fod [ X7, Xo, - - - , Xk; V3| X;] at

high P.

: 7‘/1'717‘/1'4*1;"' ;VK)

Hicil Hence, a high SNR approximation féfX;; Y;] is given by
oo Hy)

I[X:;Yi] &~ log M®

K K
MEk=1% _1 MZk=1%_1

k1, ko ||2
o log eiH\/ﬁAi H
(14) M g::o g::‘)
(i6)
MEi#i 4G MEi#i H‘/_ i1,i2 |2
+———F log e VPR
Mgz b ”z::o 122::0



Now, define the set AF | and the set of alpy*' Pzt 1Pl PR hag g one-
, ) , o one correspondence Wlth the set of Hﬂl Hence, [(2D) can
B = {22 7| B = 0} (17)  pe re-written as

The following theorem gives a set of necessary and sufficient

conditions under which the above approximation tends tolo A 1

log M% as P tends to infinity and hence, gives a set of 9 MEFey dk

nececsgércy: antil_ su1;f|C|ent conditions under which the presode . M%A MdgilMdgfl Mdiil

are optimal. + : (22)
Theorem 2:The approximation for [ X;; ;] given in [16) ME#G 520 A0 pifia=0 im0

tends tolog M% as P tends to infinity iff log (1 [ DPILT PP L ,PK1‘> .

M1 MK -1
Z log(l-i—\cg)u""’pKlD

r11=0 Pr1=0

/- Pi1 __ p7,2 pkl _ pk2 e . e e .
HuVi@™ —a; g Hy;Vie(@ )70 (18 Now, the seC”"'"**** can be written as a disjoint union of
7

k=1 two sets, i.e.,
V pi1 # pi2, ¥ pr1, VDr2
Cflh s PK1 — C:'[l)illx s PK1 U C§7i117 s PK1 (23)

where,pr1, pr2 = 0,1,--- , M% — 1. s I
. e 11, yPK1 11, PK1 1 1
Proof: The summation-term of the second term[inl (16) i&here, Ci; and C3; are defined in[(24) and

re-written as (28) respectively (given at the top of the next page).

The setCy!""P%* can be re-defined as if_(25). Since

c Z,m Hy;Vi(aPFt — 2P%2) is independent of the indices
Mzkik*l log | 14145+ 3 [P( fr2?) pir_and pa, the dset cPiPit s the same for all
K=o ' ) pii = 0,1,---,M% — 1. Now, note that the set of all

kog A1 Cf“""’p“l'l’o’pi“*l’""”“ has a one-one correspondence
WEE with the set of allDy*"Pi-t0Pitt. b PEL which follows

- ST log (1 + \A{;1|> + (9) from _the definitions of the respective sets. Hentel (22) @n b

k1=0 re-written as

> 2 4
og | 14— T 6713( k1 k2||) log M?

% . .
L+ A7 pizhy M4 1 mEi-iopmdioa it MR-

1
oo s S 2D VRSED MID SID DI »
M ~k=1%k =0 i211=0 p; 1=0 pi11.1=0 =0
Afzi(:l dk71 P11 Pi—1,1 Pi1 Pi41,1 PK1
o, S g (1 ). g (14 [P PP o)
k1=0 1 Ma—1 pmti-iogpmditio1 MK
Slmllarzy the summation-term of the last term [N(16) tends+ —s—- ) EETEEED DD W %)
i#i 4 e =0 i—1,1=0 Pit+1,1=0 =0
to S0 707" log (1 + |B!'|) asP tends to infinity. Hence, as m e 11:1 s
P tends to infinity, [(IB) tends to log (1 +1D; I |> @7)
MER=1 kg d
) 1 k =log M%i
log M% — —— log (1+ | A" ) (20)
MER= dk klz:O ( A 1 Md1—1 m¥i-toppdior Mttt o1 MK -1
MEg#i 4 - Mzi(fl dy, Z Z Z Z Z
n 1 Z log (1 n |Bi1 |) - p11=0 Pi—1,1=0 p;,1=0 p;4+1,1=0 Pr1=0
sz¢i d; = z log <1+I.Dfllv"‘7Pi—1,17pi+1,17“‘7pK1|+|CP/_11;"WPK1‘>
Now, define the sets 1 M1 di—1 gy mtibi o1 MK -1
v ZO'“ ZO ZO ZO“' .
P11, »PK1 __ p11= Pi—1,1 Pi,1 Pi41,1 PK1=
G = { (P2, p22, picz) 7 (s paa,s 1) | P11s Pie1,1Pi41,1> PK1
K log (1 +|D; ’ ’ \) .
HZZVL(xp11 _ Plz )+ Z ijvk(xpkl _ xﬁkz) =0}, -
' ki Clearly, if |C5!*P%*| > 1 for some(p11, - - - ,pk1) then, the
k=1

second term in the above equation is strictly greater than th

Dpllv'“7pi71,17pi+1,17'“7pK1 o
i last term and hence, @ tends to infinity,/[X;; ;] tends to a

= {12, P12, Piv12, PR2) @D value that is strictly less thalag M. If |chr PR = 0 for
;é (P115°+ »Pi—1,1,Pi+1,1," "+ ,PK1) | all p;; then, the second term in the above equation is equal
ZHkJVk PrL _ gPka) = 0} to the last term and hencé[X;;Y;] tends to a value equal
o to log M. Thus,I[X;;Y;] tends tolog M as P tends to
k=1 infinity iff (I8) is satisfied. [
where,p;1, piz = 0,1,--- , M% —1. Observe that the set of all Remark 2:The result of Theoremi]2 means that the rate

cPhrPKY has a one-one correspondence with the set of althieved by treating interference as noise at higkends to



K
CYIL " UPEL = { (p1g,paz, -+, pr2) # (p11,P21, -+, Pic1) OF pia = piy | His Vi(x)i — 2P72) + ZijVk(IiM —apk2) =0}, (24)
=
i
K
= CYIVTTPKL = [ (p1a,pas, -+, pr2) # (p11,P21, -+, PK1) OF pio = piy | ZijVk(IzM —a*2) =0} (25)
=
i
K
CHIL T UPEL = [ (p1o,paz, -+, pr2) # (p11,P21, -+, Pi1) fOF pia # iy | Hii Vi(xh)i — 2Pi2) + ZijVk(IiM —zp*?) =0} (26)
ki
k=1

CCSC for Tx4 iff, in the absence of the Gaussian noise, tw
different symbol vectors?"* andz?*> sent by Tx¢ should not
map to the same symbol vector at R¥er any data symbol
transmitted by the interfering transmitters.

Remark 3:For a given value of channel gains with nont
of the direct channel gains beirty when the entries of the

-
@ )
I

-
=)
T

=
o
T

precoders are chosen from any continuous distribution, (si I
standard normal distribution) the probability of the event g1 ]
L E b o= Ok e e e R e el e e e e el
HuVi(@}™ — () + 3 Heg Vi@t — 2i*?) = 0, c 1 — Tx-L with QPSK |
;’ff i § 0.8- - Tx-2 with QPSK ]
. o -+ Tx-3 with QPSK
to occur for anyp;; # p;2 and for any(pr1, pr2) IS zero. 6 Tx-1 with Gaussian Alphabet ]
By appropriate scaling of the precoders thus obtained, wi ~+Tx-2 with Gaussian Alphabet
probability 1, we have CCSC optimal precoders. 0dr —+—Tx-3 with Gaussian Alphabef 1

Remark 4:Interference alignment, if feasiblé_[28] for the
given values ofn,, n,,, andd; involves finding precoders | . . . . .
such that the signal sub-space at Rxgenerated byH;;V;], % 2 4 6 8 10 2 14 16
is linearly independent of the interference sub-spacesigeéad
by [Hi;Vi -+ Hi—1:Vic1 Hiy1:.Vis1 -+ HgVk], and the
matrix [H;; V;] is full-rank [1]. The CCSC optimality condition
in (I8) can be rewritten as Fig. 2. Rates in bits/sec/Hz \B in dB for Example[L.

o
N
I

[HiiV; HisVi -+ Hi—13Vier Hip1Vigr -+ Hi i V]

r (zP —mgiz) 1 where, the matrix elemenf];; represents the channel gain
(zy' —2y'?) from Rx-i to Tx-j. The mutual informatiod[X;; Y;] evaluated
: using Monte-Carlo simulation is plotted for QPSK inputs and
x| @it =@l ) #£0, Y pa # peae Ga_ussian inputs, for all, in Fig.[2. The chqsen precoders
@yt =2t satisfy [I8) and hengd,[){i; Sﬁ] saturates t@ bits/sec/Hz for
. all 4, as P tends to infinity in the QPSK case whereas, for
(@PK1 ;xpm) the Gaussian alphabet case, the saturation rate is detgtmin
. . k K Koo . by the channel gains. The saturation value IQK;;Y;] in
Since, with precoders that achieve IA, the signal sub-spa%e G . Iohabet is giveny ] hii|?
at Rx< is linearly independent of the interference sub—spa& € Laussian alphabet case Is give ‘by( + > oy [Pl

and [H;;V;] is full-rank, the above condition is satisfied forVhich evaluates .04, 1.02, and0.06 bits/sec/Hz for Txt,

all i. Hence, A precoders are also CCSC optimal precodef2 and Tx3 respectively in this example. _

However, in general, finding such precoders are NP-Hard [22]The following example illustrates a naive choice of pre-
whereas finding CCSC optimal precoders are easy to find @ders that are not CCSC optimal in3auser MIMO GIC.

explained in the previous remark. ) )
The following example illustrates &-user MIMO GIC ~ Example 2:Consider a MIMO GIC withK' = 3, ny, =

which employs CCSC optimal precoders. n., = 2, d; = 1 for all 4, and the finite constellation used is
Example 1:Consider a MIMO GIC withK = 3, n;,, = QPSK. Let the effective matrix from all the transmitters to a
n., =1, d; = 1 for all 4, and the finite constellation used isthe receivers be given by
QPSK. The channel matrix and the precoders are given by Hyy Hy Hs
—-0940.47 —1.7—1.400 1.5+5.0¢ H= |His Hsy Hjso
H=]26-09 —-09-28 0.04+0.88i], Hy3 Hss Hss

—-29-527 —1024+0.77 —0.5+2.43
! o +2.41 where, H;; is the 2 x 2 channel matrix from Tx- to

Vi=LVy=es,V3=1 Rx-j. The precoders and the channel matrices are given



v, — [0.66 +0.74i Vo — [0.9883 +0.1524: va — [0.7044 4 0.70984 28)
1= 10.13 4+ 0.99¢ » 2 7 10.4538 + 0.89114 » 73 7 10.1603 + 0.98714 ’
0.5756 — 0.0565¢ 0.7524 — 0.1375¢ 0.1697 — 0.10694 0.0124 — 0.20024 0 0
0.1610 4+ 0.3766i  —0.0010 4+ 0.2005¢  0.8758 — 0.0689i  —0.1285 + 0.06057 0 0
i~ | 11533 —0.1280i —0.6361 + 1.4658i —1.3069 +0.1090i  0.0427 +0.2488i  —0.0028 + 0.2215; —1.0597 — 0.2708i 29)
—1.7763 — 0.3748;  0.5341 + 0.0966i  —0.9491 4 0.8074i —1.0773 — 1.7202¢  0.9616 — 1.2130i  —0.6077 + 0.6970i | °
—1.7082 — 0.4948; —0.6101 — 0.4739i —0.2226 — 4.24867 —0.8216 4+ 0.4808;  0.9572 + 1.8870i  —1.4428 — 1.4353
—1.3014 — 0.56144  1.2515 + 0.3414i 0.4242 + 0.0202i 0.0138 — 0.87404 0.3393 — 1.34513 0.9498 — 1.0932i
Cloud around a desired signal poinf’, wherez! € S, is
25
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Fig. 3. Rates in bits/sec/Hz B in dB for Example[R.

in (28) and [2P) respectively (given at the top of thi
next page). Note that the QPSK points are given L

1 1. 1
| s 22
is not satisfied for = 1 because

1 1. 1 1.
it b st st o

P11

%2) Now, (I8)

defined as the set of points given by

K
VP | HiVia? + ZijVka | X eS8

ki

k=1
Note that the information regarding a desired signal poftit
is contained in its respective cloud in the sum constelatio
At high values ofP, the clouds corresponding to the different
signal points move away from each other if there is no
intersection among the clouds. Since it is enough for each
receiver to distinguish between the clouds and is not requir
to distinguish the points inside every cloud, every sigrahp
can be reliably decoded if the clouds do not intersect. The
sum constellation and the non-intersecting clouds afl Rat
P =16 dB, for Examplel is plotted in Fid.] 4.

50
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Fori = 2,3, (I8) is satisfied. The plots dfi X;; Y;] evaluated
using Monte-Carlo simulation and[X;;Y;] evaluated using
the high SNR approximation if_(IL6) is shown in Hig. 3. Note
that R, saturates to a value strictly less thanbits/sec/Hz
whereasR; and R3 saturates t@ bits/sec/Hz, thus validating IV. GRADIENT ASCENTBASED ALGORITHM FOR
TheoreniD. FINITE-SNR

The intuition behind the result of Theordrh 2 is as follows. In the previous section, we studied the rate achieved fdr eac

Define the sum constellation at receiver Rt be the set of transmitter by treating interference as noise at everyivece
points given by as P tends to infinity. In this section, we focus on the finite

SNR case. Specifically, the aim is to maximize the sum-rate
achieved by treating interference as noise at every receive
with respect to the precoders, i.e.,

Fig. 4. Cloud Constellation at Rx-for Example[1 atP = 16 dB.

K
VP | HiViXi+ Y HyViXe | | X; €8,V

ki
k=1 «

At every receiver Rx; the interference forms a “cloud” max f(V4,---,Vk) = maXZI[Xi;Yi] with Tr(V;V;") < 1.
around the desired signal points in the sum constellation. i=1



This is a non-concave problem in general and difficult tBlgorithm 1 Gradient Ascent based Algorithm for improving
solve. Hence, we propose a gradient-ascent based algddthrBum-rate

improve the sum-rate starting from some random initiakiwat 1: Initialize V; = V\*) with Tr(V;V#) < 1,i=1,2,--- , K, andt = 1.

of precoders. Define the MMSE matrix at Rxby 3
E; = E[(X — E[X|Y;])(X — E[X[v;])"] 4

5:
where, E represents the expectation operator. Define the

2: for n = 1 to max iterations do

Compute £~ 1) = f(v,\" 1V v "D Ly,
B and BY Y forj=1,2, - K.
if n>1andf(»=1 — f(n=2) < ¢ then

exit for
MMSE matrix at Rxj with the exclusion of Txj's signal 7: endif
by 8: ComputeVy fly,_ i (n—1)
9: do
10: V) VD 44V fl_pne) -
By =E[(X; - EIX,|Y; — Hj; X;))(X; - EIX,|Y; - H; X)) 1 v H
_ . 12: Vi(”) 5y Tr(\/i(”) Vi(”) ) > 1, for all 4.
The gradient of the sum-rate with respect to the precdder eV, (nf (n) (n)
given by 18 Compue/0) = SV Vi),
: 15 whie S0 < JO0 p et |[Vuly—yo I
Vv f(Vi,-+ Vi) = Vv, > I[X;;Y))] 17: end for
j=1

K
=V, > I[X1, Xy, Xi; V] = I[X0, X, Xk V5| X]
=1

K
=log ey HijH;E; Iy

il Atk dy, (30)
j=1
i=K
H .
—loge Z Hij HyEy Isiot g, a,2G-5)+1:50_, de—dyTG—3)
j=1
i

Similar gradient ascent based algorithms have been pro-
posed in the past for optimizing rates in single user MIMO
channels[[4],[[5] and MIMO MACI[B] with finite constellation
inputs and precoding. Like in[4][5] (8], the algorithm does
not assume uniform distribution over the elements of thefini
constellation. The above algorithm appeared first in anrolde
arxiv version of this paper [20]. Recently, the same gradient
ascent algorithm as above appearedlinl [21] with weighted

where, [(30) follows from the relation between the gradient @, rate as the objective function instead of sum-rate @s th
mutual information and the MMSE matrix obtained|in [4]. Th%bjective (as considered here).

matrices

Iyt gy, 0, 3N

Toimt gy -y 26— )11 di—dyZG-3)

select the column numbers frofn,—} dy. + 1 to 30, _, d Of
Ejand Y\ di — d;Z(i—j) +1t0 35, de — d;Z(i — j) of
E; respectively, where

o 1 i>j
I(Z‘J):{o 2<§

Define V. = diag(V1,Va,--- ,Vk). The gradient ascent
based algorithm for optimizing f(V4,---,Vk) with
respect to the precoders is given in Algorithr.

During every iteration, whose number is denoted
n, all the precoders are updated as given

10 of Algorithm 1 where, Vv fly_ym-1

diag (Vv fly, i Vv fly,_yoonse s Vviefly, _yoen )

and Vv, fly, _yn-n denotes the gradier¥v, f evaluated at

Vi =V, If the power constraint for any transmitter Fx- 1 Z
)is projected onto the feasible set with  j7>i, d«

(n

is violated then,V;
Tr(vy ™y < 1 (see Linel2 of Algorithm 1) [@]. The

condition in Line 15 of the algorithm ensures that there is

sufficient increase in the objective function. The step size 1
t of the algorithm is chosen by back-tracking line searc
with parametersy and S whose typical values lie between

Note that evaluation oy f (in Step8 of Algorithm 1)
and the functionf (in Step 13 of Algorithm 1) have high
complexity because they require averaging over an arpitrar
number of Gaussian noise samples. This motivates us to
pursue low complexity gradient ascent based algorithms in
the following subsection.

A. Low Complexity Gradient Ascent Algorithms based on high
SNR approximation

In this subsection, we assume uniform distribution over
the elements of the finite constellation. Since the high SNR
approximation in[(I6) does not involve averaging over noise

b mples, we propose to maximize the objective function de-

in Linéned by
represents

3
fl (‘/17 7VK) :Zlog Mdi
i=1

MRy dk _q MEF_1de ot o |12
log g e_H\/ﬁAiL 2”
k1=0 ko=0
(31)
MZi#i 45 _q MEi#i 45 _q R
01,10
- g log E e_”\/ﬁBi ||
MEizdi ,
Z]ZO 7,2:0

(0.01,0.3) and (0.1,0.8) [29]. The proposed algorithm stopsusing Algorithm1 where, f is replaced byf; and Vv f is
when either the number of iterations performed is equal teplaced byVy f;.

magz_iterations or f(*=1) — f(n=2) < ¢ (see Line5 of
Algorithm 1), for some fixed.

We now interpret what maximizing; and f means in
terms of the input constellations, at large valuesibofThe



following observation would generalize the result lof [Shth for some positive real numbet. This is because the above
the precoding matri¥/; that maximizes/[X;;Y;] when the expression and the expression[in](16) tend to the same value
interference channel matrices are zero converges to théxmaas P tends to infinity.
that maximizes the minimum distance between the desiredThus, another low complexity algorithm shall involve max-
constellation vectors, at large values Bf imization of the objective function given by

Theorem 3:At large values ofP, the precoding matrices 3
that maxim_izef(Vl,m ’VK.) a.n(;I{fl(Vl,--.- Vi) converge fo (Vi Vi) = Zlog Mdi
to the matrices that maximizein;: | d,., (¢) where,d,,.n (7) Pl

is given by ) MER—1 Ak g MEForde ||vParikz||®
. a2 |la| X ’
min HyVi(adt —2li2) + Z Hij Vi (ah — k) (32) k=0 k2=0
Pil#Pi2, Py (39)
(Pk1>PE2) kif
o ] MZi#idj_q MZi#idi_q i1,in ]2

represents the minimum among the distances between two 1 3 o 3 _vesit]
points belonging to different clouds at RXwithout the power MEgzds — g =
scaling P). " o

Proof: The high SNR approximation faf{ X;; ;] in (I8) using Algorithm 1 where, f is replaced byf, and Vy f
can be re-written as (83) using {19) arid](27). Using firgs replaced byVy f,. Following the chain rule for matrix
order expansion for logarithm function, at large we have differentials [30], the gradienVy, fo, for £k = 1,2,--- | K,
the approximation in[(34). At larg®, the exponential terms is given by [40) (at the top of the page after the next page)
in (34) are negligible compared to the other terms. Henoghere,zy 1, , iS the sub-vector of the vectot*'-*2 which

the precoders that maximizgjfi1 I[X;;Y;] at largeP must corresponds ta}' —z;?, for somepy,p2 = 0,1, - - ,_Mdk -1,
have |5} P<t| = 0, for all (pi1,---,pk1) and i, i.e., and x4, 4, is the sub-vector of the vectoB'> which
the precoders must be CCSC optimal. Using the definitionsrresponds ta?}* —a7?, for somepy, po = 0,1, -+, M —1.

of A¥**2 and B¥**2 given in [1) and[{I4) respectively, and In the following subsection, we present some simulation
the definition of pY**»Pi-tvPittPEL iy (@) we have results using the proposed algorithms.

(39). Splitting the second term of ([35) into two terms, one

with p;2 = pi1 _and another withp; > # p;1, we have g gimulation Results

(38). Now, the third and the last term &f {36) are equal and ) , ) )
thus, they cancel each other. Hence, we havé (37). At hi hSeveraI algorithms to obtain precoders that aim to achieve
P, the exponential term corresponding dg.i (i), defined A are known. We consider two representatives of such algo-

in (32), dominates the value of (87). Suppose the numbrét'hms from [31] and[[3R] for comparison with the proposed
of tuples(pi, - - - , pic1, Piss - - - Pic2) CONLHDULNG 10y (1) algorithms. The works in[[31] and_[382] demonstrate the

in the exponent term of (87) be and let the corresponding performance of thgir algorithms in tgrms of sum-rate with
values Of‘Dpu,-~-,pifl,l.,pm,l.,---.,pm| be denoted byD;y, for Gaussian alphabet inputs. In th|s secupn, we presc_—:‘nt deamp
¢ of performance of these algorithms with the practical cdse o
; 5 . . finite constellation inputs.
e P [ log e Consider a MIMO GIC withK = 3, ny, = n,, = 2,

ZI[X“YZ'] ~ Z log M* — MIE dn (Z 1 +gDik> d; = 1 for all i. We shall consider the max-SINR (signal
=t =t k=1 to interference plus noise ratio) algorithm from[31] ane th
Again, at largeP, the minimum among?,;,, (i) dominates the maximum sum chordal distance algorithm from Section IV
value of the above expression. Hence, the precoding matrige of [32] for comparison with the proposed algorithms. The
that maximizer:1 I[X;;Y;] converge to the matrices thatclosed form IA precoder solution of][1] for the considered
maximizemin® | d,:, (i), at large values of. B MIMO GIC is given by

We observe that maximizinginfi1 dmin (i) @also minimizes
the probability of error with ML decoding across all the

k=1,2,--- ;. Therefore, we have

Vi =e1, Vo= Hy' HigVi, Vs = Hyp ' HioVi

receivers, at large values &f. where, e; is an eigen vector of the matrix
Now, note that at large values &f, we can further approx- Hij'HysH,,'Hs  Hy, ' Hyp. The maximum sum  chordal

imate [16) by distance algorithm selects the eigen vectey which

1[X;;Yi] ~ log M% maximizes the sum chordal distance |[32]. We however

select the eigen vector; which maximizes the sum-rate

| MRS MZk= fe-1 vkt P\ | S22 T[X;; V5] with finite constellation inputs. Clearly, the
TS Z log Z € " maximum sum chordal distance algorithm cannot perform
k1=0 k2=0 better in terms of sum-rate when is chosen to maximize
(38) the sum-rate with finite constellation inputs. We call this a
MEi#i %1 MEi#i % -1 ||vEsitiz||? the max-sum-rate CaJ IA solution. The max-SINR algorithm

+ = Z log Z e aims to maximize the signal to interference plus noise ratio
M&z% = i2=0 each of the receivers so that the sum-rate Withi;; Y;] with
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Gaussian input alphabets is maximized. Unlike [in] [31] or
[32], we do not use any receive filter matrices as using them
can only reduce the ratg X;; Y;] because of data-processing
inequality [27]. The max-SINR algorithm computes receive
filter matrices at every iteratiin We discard the receive
filter matrices once the max-SINR algorithm converges

and then computerzll[Xi;Yi] with finite constellation
inputs. Similarly, we computed ?_, I[X;;Y;] with finite

constellation inputs for the max-sum-rate CaJ IA solution
without the use of any zero forcing filters at the receivers.

1) Performance of the proposed algorithm averaged over

channel realizations:The ergodic sum-rates, i.e., the
sum-rate averaged with the entries of the channel ma-
trices being taken fronCA/(0,1), using BPSK and
QPSK input constellations are simulated. The ergodic
sum-rates obtained using the max-SINR algorithm (with
random initialization), max-sum-rate CaJ IA solution,
and the proposed gradient ascent algorithms wfith
f1, and f» as the objective functions using the max-
SINR precoders as the initialization are shown for the
BPSK constellation and the QPSK constellation in Fig.
B(a) and in Fig.[%b) respectively. The parameter
chosen for the objective functiorf, is equal to2.
The chosen parameters in the gradient ascent algorithm
are given bymax.iterations = 10,5 = 0.2,a =
0.005,¢ = 0.001. As seen from Figl&) and in Fig.
[B(b), the precoders obtained by optimization fafgives
negligible improvement in the ergodic sum-rate over that
obtained from the max-SINR algorithm. However the
precoders obtained by optimization ¢f and f, give
considerable improvement in the ergodic sum-rate over
that obtained from the max-SINR algorithm. Moreover,
there is negligible difference in the sum-rate obtained by
optimizing f and f,. Hence, gradient ascent algorithm
with f; as the objective function (withr = 2) is a
worthy low-complexity alternative to the gradient ascerf!C

2)

using the proposed gradient ascent algorithm with
and f> as objectives over the max-SINR algorithm for
BPSK input constellations is more thanl bits/sec/Hz
upto P = 0 dB. As expected the gain decreasesfas
becomes higher as the sum-rate obtained using all the
algorithms saturate t8 bits/sec/Hz for every channel
realizations. Similarly from Table]ll, fron® = 3 dB to

P = 6 dB, the ergodic sum-rate gain using the proposed
gradient ascent algorithm witlf and f, as objective
functions over the max-SINR algorithm for QPSK input
constellations is more thai1 bits/sec/Hz. In this case
also, the gain decreases Bshecomes higher.
Convergence and performance of the proposed algo-
rithm for a fixed channel:The parameters used in
Algorithm 1 are max iterations = 15,8 = 0.2,a =
0.005, ¢ = 0.001. The chosen channel matrix is given in
(471). The convergence behaviour of Algorithirusing

f and f, (with » = 2) as objective functions with BPSK
inputs is shown in Fid.]6 foP = —5 dB, P = —2 dB,
and P = 0 dB, with precoders obtained from the max-
SINR algorithm as initialization. The initial precoders
for the max-SINR algorithm are chosen randomly. The
proposed algorithm withfs as the objective function
terminates well before thenax iterations number for

all P because the condition in Ling of Algorithm 1

is satisfied. As seen from Fi@l 6, in all the cases the
sum-rates obtained at the termination of the proposed
algorithm with f, as the objective function are almost
the same as that obtained with as the objective
function. Furthermore, for allP, the sum-rate gains
obtained over the max-SINR algorithm is more ttiah
bits/sec/Hz.

V. CONCLUSION

The paper discussed linear precoding féruser MIMO

with finite constellation inputs. We showed that, for

algorithm with f as the objective function. Also, observeconstant MIMO GIC with finite constellation inputs, CCSC
that the max-sum-rate CaJ IA solution performs badfpr every transmitter can be achieved just by using a naive
compared to the other algorithms. For clarity on thecheme of treating the interference as noise at every &caty

gains in the ergodic sum-rate obtained by optimizjhg high

SNR. This result is in contrast with the Gaussian alghab

and f, over that obtained from the max-SINR algorithm¢ase where, at high SNR, the scheme that treats interfeasnce
the ergodic sum-rate values are given in Tdble | aritbise saturates to a value determined by the channel gains fo
TableTl for BPSK and QPSK constellations respectivelyhe SISO case. A set of necessary and sufficient conditians fo

As observed from Tabl@ |, the ergodic sum-rate gal@CSC optimal precoders were derived. It was observed that
IA precoders fall under the class of CCSC optimal precoders.

2For the sake of brevity, we do not present the details of therithm and However, CCSC optlmal precoders are easy to obtain for any

the reader can have the details frdm][31].

given value of channel gains unlike obtaining IA precoders.
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2.5r

Sum-rate in bits/sec/Hz

Gradient Ascent Algorithm
—+— with Max—SINR Initialization

and f as the objective
Max-SINR Algorithm

Gradient Ascent Algorithm
—— with Max—SINR Initialization
and f1 as the objective

Gradient Ascent Algorithm
—e=— with Max—SINR Initialization
and f2 as the objective

Max-sum-rate CaJ IA Solution

0 1 2 3 4
PindB

(a) BPSK constellation

Sum-rate in bits/sec/Hz

Gradient Ascent Algorithm
—+— with Max—SINR Initialization

and f as the objective
Max—-SINR Algorithm

Gradient Ascent Algorithm
—— with Max—SINR Initialization
and fl as the objective

Gradient Ascent Algorithm
—=e=— with Max=SINR Initialization
and f2 as the objective

Max-sum-rate CaJ IA Solution| |

Fig. 5. Sum-rate (in bits/sec/Hz) vs P (in dB).

4 8
Pin dB

(b) QPSK constellation

10

TABLE |
ERGODIC SUM-RATE VALUES (IN BITS/SECJHZ) FORBPSKCONSTELLATION INPUTS

P (in dB) -5 —4 -3 -2 —1 0 1 2 4 )
Max-SINR algorithm 1.874 | 2.079 | 2.251 | 2.411 | 2.554 | 2.658 | 2.762 | 2.829 | 2.888 | 2.928 | 2.947
Gradient ascent algorithm
with f as the objective | 2.007 | 2.228 | 2.405 | 2.552 | 2.679 | 2.764 | 2.847 | 2.895 | 2.933 | 2.956 | 2.969
Gradient ascent algorithm
with f» as the objective | 2.027 | 2.206 | 2.394 | 2.564 | 2.689 | 2.767 | 2.846 | 2.895 | 2.931 | 2.952 | 2.970

Max-sum-rate

CalJ IA Solution 1.521 | 1.718 | 1.934 | 2.104 | 2.258 | 2.433 | 2.555 | 2.673 | 2.764 | 2.845 | 2.898
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0.3109 — 0.38881 0.3610 — 0.1670¢ —0.2818 — 0.4540¢ 0.4015 + 0.15637 —0.8145 + 0.38114 0.3374 — 0.91801%
0.3560 — 0.55114 1.1616 — 0.6200% 0.6564 — 1.0746% 0.0047 — 0.2788% —0.2604 — 0.2678¢  —0.4395 + 0.36211%
—0.4314 4 0.36807  —0.4350 — 0.5917¢ —0.5202 — 1.2342¢ —0.4241 + 0.59241 1.0494 — 0.64681 —1.3259 + 0.04831

H= —0.2503 — 0.73607  —0.4445 — 0.4758; —0.6053 — 2.2125% 0.8310 + 0.2683% 0.2765 — 1.21927 0.2176 + 0.48754 “1)

—0.3055 4 0.4185¢  —0.1248 — 0.6503¢ 1.2821 + 0.3859% 0.7999 + 1.04621 0.9247 — 0.96967 0.0276 — 0.1582¢
0.1163 — 0.2062% 0.8211 — 0.49951 0.6084 — 0.68921 —1.2459 + 0.16847  —0.4081 + 1.24507  —0.5386 — 0.19364

2.55

Gradient ascent algorithm
with f2 as the objective

Sum-rate= 2.3030 bits/sec/Hz

2.4 =
il Gradient ascent algorithm
-‘E‘—S 2.35 with f as the objectivi R
— | Sum-rate=2.3116 pits/sec/l
© 23 R
[%2]
g
= 225 g
>

N
N

2.15

2.1 Max-SINR algorithm

Surp—rate:2.9849 bits{sec/Hz

205 L L L L L
1 2 3 4 5 6 7 8 9 10
Iteration number
(& P=-5dB
2.95
2.9 7 b
2.85 Gradient ascent algorithm i
. with f2 as the objective
N Sum-rate= 2.7118 bits/sec/Hz
° 2.8 |
® Gradient ascent algorithm
%5 2.75F with f as the objectiv 4
8 Sum-rate=2.7226 bits/seqHz .
c% 2.7+ B
>
2.65F B
261 Max-SINR algorithm 7
"« Sum-rate=2.5633 bits/sec/Hz
255 L L L L L L L L L L
1 2 3 4 5 6 7 8 9 10 11 12
Iteration number
(b) P=—2dB
3
2.95r B
Gradient ascent algorithm
i~ with f2 as the objective
2 29 Sum-rate= 2.8735 bits/sec/Hz N
©
k]
3
3 2.85- Gradient ascent algorithm
§ with f as the objective
Sum-rate=2.8852 bits/sec/Hz
2.8 B
Max-SINR algorithm
- .
Sum-rate=2.7779 bits/sec/Hz
275 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration number

(©) P=0dB

Fig. 6. Increase in the objective functiorfsand fo (with » = 2) with every iteration for the constant channel case with BR$uts.
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ERGODIC SUM-RATE VALUES (IN BIT;@EI&EI!) FORQPSKCONSTELLATION INPUTS

P (in dB) -2 -1 0 1 2 3 4 5 6 7 8 9 10
Max-SINR
algorithm 3.463 | 3.784 | 4.117 | 4.471 | 4.771 | 5.032 | 5.273 | 5.463 | 5.589 | 5.732 | 5.810 | 5.866 | 5.919
Gradient ascent
algorithm

with f as the objective | 3.492 | 3.843 | 4.239 | 4.564 | 4.843 | 5.155 | 5.398 | 5.568 | 5.692 | 5.808 | 5.877 | 5.923 | 5.951
Gradient ascent
algorithm

with fo as the objective| 3.485 | 3.816 | 4.166 | 4.536 | 4.862 | 5.147 | 5.404 | 5.589 | 5.710 | 5.824 | 5.886 | 5.923 | 5.954
Max-sum-rate

CaJ IA Solution 2.686 | 3.012 | 3.358 | 3.708 | 4.071 | 4.414 | 4.735 | 4.980 | 5.229 | 5.455 | 5.611 | 5.728 | 5.824

Note that IA precoders have feasibility constraints whichi2]

restrict the value ofi;, for all . An important contribution of

this paper is pointing out the CCSC optimality of IA precaler [13]

when the values of; satisfy the feasibility constraints in [28].
Finally, gradient ascent based algorithms wjtland f> as

the objective functions were proposed. It was shown throqu’]

simulations that optimizing the high SNR approximation for

f, i.e., fo with » = 2 performed as good as optimizing

in terms of sum-rate. Thus, optimizing using the proposed

gradient ascent based algorithm is a worthy low complexity

algorithm. It was also observed that, at high SNR, optingjzin [16]

f or fo is equivalent to maximizing the minimum Euclidean

distance for ML decoding across all the receivers.

[15]

[17]
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