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Abstract—This paper considers linear precoding for constant
channel-coefficientK-User MIMO Gaussian Interference Chan-
nel (MIMO GIC) where each transmitter- i (Tx-i), requires to
senddi independent complex symbols per channel use that take
values from fixed finite constellations with uniform distribution,
to receiver-i (Rx-i) for i = 1, 2, · · · ,K. We define the maximum
rate achieved by Tx-i using any linear precoder, when the
interference channel-coefficients are zero, as the signal to noise
ratio (SNR) tends to infinity to be the Constellation Constrained
Saturation Capacity (CCSC) for Tx-i. We derive a high SNR
approximation for the rate achieved by Tx-i when interference
is treated as noise and this rate is given by the mutual information
between Tx-i and Rx-i, denoted asI [Xi;Yi]. A set of necessary
and sufficient conditions on the precoders under whichI [Xi;Yi]
tends to CCSC for Tx-i is derived. Interestingly, the precoders
designed for interference alignment (IA) satisfy these necessary
and sufficient conditions. Further, we propose gradient-ascent
based algorithms to optimize the sum-rate achieved by precoding
with finite constellation inputs and treating interference as noise.
Simulation study using the proposed algorithms for a 3-user
MIMO GIC with two antennas at each node with di = 1 for
all i, and with BPSK and QPSK inputs, show more than0.1
bits/sec/Hz gain in the ergodic sum-rate over that yielded by
precoders obtained from some known IA algorithms, at moderate
SNRs.

Index Terms—Gaussian Interference channel, Treating inter-
ference as noise, Precoding, Finite constellation, Interference
Alignment.

I. I NTRODUCTION

Interference Alignment (IA) has been a focus of intense
research on Gaussian interference channels (GICs) in the
recent years on the account of the capacity of interference
channels being unknown in general and the potential of IA to
get close to the sum-capacity for a broad class of interference
channels as the signal to noise ratio (SNR) tends to infinity.
The scaling of the sum-capacity withlog SNR is known as
the sum degrees of freedom (DoF) of the GIC [1]. The sum-
DoF is known to beK/2, with probability 1, for the K-user
GIC [1] when all the nodes are equipped with a single antenna
and time-varying channel gains are assumed. The result was
proved by using linear precoding at the transmitters over an
arbitrarily large number of symbol extensions and zero forcing
at the receivers. In a later work [2], the sum-DoF is shown to
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beK/2 with probability1 even in the case of constant channel-
coefficients (that are drawn from a continuous distribution),
i.e., the channel gains do not vary with time, using a non-
linear IA technique. When all the nodes are equipped withM
antennas, the sum-DoF was shown to be3M/2 for the3-user
GIC [1]. This result was proved by linear precoding over the
transmit antennas without the use of symbol extensions and
holds true even in the case of constant channel coefficients.
Later [3], with the assumption of constant channel coefficients
and using a non-linear IA technique, the sum-DoF when
K ≥ M+N

gcd(M,N) was found to be equal toMN
M+N

K where,
gcd(M,N) denotes the greatest common divisor ofM andN ,
with M being the number of antennas at each transmitter and
N being the number of receive antennas at each receiver. All
the works cited above assumed full channel state information
at all the transmitters (CSIT) and receivers (CSIR). The notion
of sum-DoF involves scaling of sum-rate aslog SNR at
high SNR and therefore, Gaussian input alphabets or lattice
codes are always used in the study of sum-DoF. However, in
all practical scenarios finite constellations likeM -QAM and
M -PSK are used at the inputs.With the constraint of finite
constellation inputs, it is not known whether IA is optimal in
some sense.

Linear precoding for optimizing the mutual information
between the input and the output has been studied for the
single user MIMO channel with finite constellation inputs in
[4]- [6]. Constellation rotation for optimizing the sum-capacity
for SISO Multiple Access Channel (MAC) with finite constel-
lation inputs has been examined in [7] and linear precoding for
weighted sum-rate maximization in MIMO MAC with finite
constellation inputs has been studied in [8]. Note that linear
precoding for the SISO MAC corresponds to constellation
rotation at the transmitter.

Recently, there has been some progress on the analysis of
finite constellation effects in2-user SISO GIC [9], [10]. In [9],
constellation rotation was found to increase the constellation
constrained sum-capacity of2-user SISO Gaussian strong
interference channel [11], [12], and in [10], a metric to find
the optimum angle of rotation was proposed. In this paper,
we examine achievable rate-tuples with linear precoding for
K-user MIMO Gaussian Interference Channel (GIC) with
finite constellation inputs. Specifically, we treat interference
as noise, i.e., each transmitter reveals its codebook only to its
intended receiver. The maximum rate achievable under such
a circumstance for transmitter-i (Tx-i) is given by mutual
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information between the input generated by Tx-i and the
output at receiver Rx-i. The channel conditions and values of
SNR under which the decoding scheme of treating interference
as noise with Gaussian alphabet inputs is sum-capacity optimal
was found for the2-user SISO GIC in [13]- [15], for theK-
user SISO GIC in [16] and for the2-user MIMO GIC in [17],
[18]. In aK-user SISO GIC, for given values of channel gains
with Gaussian input alphabets, as the SNR tends to infinity,
treating interference as noise is not sum-capacity optimal[19].
With the constraint of finite constellation inputs, it is notclear
whether treating interference as noise is optimal in some sense.

First, we need to define a notion of optimality under the
constraint of fixed finite constellation inputs and then analyse
decoding and transmit schemes with that notion of optimality.
Consider a scenario where each transmitter-i (Tx-i), requires
to senddi independent complex symbols per channel use that
take values from fixed finite constellations with uniform distri-
bution, for i = 1, 2, · · · ,K, to receiver-i (Rx-i). Throughout
this paper, we assume that none of the direct channel gains are
zero. For aK-user MIMO GIC with finite constellation inputs,
as a measure of optimality of linear precoding in the high SNR
sense, we introduce the notion ofConstellation Constrained
Saturation Capacity(CCSC) which is defined as follows.

Definition 1: The maximum rate achieved by Tx-i as SNR
tends to infinity, using any linear precoder, when the interfer-
ence channel-coefficients are zero is termed as the Constella-
tion Constrained Saturation Capacity (CCSC) for Tx-i.
For the ease of exposition, throughout the paper, we assume
that the constellations used for the symbols are all the sameat
all the transmitters, and is of cardinalityM . Hence, the CCSC
for Tx-i is given bylog2Mdi.

In this paper, with the assumption of constantK-user
MIMO GIC with full global knowledge of channels gains,
and finite constellation inputs, we derive a set of necessary
and sufficient conditions on the precoders under which treating
interference as noise at Rx-i will achieve a rate for Tx-i that
tends to CCSC for Tx-i, for all i, as SNR tends to infinity.
Precoders satisfying these necessary and sufficient conditions
exist for all direct and cross channel gains, and are termed
as CCSC optimal precoders. Hence, in the case of finite
constellation inputs with the use of appropriate precoders,
the rate tuples obtained by treating interference as noise
tend to values that are independent of the channel gains.
For a K-user SISO GIC, this result is in contrast with the
Gaussian input alphabet case where the rate tuples obtained
by treating interference as noise tend to values dictated bythe
channel gains, as the SNR tends to infinity1. Interestingly, the
precoders that achieve IA, if feasible, are also CCSC optimal
precoders. However, finding precoders that align interference
is known to be NP-hard [22] in general whereas, the precoders
that satisfy the derived necessary and sufficient conditions are
easy to find for any given channel-coefficients.

Since finite SNR is of more practical interest, we propose
gradient-ascent based algorithms to optimize the precoders for
the sum-rate achieved by treating interference as noise with

1These results appeared first in an olderarxiv version of this paper [20].
Similar results also appeared recently in [21].

finite constellation inputs. We point out that optimizationof
mutual information between the input and output in single
user MIMO channels with finite constellation inputs was
recently solved in [6]. Prior to this work, gradient-ascent
based algorithms were proposed for optimization of mutual
information between the input and output in single user
MIMO channels with finite constellation input in [4], [5].
Further, optimizing the minimum Euclidean distance metric
using linear precoding in single user MIMO channels was
pursued in [23]- [26]. The connection between optimizing the
minimum Euclidean distance metric using linear precoding
and optimizing the mutual information using linear precoding
with finite constellation input was revealed in [5]. It was
shown that the precoding matrix that maximizes the mutual
information with finite constellation input converges to the
matrix that maximizes the minimum distance between the
received constellation vectors, at large SNR. We generalize
this connection in the context ofK-user MIMO GIC (Theorem
3, Section IV-A).

The main contributions of the paper are summarized below.

• For a constantK-user MIMO GIC using finite constella-
tion inputs with precoding, a high SNR approximation for
the rate tuples achieved by treating interference as noise
at the receivers is derived (Theorem 1 in Section III).
Based on this approximation, we derive a set of necessary
and sufficient conditions under which the precoders are
CCSC optimal (Theorem 2, Section III). These conditions
are satisfied with probability1 when the entries of the
precoders are chosen from any continuous distribution. It
is observed that the precoders that achieve IA, if feasible,
are CCSC optimal.

• For the finite SNR case, we propose a gradient-ascent
based algorithms to improve the sum-rate achieved by
treating interference as noise using finite constellation in-
puts with precoding. Simulation study using the proposed
algorithms for a3-user MIMO GIC with two antennas
at each node withdi = 1 for all i, and with BPSK
and QPSK inputs, shows an improvement of over0.1
bits/sec/Hz in the ergodic sum-rate over that obtained
using some known IA algorithms, at moderate SNRs
(Section IV-B).

The paper is organized as follows. The system model is
formally introduced in Section II. In Section III, a set of
necessary and sufficient conditions for CCSC optimal pre-
coders is derived. In Section IV, our gradient-ascent based
algorithms for optimizing the sum-rate using precoders and
treating interference as noise at the receivers is given, and
simulation results comparing their performance with respect
to that of precoders obtained using some known IA algorithms
is presented. Section V concludes the paper.

Notations:For a random vectorX which takes value from
the setX , we assume some ordering of its elements and usexi

to represent thei-th element ofX . Realization of the random
vectorX is denoted asx. The notationdiag(V1, V2, · · · , Vn)
denotes a block diagonal matrix formed by the matricesVi,
i = 1, 2, · · · , n. The ith coordinate of a complex vectorX
is denoted byX(i). The 2-norm of a complex vectorX is
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denoted by||X ||. The cardinality of a setX is denoted by|X |.
For a complex numbera, ℜ{a} andℑ{a} denote the real and
imaginary parts ofa respectively. For two complex numbers
a andb, the notationa > b denotes that|ℜ{a}| > |ℜ{b}| and
|ℑ{a}| > |ℑ{b}|. The notation0 represents the zero vector
whose size will be clear from the context. All the logarithms
in the paper are to the base2.

II. SYSTEM MODEL

Fig. 1. System Model.

Tx-i intends to communicate with Rx-i, for i = 1, 2, · · · ,K,
as shown in Fig. 1. Without loss of generality, letP denote the
power constraint at all the transmitters. The signal received at
Rx-j is given by

Yj =

K
∑

i=1

√
PHijViXi +Nj

where,Hij denotes the constant channel matrix from Tx-i
to Rx-j, Vi denotes the precoder at Tx-i, Xi denotes the
complex symbol vector generated at Tx-i, Nj denotes the
noise random vector whose coordinates represent independent
and identically distributed zero mean unit variance circularly
symmetric complex Gaussian random variables. The sizes of
the matricesHij , Vi, Xi, and Nj are given bynrj × nti ,
nti × di, di × 1, and nrj × 1 respectively, wherenrj and
nti denote the number of receive and transmit antennas at
Rx-j and Tx-i respectively, anddi denotes the number of
independent complex symbols per channel use that Tx-i wants
to transmit to Rx-i. These complex symbols are assumed to
take values from finite constellations with uniform distribution
over its elements. For simplicity of exposition, we assume
that the finite constellations used are all the same at all the
transmitters and are of cardinalityM . The results of this paper
apply with simple modifications when this is not the case. The
finite constellation used is denoted byS and is of unit power.

III. CCSC OPTIMAL PRECODERS

In this section, we derive a set of necessary and sufficient
on the precoders for CCSC optimality which is taken to be a
measure of optimality for linear precoding in the high SNR
regime for the finite constellation input case. Rate achievable
for Tx-i by treating interference as noise at Rx-i, for all i, is
given byRi < I[Xi;Yi]. Our focus will be on the boundary

point given byI[Xi;Yi], for all i. LetX = [X1 X2 · · · XK ]T .
The effective channel matrix from all the transmitters to Rx-i
is given byHi = [H1i H2i · · · HKi]. Define

V = diag(V1, V2, · · · , VK).

Using the chain rule for mutual information [27],

I [Xi;Yi] = I [X1, X2, · · · , XK ;Yi]− I [X1, X2, · · · , XK ;Yi|Xi].

With uniform distribution assumed over the elements of the
constellation, the expression forI[X1, X2, · · · , XK ;Yi] is
given by (3) (at the top of the next page) which is derived
in a similar way as in [10]. Define the matrix

Ak1,k2

i = HiV
(

xk1 − xk2
)

. (1)

The following theorem gives a high SNR approximation for
I[X1, X2, · · · , XK ;Yi].

Theorem 1:At high P , the mutual information
I[X1, X2, · · · , XK ;Yi] can be approximated by

logM
∑K

i=1 dk (2)

− 1

M
∑K

k=1
dk

M
∑K

k=1
dk−1

∑

k1=0
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.

Proof: Define the sets

Ak1

i =
{

k2 6= k1 | Ak1,k2

i = 0
}

, (11)

Ak1,k2

i =
{

l | Ak1,k2

i (l) = 0
}

. (12)

The expression in (3) is re-written as in (4) and (5). At high
values ofP , the following inequality holds good fork2 6= k1,
k2 /∈ Ak1

i , and for all l /∈ Ak1,k2

i .

|ℜ{
√
PA

k1,k2
i (l)}| >>

3√
2

and |ℑ{
√
PA

k1,k2
i (l)}| >>

3√
2
.

(13)

Now, note that fork2 6= k1, k2 /∈ Ak1

i , and for alll /∈ Ak1,k2

i ,√
PAk1,k2

i (l) >> nj(l) when |njR(l)| ≤ 3 and |njI(l)| ≤ 3
where,njR(l) and njI(l) represent the real and imaginary
parts of nj(l). The value ofnj(l) becomes comparable to√
PAk1,k2

i (l) only if either |njR(l)| > 3 or |njI(l)| > 3. How-
ever, the probability of such an event occurring is extremely
small because the variances of the Gaussian random variables
njR(l) and njI(l) are equal to1

2 . Hence, the contribution
of such an event to the integral in (6) is very small that it
can be neglected at highP . Therefore, on account of (13),
the approximations in (7) and (8) are valid. The equation (9)
follows from the fact that probability distribution integrates to
1, (10) follows from (12), and the proposed approximation in
(2) is obtained directly by re-writing (10).

Remark 1:Note that we cannot straightforwardly argue that
at high powersP , the noiseNi in (3) can be neglected. This
is because the value of||Ni|| can be of the order of||Ak1,k2 ||.
The proof uses the fact that the probability of such an event is
very small and hence, can be neglected. The greater the power,
the better is the approximation. A similar approximation was
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I(X1, X2, · · · , XK ; Yi) = logM
∑K

k=1 dk − 1
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developed for the SISO case in [10]. The approximation given
in Theorem 1 is a generalization of the approximation derived
in [10].

Let X 6 i = [X1 X2 · · · Xi−1 Xi+1 · · · XK ]T . The channel
matrix from all the transmitters, with the exclusion of Tx-i, to
Rx-i is given by

H 6 i = [H11 H12 · · · Hi−1,i Hi+1,i · · · HKi].

Define the matrices

V6 i = diag(V1, V2, · · · , Vi−1, Vi+1, · · · , VK).

Bi1,i2
i = H 6 iV6 i

(

xi1
6 i − xi2

6 i

)

, (14)

for i1, i2 = 0, 1, · · · ,M
∑

j 6=i dj − 1. Similar to (2), we have
the following approximation forI[X1, X2, · · · , XK ;Yi|Xi] at
high P .
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Hence, a high SNR approximation forI[Xi;Yi] is given by
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Now, define the set

Bi1 =
{

i2 6= i1 | Bi1,i2
i = 0

}

. (17)

The following theorem gives a set of necessary and sufficient
conditions under which the above approximation tends to
log Mdi as P tends to infinity and hence, gives a set of
necessary and sufficient conditions under which the precoders
are CCSC optimal.

Theorem 2:The approximation forI[Xi;Yi] given in (16)
tends tolog Mdi asP tends to infinity iff

HiiVi(x
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pi2
i ) +

K
∑

k 6=i
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HkjVk(x
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k − x

pk2
k ) 6= 0, (18)

∀ pi1 6= pi2, ∀ pk1, ∀pk2

where,pk1, pk2 = 0, 1, · · · ,Mdl − 1.
Proof: The summation-term of the second term in (16) is
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Similarly, the summation-term of the last term in (16) tends

to
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asP tends to infinity. Hence, as
P tends to infinity, (16) tends to
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k1=0

log
(

1 + |Ak1
i |

)

(20)

+
1

M
∑

j 6=i dj

M
∑

j 6=i dj
∑

i1=0

log
(

1 + |Bi1i |
)

.

Now, define the sets

Cp11,··· ,pK1
i = { (p12, p22, · · · , pK2) 6= (p11, p21, · · · , pK1) |

HiiVi(x
pi1
i − x

pi2
i ) +

K
∑

k 6=i
k=1

HkjVk(x
pk1
k − x

pk2
k ) = 0 },

Dp11,··· ,pi−1,1,pi+1,1,··· ,pK1

i

= { (p12, · · · , pi−1,2, pi+1,2, · · · , pK2) (21)

6= (p11, · · · , pi−1,1, pi+1,1, · · · , pK1) |
K
∑

k 6=i
k=1

HkjVk(x
pk1
k − x

pk2
k ) = 0 }

where,pl1, pl2 = 0, 1, · · · ,Mdl−1. Observe that the set of all
Cp11,··· ,pK1

i has a one-one correspondence with the set of all

Ak1

i , and the set of allDp11,··· ,pi−1,1,pi+1,1,··· ,pK1

i has a one-
one correspondence with the set of allBi1

i . Hence, (20) can
be re-written as

log Mdi − 1

M
∑K

k=1
dk

Md1−1
∑

p11=0

· · ·
MdK −1
∑

pK1=0

log
(

1 + |Cp11,··· ,pK1
i |

)

+
1

M
∑

j 6=i dj

Md1−1
∑

p11=0

· · ·
M

di−1−1
∑

pi−1,1=0

M
di+1−1
∑

pi+1,1=0

· · ·
MdK−1
∑

pK1=0

(22)

log
(

1 + |Dp11,··· ,pi−1,1,pi+1,1,··· ,pK1

i |
)

.

Now, the setCp11,··· ,pK1

i can be written as a disjoint union of
two sets, i.e.,

Cp11,··· ,pK1

i = Cp11,··· ,pK1

1i ∪ Cp11,··· ,pK1

2i (23)

where, Cp11,··· ,pK1

1i and Cp11,··· ,pK1

2i are defined in (24) and
(26) respectively (given at the top of the next page).
The set Cp11,··· ,pK1

1i can be re-defined as in (25). Since
∑K

k 6=i
k=1

HkjVk(x
pk1
k − x

pk2
k ) is independent of the indices

pi1 and pi2, the set Cp11,··· ,pK1

1i is the same for all
pi1 = 0, 1, · · · ,Mdi − 1. Now, note that the set of all
Cp11,··· ,pi−1,1,0,pi+1,1,··· ,pK1

1 has a one-one correspondence
with the set of allDp11,··· ,pi−1,1,pi+1,1,··· ,pK1

i which follows
from the definitions of the respective sets. Hence, (22) can be
re-written as

log Mdi

− 1

M
∑K

k=1
dk

Md1−1
∑

p11=0

· · ·
M

di−1−1
∑

pi−1,1=0

Mdi−1
∑

pi,1=0

M
di+1−1
∑

pi+1,1=0

· · ·
MdK −1
∑

pK1=0

log
(

1 + |Dp11,··· ,pi−1,1,pi+1,1,··· ,pK1

i |+ |Cp11,··· ,pK1
2i |

)

+
1

M
∑

j 6=i dj

Md1−1
∑

p11=0

· · ·
M

di−1−1
∑

pi−1,1=0

M
di+1−1
∑

pi+1,1=0

· · ·
MdK−1
∑

pK1=0

log
(

1 + |Dp11,··· ,pi−1,1,pi+1,1,··· ,pK1

i |
)

(27)

= log Mdi

− 1

M
∑

K
k=1

dk

Md1−1
∑

p11=0

· · ·
M

di−1−1
∑

pi−1,1=0

Mdi−1
∑

pi,1=0

M
di+1−1
∑

pi+1,1=0

· · ·
MdK−1
∑

pK1=0

log
(

1 + |Dp11,··· ,pi−1,1,pi+1,1,··· ,pK1

i |+ |Cp11,··· ,pK1
2i |

)

+
1

M
∑K

k=1
dk

Md1−1
∑

p11=0

· · ·
M

di−1−1
∑

pi−1,1=0

Mdi−1
∑

pi,1=0

M
di+1−1
∑

pi+1,1=0

· · ·
MdK−1
∑

pK1=0

log
(

1 + |Dp11,··· ,pi−1,1,pi+1,1,··· ,pK1

i |
)

.

Clearly, if |Cp11,··· ,pK1

2i | > 1 for some(p11, · · · , pK1) then, the
second term in the above equation is strictly greater than the
last term and hence, asP tends to infinity,I[Xi;Yi] tends to a
value that is strictly less thanlog Mdi. If |Cp11,··· ,pK1

2i | = 0 for
all pl1 then, the second term in the above equation is equal
to the last term and hence,I[Xi;Yi] tends to a value equal
to log Mdi . Thus,I[Xi;Yi] tends tolog Mdi asP tends to
infinity iff (18) is satisfied.

Remark 2:The result of Theorem 2 means that the rate
achieved by treating interference as noise at highP tends to
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Cp11,··· ,pK1
1i = { (p12, p22, · · · , pK2) 6= (p11, p21, · · · , pK1) for pi2 = pi1 | HiiVi(x

pi1
i − x

pi2
i ) +

K
∑

k 6=i
k=1

HkjVk(x
pk1
k − x

pk2
k ) = 0 }, (24)

⇒ Cp11,··· ,pK1
1i = { (p12, p22, · · · , pK2) 6= (p11, p21, · · · , pK1) for pi2 = pi1 |

K
∑

k 6=i
k=1

HkjVk(x
pk1
k − x

pk2
k ) = 0 } (25)

Cp11,··· ,pK1
2i = { (p12, p22, · · · , pK2) 6= (p11, p21, · · · , pK1) for pi2 6= pi1 | HiiVi(x

pi1
i − x

pi2
i ) +

K
∑

k 6=i
k=1

HkjVk(x
pk1
k − x

pk2
k ) = 0 } (26)

CCSC for Tx-i iff, in the absence of the Gaussian noise, two
different symbol vectorsxpi1

i andxpi2

i sent by Tx-i should not
map to the same symbol vector at Rx-i for any data symbol
transmitted by the interfering transmitters.

Remark 3:For a given value of channel gains with none
of the direct channel gains being0, when the entries of the
precoders are chosen from any continuous distribution (say,
standard normal distribution) the probability of the event

HiiVi(x
pi1
i − x

pi2
i ) +

K
∑

k 6=i
k=1

HkjVk(x
pk1
k − x

pk2
k ) = 0,

to occur for anypi1 6= pi2 and for any(pk1, pk2) is zero.
By appropriate scaling of the precoders thus obtained, with
probability1, we have CCSC optimal precoders.

Remark 4: Interference alignment, if feasible [28] for the
given values ofnti , nri , and di involves finding precoders
such that the signal sub-space at Rx-i, generated by[HiiVi],
is linearly independent of the interference sub-space, generated
by [H1iV1 · · · Hi−1,iVi−1 Hi+1,iVi+1 · · · HK,iVK ], and the
matrix [HiiVi] is full-rank [1]. The CCSC optimality condition
in (18) can be rewritten as

[HiiVi H1iV1 · · · Hi−1,iVi−1 Hi+1,iVi+1 · · · HK,iVK ]

×



























(xpi1
i − x

pi2
i )

(xp11
1 − x

p12
1 )

...
(x

pi−1,1

i−1 − x
pi−1,2

i−1 )

(x
pi+1,1

i+1 − x
pi+1,2

i+1 )

...
(x

pK1
K − x

pK2
K )



























6= 0, ∀ pi1 6= pi2.

Since, with precoders that achieve IA, the signal sub-space
at Rx-i is linearly independent of the interference sub-space
and [HiiVi] is full-rank, the above condition is satisfied for
all i. Hence, IA precoders are also CCSC optimal precoders.
However, in general, finding such precoders are NP-hard [22]
whereas finding CCSC optimal precoders are easy to find as
explained in the previous remark.

The following example illustrates a3-user MIMO GIC
which employs CCSC optimal precoders.

Example 1:Consider a MIMO GIC withK = 3, nti =
nri = 1, di = 1 for all i, and the finite constellation used is
QPSK. The channel matrix and the precoders are given by

H =





−0.9 + 0.4i −1.7− 1.40i 1.5 + 5.0i
2.6− 0.9i −0.9− 2.8i 0.04 + 0.88i
−2.9− 5.2i −10.2 + 0.7i −0.5 + 2.4i]



 ,

V1 = 1, V2 = ei
π
3 , V3 = 1
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Tx−3 with Gaussian Alphabet

Fig. 2. Rates in bits/sec/Hz vsP in dB for Example 1.

where, the matrix element[H ]ij represents the channel gain
from Rx-i to Tx-j. The mutual informationI[Xi;Yi] evaluated
using Monte-Carlo simulation is plotted for QPSK inputs and
Gaussian inputs, for alli, in Fig. 2. The chosen precoders
satisfy (18) and hence,I[Xi;Yi] saturates to2 bits/sec/Hz for
all i, asP tends to infinity in the QPSK case whereas, for
the Gaussian alphabet case, the saturation rate is determined
by the channel gains. The saturation value ofI[Xi;Yi] in

the Gaussian alphabet case is given bylog
(

1 + |hii|2
∑

k 6=i |hki|2
)

which evaluates to0.04, 1.02, and0.06 bits/sec/Hz for Tx-1,
Tx-2 and Tx-3 respectively in this example.

The following example illustrates a naive choice of pre-
coders that are not CCSC optimal in a3-user MIMO GIC.

Example 2:Consider a MIMO GIC withK = 3, nti =
nri = 2, di = 1 for all i, and the finite constellation used is
QPSK. Let the effective matrix from all the transmitters to all
the receivers be given by

H =





H11 H21 H31

H12 H22 H32

H13 H23 H33





where, Hij is the 2 × 2 channel matrix from Tx-i to
Rx-j. The precoders and the channel matrices are given
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V1 =

[

0.66 + 0.74i
0.13 + 0.99i

]

, V2 =

[

0.9883 + 0.1524i
0.4538 + 0.8911i

]

, V3 =

[

0.7044 + 0.7098i
0.1603 + 0.9871i

]

, (28)

H =















0.5756 − 0.0565i 0.7524 − 0.1375i 0.1697 − 0.1069i 0.0124 − 0.2002i 0 0
0.1610 + 0.3766i −0.0010 + 0.2005i 0.8758 − 0.0689i −0.1285 + 0.0605i 0 0
−1.1533 − 0.1280i −0.6361 + 1.4658i −1.3069 + 0.1090i 0.0427 + 0.2488i −0.0028 + 0.2215i −1.0597 − 0.2708i
−1.7763 − 0.3748i 0.5341 + 0.0966i −0.9491 + 0.8074i −1.0773 − 1.7202i 0.9616 − 1.2130i −0.6077 + 0.6970i
−1.7082 − 0.4948i −0.6101 − 0.4739i −0.2226 − 4.2486i −0.8216 + 0.4808i 0.9572 + 1.8870i −1.4428 − 1.4353i
−1.3014 − 0.5614i 1.2515 + 0.3414i 0.4242 + 0.0202i 0.0138 − 0.8740i 0.3393 − 1.3451i 0.9498 − 1.0932i















, (29)
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Fig. 3. Rates in bits/sec/Hz vsP in dB for Example 2.

in (28) and (29) respectively (given at the top of the
next page). Note that the QPSK points are given by
(

1√
2
+ 1√

2
i,− 1√

2
+ 1√

2
i,− 1√

2
− 1√

2
i, 1√

2
− 1√

2
i
)

. Now, (18)
is not satisfied fori = 1 because

[H11V1 H21V2 H31V3]×





(xp11
1 − x

p12
1 )

(xp21
2 − x

p22
2 )

(xp31
3 − x

p32
3 )



 = 0, for





(xp11
1 − x

p12
1 )

(xp21
2 − x

p22
2 )

(xp31
3 − x

p32
3 )



 =





√
2 +
√
2i√

2
0



 .

For i = 2, 3, (18) is satisfied. The plots ofI[Xi;Yi] evaluated
using Monte-Carlo simulation andI[Xi;Yi] evaluated using
the high SNR approximation in (16) is shown in Fig. 3. Note
that R1 saturates to a value strictly less than2 bits/sec/Hz
whereasR2 andR3 saturates to2 bits/sec/Hz, thus validating
Theorem 2.

The intuition behind the result of Theorem 2 is as follows.
Define the sum constellation at receiver Rx-i to be the set of
points given by










√
P






HiiViXi +

K
∑

k 6=i
k=1

HkjVkXk






| Xj ∈ S, ∀ j











.

At every receiver Rx-i, the interference forms a “cloud”
around the desired signal points in the sum constellation.

Cloud around a desired signal pointxpi

i , wherexpi

i ∈ S, is
defined as the set of points given by











√
P






HiiVix

pi

i +

K
∑

k 6=i
k=1

HkjVkXk






| Xk ∈ S











.

Note that the information regarding a desired signal pointxpi

i

is contained in its respective cloud in the sum constellation.
At high values ofP , the clouds corresponding to the different
signal points move away from each other if there is no
intersection among the clouds. Since it is enough for each
receiver to distinguish between the clouds and is not required
to distinguish the points inside every cloud, every signal point
can be reliably decoded if the clouds do not intersect. The
sum constellation and the non-intersecting clouds at Rx-1, at
P = 16 dB, for Example 1 is plotted in Fig. 4.
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Fig. 4. Cloud Constellation at Rx-1 for Example 1 atP = 16 dB.

IV. GRADIENT ASCENTBASED ALGORITHM FOR

FINITE-SNR

In the previous section, we studied the rate achieved for each
transmitter by treating interference as noise at every receiver
asP tends to infinity. In this section, we focus on the finite
SNR case. Specifically, the aim is to maximize the sum-rate
achieved by treating interference as noise at every receiver
with respect to the precoders, i.e.,

max f(V1, · · · , VK) = max
K
∑

i=1

I [Xi; Yi] with Tr(ViV
H
i ) ≤ 1.
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This is a non-concave problem in general and difficult to
solve. Hence, we propose a gradient-ascent based algorithmto
improve the sum-rate starting from some random initialization
of precoders. Define the MMSE matrix at Rx-j by

Ej = E[(X − E[X |Yj ])(X − E[X |Yj ])
H ]

where, E represents the expectation operator. Define the
MMSE matrix at Rx-j with the exclusion of Tx-j’s signal
by

E 6j = E[(X 6j − E[X 6j |Yj −HjjXj ])(X 6j − E[X 6j |Yj −HjjXj ])
H ]

The gradient of the sum-rate with respect to the precoderVi

given by

∇Vif(V1, · · · , VK) = ∇Vi

K
∑

j=1

I [Xj ;Yj ]

= ∇Vi

K
∑

j=1

I [X1, X2, · · · , XK ;Yj ]− I [X1, X2, · · · , XK ;Yj |Xj ]

= log e

K
∑

j=1

H
H
ijHjEj I∑i−1

k=1
dk+1:

∑i
k=1

dk
(30)

− log e

i=K
∑

j=1
j 6=i

H
H
ijH 6jE 6j I∑i−1

k=1
dk−djI(i−j)+1:

∑i
k=1

dk−djI(i−j)

where, (30) follows from the relation between the gradient of
mutual information and the MMSE matrix obtained in [4]. The
matrices

I∑i−1
k=1

dk+1:
∑i

k=1
dk

and

I∑i−1
k=1

dk−djI(i−j)+1:
∑

i
k=1

dk−djI(i−j)

select the column numbers from
∑i−1

k=1 dk + 1 to
∑i

k=1 dk of
Ej and

∑i−1
k=1 dk − djI(i − j) + 1 to

∑i
k=1 dk − djI(i − j) of

E6j respectively, where

I(i− j) =

{

1 i > j
0 i < j.

Define V = diag(V1, V2, · · · , VK). The gradient ascent
based algorithm for optimizing f(V1, · · · , VK) with
respect to the precoders is given in Algorithm1.
During every iteration, whose number is denoted by
n, all the precoders are updated as given in Line
10 of Algorithm 1 where, ∇V f |V=V (n−1) represents
diag

(

∇V1f |V1=V
(n−1)
1

,∇V2f |V2=V
(n−1)
2

, · · · ,∇VK f |
VK=V

(n−1)
K

)

and ∇Vif |Vi=V
(n−1)
i

denotes the gradient∇Vif evaluated at

Vi = V
(n−1)
i . If the power constraint for any transmitter Tx-i

is violated then,V (n)
i is projected onto the feasible set with

Tr(V
(n)
i V

(n)
i

H
) ≤ 1 (see Line12 of Algorithm 1) [4]. The

condition in Line 15 of the algorithm ensures that there is
sufficient increase in the objective function. The step size
t of the algorithm is chosen by back-tracking line search
with parametersα and β whose typical values lie between
(0.01, 0.3) and (0.1, 0.8) [29]. The proposed algorithm stops
when either the number of iterations performed is equal to
max iterations or f (n−1) − f (n−2) < ǫ (see Line5 of
Algorithm 1), for some fixedǫ.

Algorithm 1 Gradient Ascent based Algorithm for improving
sum-rate
1: Initialize Vi = V

(0)
i with Tr(ViV

H
i ) ≤ 1, i = 1, 2, · · · , K, andt = 1.

2: for n = 1 to max iterations do
3: Compute f(n−1) = f(V

(n−1)
1 , V

(n−1)
2 , · · · , V (n−1)

K ),

4: E
(n−1)
j , andE(n−1)

6j , for j = 1, 2, · · · ,K.

5: if n > 1 andf(n−1) − f(n−2) < ǫ then
6: exit for
7: end if
8: Compute∇V f |V =V (n−1)

9: do
10: V (n) ← V (n−1) + t∇V f |V =V (n−1) .
11:

12: V
(n)
i ← V

(n)
i

Tr(V
(n)
i V

(n)
i

H
)

if Tr(V
(n)
i V

(n)
i

H
) > 1, for all i.

13: Computef(n) = f(V
(n)
1 , V

(n)
2 , · · · , V (n)

K ).
14: t = βt

15: while f(n) < f(n−1) + αt
∣

∣

∣

∣∇V f |V =V (n−1)

∣

∣

∣

∣

2

F
16: t = 1.
17: end for

Similar gradient ascent based algorithms have been pro-
posed in the past for optimizing rates in single user MIMO
channels [4], [5] and MIMO MAC [8] with finite constellation
inputs and precoding. Like in [4] [5] [8], the algorithm does
not assume uniform distribution over the elements of the finite
constellation. The above algorithm appeared first in an older
arxiv version of this paper [20]. Recently, the same gradient
ascent algorithm as above appeared in [21] with weighted
sum-rate as the objective function instead of sum-rate as the
objective (as considered here).

Note that evaluation of∇V f (in Step 8 of Algorithm 1)
and the functionf (in Step 13 of Algorithm 1) have high
complexity because they require averaging over an arbitrary
number of Gaussian noise samples. This motivates us to
pursue low complexity gradient ascent based algorithms in
the following subsection.

A. Low Complexity Gradient Ascent Algorithms based on high
SNR approximation

In this subsection, we assume uniform distribution over
the elements of the finite constellation. Since the high SNR
approximation in (16) does not involve averaging over noise
samples, we propose to maximize the objective function de-
fined by

f1 (V1, · · · , VK) =

3
∑

i=1

log Mdi

− 1

M
∑K

k=1 dk

M
∑K

k=1 dk−1
∑

k1=0



log





M
∑K

k=1 dk−1
∑

k2=0

e
−
∣

∣

∣

∣

∣

∣

√
PA

k1,k2
i

∣

∣

∣

∣

∣

∣

2









(31)

+
1

M
∑

j 6=i dj

M
∑

j 6=i dj−1
∑

i1=0



log





M
∑

j 6=i dj−1
∑

i2=0

e−||
√
PB

i1,i2
i ||2







 .

using Algorithm1 where,f is replaced byf1 and ∇V f is
replaced by∇V f1.

We now interpret what maximizingf1 and f means in
terms of the input constellations, at large values ofP . The
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following observation would generalize the result of [5] that
the precoding matrixVi that maximizesI[Xi;Yi] when the
interference channel matrices are zero converges to the matrix
that maximizes the minimum distance between the desired
constellation vectors, at large values ofP .

Theorem 3:At large values ofP , the precoding matrices
that maximizef(V1, · · · , VK) and f1(V1, · · · , VK) converge
to the matrices that maximizeminKi=1 dmin(i) where,dmin(i)
is given by

min
pi1 6=pi2,
(pk1,pk2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

HiiVi(x
pi1
i − x

pi2
i ) +

K
∑

k 6=i
k=1

HkjVk(x
pk1
k − x

pk2
k )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(32)

represents the minimum among the distances between two
points belonging to different clouds at Rx-i (without the power
scalingP ).

Proof: The high SNR approximation forI[Xi;Yi] in (16)
can be re-written as (33) using (19) and (27). Using first
order expansion for logarithm function, at largeP , we have
the approximation in (34). At largeP , the exponential terms
in (34) are negligible compared to the other terms. Hence,
the precoders that maximize

∑K

i=1 I[Xi;Yi] at largeP must
have

∣

∣Cp11,··· ,pK1

2i

∣

∣ = 0, for all (p11, · · · , pK1) and i, i.e.,
the precoders must be CCSC optimal. Using the definitions
of Ak1,k2

i andBk1,k2

i given in (1) and (14) respectively, and
the definition ofDp11,··· ,pi−1,1,pi+1,1,··· ,pK1

i in (21), we have
(35). Splitting the second term of (35) into two terms, one
with pi,2 = pi,1 and another withpi,2 6= pi,1, we have
(36). Now, the third and the last term of (36) are equal and
thus, they cancel each other. Hence, we have (37). At high
P , the exponential term corresponding todmin(i), defined
in (32), dominates the value of (37). Suppose the number
of tuples(pi1, · · · , pK1, pi2, · · · , pK2) contributing todmin(i)
in the exponent term of (37) beti and let the corresponding
values of

∣

∣Dp11,··· ,pi−1,1,pi+1,1,··· ,pK1

i

∣

∣ be denoted byDik, for
k = 1, 2, · · · , ti. Therefore, we have

3
∑

i=1

I[Xi;Yi] ≈
3
∑

i=1

log Mdi − e−Pd2
min(i)

M
∑

K
k=1 dk

(

ti
∑

k=1

log e

1 +Dik

)

Again, at largeP , the minimum amongd2min(i) dominates the
value of the above expression. Hence, the precoding matrices
that maximize

∑3
i=1 I[Xi;Yi] converge to the matrices that

maximizeminK
i=1 dmin(i), at large values ofP .

We observe that maximizingminK
i=1 dmin(i) also minimizes

the probability of error with ML decoding across all the
receivers, at large values ofP .

Now, note that at large values ofP , we can further approx-
imate (16) by

I [Xi;Yi] ≈ log Mdi

− 1

M
∑K

k=1 dk

M
∑K

k=1 dk−1
∑

k1=0



log





M
∑K

k=1 dk−1
∑

k2=0

e−
||√PA

k1,k2
i ||2
r









(38)

+
1

M
∑

j 6=i dj

M
∑

j 6=i dj−1
∑

i1=0



log





M
∑

j 6=i dj−1
∑

i2=0

e−
||√PB

i1,i2
i ||2
r







 .

for some positive real numberr. This is because the above
expression and the expression in (16) tend to the same value
asP tends to infinity.

Thus, another low complexity algorithm shall involve max-
imization of the objective function given by

f2 (V1, · · · , VK) =

3
∑

i=1

log Mdi

− 1

M
∑

K
k=1 dk

M
∑K

k=1 dk−1
∑

k1=0



log





M
∑K

k=1 dk−1
∑

k2=0

e−
||√PA

k1,k2
i ||2
r









(39)

+
1

M
∑

j 6=i dj

M
∑

j 6=i dj−1
∑

i1=0



log





M
∑

j 6=i dj−1
∑

i2=0

e−
||√PB

i1,i2
i ||2
r







 .

using Algorithm 1 where, f is replaced byf2 and ∇V f
is replaced by∇V f2. Following the chain rule for matrix
differentials [30], the gradient∇Vk

f2, for k = 1, 2, · · · ,K,
is given by (40) (at the top of the page after the next page)
where,xk,k1,k2 is the sub-vector of the vectorAk1,k2 which
corresponds toxp1

k −xp2

k , for somep1, p2 = 0, 1, · · · ,Mdk−1,
and xk,i1,i2 is the sub-vector of the vectorBi1,i2 which
corresponds toxp1

k −xp2

k , for somep1, p2 = 0, 1, · · · ,Mdk−1.
In the following subsection, we present some simulation

results using the proposed algorithms.

B. Simulation Results

Several algorithms to obtain precoders that aim to achieve
IA are known. We consider two representatives of such algo-
rithms from [31] and [32] for comparison with the proposed
algorithms. The works in [31] and [32] demonstrate the
performance of their algorithms in terms of sum-rate with
Gaussian alphabet inputs. In this section, we present examples
of performance of these algorithms with the practical case of
finite constellation inputs.

Consider a MIMO GIC withK = 3, nti = nri = 2,
di = 1 for all i. We shall consider the max-SINR (signal
to interference plus noise ratio) algorithm from [31] and the
maximum sum chordal distance algorithm from Section IV
A of [32] for comparison with the proposed algorithms. The
closed form IA precoder solution of [1] for the considered
MIMO GIC is given by

V1 = e1, V2 = H−1
23 H13V1, V3 = H−1

32 H12V1

where, e1 is an eigen vector of the matrix
H−1

13 H23H
−1
21 H31H

−1
32 H12. The maximum sum chordal

distance algorithm selects the eigen vectore1 which
maximizes the sum chordal distance [32]. We however
select the eigen vectore1 which maximizes the sum-rate
∑3

i=1 I[Xi;Yi] with finite constellation inputs. Clearly, the
maximum sum chordal distance algorithm cannot perform
better in terms of sum-rate whene1 is chosen to maximize
the sum-rate with finite constellation inputs. We call this as
the max-sum-rate CaJ IA solution. The max-SINR algorithm
aims to maximize the signal to interference plus noise ratioat
each of the receivers so that the sum-rate withI[Xi;Yi] with
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I[Xi;Yi] ≈ log M
di − 1

M
∑K

k=1
dk

M

∑K
k=1 dk−1
∑

k1=0

log













1 +
1

1 + |Ak1
i |

∑

k2 6=k1

k2 /∈Ak1
i

e
−P

(

∣

∣

∣

∣

∣

∣

∣

∣

A
k1,k2
i

∣

∣

∣

∣

∣

∣

∣

∣

2
)













− 1

M
∑K

k=1
dk

Md1−1
∑

p11=0

· · ·
M

di−1−1
∑

pi−1,1=0

Mdi−1
∑

pi,1=0

M
di+1−1
∑

pi+1,1=0

· · ·
MdK −1
∑

pK1=0

log
(

1 + |Dp11,··· ,pi−1,1,pi+1,1,··· ,pK1
i | + |Cp11,··· ,pK1

2i |
)

+
1

M
∑

j 6=i dj

Md1−1
∑

p11=0

· · ·
M

di−1−1
∑

pi−1,1=0

M
di+1−1
∑

pi+1,1=0

· · ·
MdK −1
∑

pK1=0

log
(

1 + |Dp11,··· ,pi−1,1,pi+1,1,··· ,pK1
i |

)

+
1

M
∑

j 6=i dj

M

∑

j 6=i dj −1
∑

i1=0

log













1 +
1

1 + |Bi1
i |

∑

i2 6=i1

i2 /∈Bi1
i

e
−P

(

∣

∣

∣

∣

∣

∣

∣

∣

B
i1,i2
i

∣

∣

∣

∣

∣

∣

∣

∣

2
)













(33)

≈ log M
di − 1

M
∑K

i=1
di

M

∑K
i=1 di−1
∑

k1=0

log e

1 + |Ak1
i |

∑

k2 6=k1

k2 /∈Ak1
i

e
−P

(

∣

∣

∣

∣

∣

∣

∣

∣

A
k1,k2
i

∣

∣

∣

∣

∣

∣

∣

∣

2
)

− 1

M
∑K

k=1
dk

Md1−1
∑

p11=0

· · ·
M

di−1−1
∑

pi−1,1=0

Mdi−1
∑

pi,1=0

M
di+1−1
∑

pi+1,1=0

· · ·
MdK −1
∑

pK1=0

log
(

1 + |Dp11,··· ,pi−1,1,pi+1,1,··· ,pK1
i | + |Cp11,··· ,pK1

2i |
)

+
1

M
∑

j 6=i dj

Md1−1
∑

p11=0

· · ·
M

di−1−1
∑

pi−1,1=0

M
di+1−1
∑

pi+1,1=0

· · ·
MdK −1
∑

pK1=0

log
(

1 + |Dp11,··· ,pi−1,1,pi+1,1,··· ,pK1
i |

)

+
1

M
∑

j 6=i dj

M

∑

j 6=i dj −1
∑

i1=0

log e

1 + |Bi1
i |

∑

i2 6=i1

i2 /∈Bi1
i

e
−P

(

∣

∣

∣

∣

∣

∣

∣

∣

B
i1,i2
i

∣

∣

∣

∣

∣

∣

∣

∣

2
)

(34)

= log M
di − 1

M
∑K

k=1
dk

Md1−1
∑

p11=0

· · ·
M

di−1−1
∑

pi−1,1=0

Mdi−1
∑

pi,1=0

M
di+1−1
∑

pi+1,1=0

· · ·
MdK −1
∑

pK1=0

log e

1 + |Dp11,··· ,pi−1,1,pi+1,1,··· ,pK1 |

Md1−1
∑

p12=0

· · ·
M

di−1−1
∑

pi−1,2=0

Mdi−1
∑

pi,2=0

M
di+1−1
∑

pi+1,2=0

· · ·
MdK −1
∑

pK2=0

e

−P

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

HiiVi(x
pi1
i

−x
pi2
i

)+
∑K

k 6=i
k=1

HkjVk(x
pk1
k

−x
pk2
k

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

+
1

M
∑

j 6=i dj

Md1−1
∑

p11=0

· · ·
M

di−1−1
∑

pi−1,1=0

M
di+1−1
∑

pi+1,1=0

· · ·
MdK −1
∑

pK1=0

log e

1 + |Dp11,··· ,pi−1,1,pi+1,1,··· ,pK1
i |

Md1−1
∑

p12=0

· · ·
M

di−1−1
∑

pi−1,2=0

M
di+1−1
∑

pi+1,2=0

· · ·
MdK −1
∑

pK2=0

e

−P

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑K
k=1
k 6=i

HkjVk(x
pk1
k

−x
pk2
k

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

(35)

= log M
di − 1

M
∑K

k=1
dk

Md1−1
∑

p11=0

· · ·
M

di−1−1
∑

pi−1,1=0

Mdi−1
∑

pi,1=0

M
di+1−1
∑

pi+1,1=0

· · ·
MdK −1
∑

pK1=0

log e

1 + |Dp11,··· ,pi−1,1,pi+1,1,··· ,pK1
i |

Md1−1
∑

p12=0

· · ·
M

di−1−1
∑

pi−1,2=0

Mdi−1
∑

pi,2=0

pi,2 6=pi,1

M
di+1−1
∑

pi+1,2=0

· · ·
MdK−1
∑

pK2=0

e

−P

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

HiiVi(x
pi1
i

−x
pi2
i
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∑K

k 6=i
k=1

HkjVk(x
pk1
k

−x
pk2
k

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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− 1

M
∑K

k=1
dk

Md1−1
∑

p11=0

· · ·
M

di−1−1
∑

pi−1,1=0

Mdi−1
∑

pi,1=0

M
di+1−1
∑

pi+1,1=0

· · ·
MdK −1
∑

pK1=0

log e

1 + |Dp11,··· ,pi−1,1,pi+1,1,··· ,pK1
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· · ·
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∑
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−P

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

HiiVi(x
pi1
i

−x
pi2
i
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HkjVk(x
pk1
k

−x
pk2
k
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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+
1

M
∑
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Md1−1
∑

p11=0

· · ·
M

di−1−1
∑

pi−1,1=0

M
di+1−1
∑

pi+1,1=0

· · ·
MdK −1
∑

pK1=0

log e

1 + |Dp11,··· ,pi−1,1,pi+1,1,··· ,pK1 |

Md1−1
∑

p12=0
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M
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∑
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∣

∣
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∣

∣

∣

∣

∣

∣
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∣
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∣
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∇Vk
f2 =

1

r

K
∑

i=1

M
∑K

i′=1
d
i′ −1

∑
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∑M
∑K
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d
i′ −1

k2=0 e−
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i ||2
r HH

kiA
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i2=0 e−
||Bi1,i2

j ||2
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(40)

Gaussian input alphabets is maximized. Unlike in [31] or
[32], we do not use any receive filter matrices as using them
can only reduce the rateI[Xi;Yi] because of data-processing
inequality [27]. The max-SINR algorithm computes receive
filter matrices at every iteration2. We discard the receive
filter matrices once the max-SINR algorithm converges
and then compute

∑3
i=1 I[Xi;Yi] with finite constellation

inputs. Similarly, we compute
∑3

i=1 I[Xi;Yi] with finite
constellation inputs for the max-sum-rate CaJ IA solution
without the use of any zero forcing filters at the receivers.

1) Performance of the proposed algorithm averaged over
channel realizations:The ergodic sum-rates, i.e., the
sum-rate averaged with the entries of the channel ma-
trices being taken fromCN (0, 1), using BPSK and
QPSK input constellations are simulated. The ergodic
sum-rates obtained using the max-SINR algorithm (with
random initialization), max-sum-rate CaJ IA solution,
and the proposed gradient ascent algorithms withf ,
f1, and f2 as the objective functions using the max-
SINR precoders as the initialization are shown for the
BPSK constellation and the QPSK constellation in Fig.
5(a) and in Fig. 5(b) respectively. The parameterr
chosen for the objective functionf2 is equal to 2.
The chosen parameters in the gradient ascent algorithm
are given by max iterations = 10, β = 0.2, α =
0.005, ǫ = 0.001. As seen from Fig. 5(a) and in Fig.
5(b), the precoders obtained by optimization off1 gives
negligible improvement in the ergodic sum-rate over that
obtained from the max-SINR algorithm. However the
precoders obtained by optimization off and f2 give
considerable improvement in the ergodic sum-rate over
that obtained from the max-SINR algorithm. Moreover,
there is negligible difference in the sum-rate obtained by
optimizing f and f2. Hence, gradient ascent algorithm
with f2 as the objective function (withr = 2) is a
worthy low-complexity alternative to the gradient ascent
algorithm withf as the objective function. Also, observe
that the max-sum-rate CaJ IA solution performs badly
compared to the other algorithms. For clarity on the
gains in the ergodic sum-rate obtained by optimizingf
andf2 over that obtained from the max-SINR algorithm,
the ergodic sum-rate values are given in Table I and
Table II for BPSK and QPSK constellations respectively.
As observed from Table I, the ergodic sum-rate gain

2For the sake of brevity, we do not present the details of the algorithm and
the reader can have the details from [31].

using the proposed gradient ascent algorithm withf
and f2 as objectives over the max-SINR algorithm for
BPSK input constellations is more than0.1 bits/sec/Hz
upto P = 0 dB. As expected the gain decreases asP
becomes higher as the sum-rate obtained using all the
algorithms saturate to3 bits/sec/Hz for every channel
realizations. Similarly from Table II, fromP = 3 dB to
P = 6 dB, the ergodic sum-rate gain using the proposed
gradient ascent algorithm withf and f2 as objective
functions over the max-SINR algorithm for QPSK input
constellations is more than0.1 bits/sec/Hz. In this case
also, the gain decreases asP becomes higher.

2) Convergence and performance of the proposed algo-
rithm for a fixed channel:The parameters used in
Algorithm 1 are max iterations = 15, β = 0.2, α =
0.005, ǫ = 0.001. The chosen channel matrix is given in
(41). The convergence behaviour of Algorithm1 using
f andf2 (with r = 2) as objective functions with BPSK
inputs is shown in Fig. 6 forP = −5 dB, P = −2 dB,
andP = 0 dB, with precoders obtained from the max-
SINR algorithm as initialization. The initial precoders
for the max-SINR algorithm are chosen randomly. The
proposed algorithm withf2 as the objective function
terminates well before themax iterations number for
all P because the condition in Line5 of Algorithm 1
is satisfied. As seen from Fig. 6, in all the cases the
sum-rates obtained at the termination of the proposed
algorithm with f2 as the objective function are almost
the same as that obtained withf as the objective
function. Furthermore, for allP , the sum-rate gains
obtained over the max-SINR algorithm is more than0.1
bits/sec/Hz.

V. CONCLUSION

The paper discussed linear precoding forK-user MIMO
GIC with finite constellation inputs. We showed that, for
constant MIMO GIC with finite constellation inputs, CCSC
for every transmitter can be achieved just by using a naive
scheme of treating the interference as noise at every receiver, at
high SNR. This result is in contrast with the Gaussian alphabet
case where, at high SNR, the scheme that treats interferenceas
noise saturates to a value determined by the channel gains for
the SISO case. A set of necessary and sufficient conditions for
CCSC optimal precoders were derived. It was observed that
IA precoders fall under the class of CCSC optimal precoders.
However, CCSC optimal precoders are easy to obtain for any
given value of channel gains unlike obtaining IA precoders.
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Fig. 5. Sum-rate (in bits/sec/Hz) vs P (in dB).

TABLE I
ERGODIC SUM-RATE VALUES (IN BITS/SEC/HZ) FOR BPSKCONSTELLATION INPUTS

P (in dB) −5 −4 −3 −2 −1 0 1 2 3 4 5
Max-SINR algorithm 1.874 2.079 2.251 2.411 2.554 2.658 2.762 2.829 2.888 2.928 2.947

Gradient ascent algorithm
with f as the objective 2.007 2.228 2.405 2.552 2.679 2.764 2.847 2.895 2.933 2.956 2.969

Gradient ascent algorithm
with f2 as the objective 2.027 2.206 2.394 2.564 2.689 2.767 2.846 2.895 2.931 2.952 2.970

Max-sum-rate
CaJ IA Solution 1.521 1.718 1.934 2.104 2.258 2.433 2.555 2.673 2.764 2.845 2.898
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H =















0.3109 − 0.3888i 0.3610 − 0.1670i −0.2818 − 0.4540i 0.4015 + 0.1563i −0.8145 + 0.3811i 0.3374 − 0.9180i
0.3560 − 0.5511i 1.1616 − 0.6200i 0.6564 − 1.0746i 0.0047 − 0.2788i −0.2604 − 0.2678i −0.4395 + 0.3621i
−0.4314 + 0.3680i −0.4350 − 0.5917i −0.5202 − 1.2342i −0.4241 + 0.5924i 1.0494 − 0.6468i −1.3259 + 0.0483i
−0.2503 − 0.7360i −0.4445 − 0.4758i −0.6053 − 2.2125i 0.8310 + 0.2683i 0.2765 − 1.2192i 0.2176 + 0.4875i
−0.3055 + 0.4185i −0.1248 − 0.6503i 1.2821 + 0.3859i 0.7999 + 1.0462i 0.9247 − 0.9696i 0.0276 − 0.1582i
0.1163 − 0.2062i 0.8211 − 0.4995i 0.6084 − 0.6892i −1.2459 + 0.1684i −0.4081 + 1.2450i −0.5386 − 0.1936i
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Fig. 6. Increase in the objective functionsf andf2 (with r = 2) with every iteration for the constant channel case with BPSK inputs.
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TABLE II
ERGODIC SUM-RATE VALUES (IN BITS/SEC/HZ) FOR QPSKCONSTELLATION INPUTS

P (in dB) −2 −1 0 1 2 3 4 5 6 7 8 9 10

Max-SINR

algorithm 3.463 3.784 4.117 4.471 4.771 5.032 5.273 5.463 5.589 5.732 5.810 5.866 5.919

Gradient ascent

algorithm

with f as the objective 3.492 3.843 4.239 4.564 4.843 5.155 5.398 5.568 5.692 5.808 5.877 5.923 5.951

Gradient ascent

algorithm

with f2 as the objective 3.485 3.816 4.166 4.536 4.862 5.147 5.404 5.589 5.710 5.824 5.886 5.923 5.954

Max-sum-rate

CaJ IA Solution 2.686 3.012 3.358 3.708 4.071 4.414 4.735 4.980 5.229 5.455 5.611 5.728 5.824

Note that IA precoders have feasibility constraints which
restrict the value ofdi, for all i. An important contribution of
this paper is pointing out the CCSC optimality of IA precoders
when the values ofdi satisfy the feasibility constraints in [28].

Finally, gradient ascent based algorithms withf andf2 as
the objective functions were proposed. It was shown through
simulations that optimizing the high SNR approximation for
f , i.e., f2 with r = 2 performed as good as optimizingf
in terms of sum-rate. Thus, optimizingf2 using the proposed
gradient ascent based algorithm is a worthy low complexity
algorithm. It was also observed that, at high SNR, optimizing
f or f2 is equivalent to maximizing the minimum Euclidean
distance for ML decoding across all the receivers.
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