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Abstract—In this paper, we investigate a two-way communi-
cation channel where users can harvest energy from nature and
energy can be transferred in one-way from one of the users to
the other. Energy required for data transmission is randomly
harvested by the users throughout the communication duration
and users have unlimited batteries to store energy for future use.
In addition, there is a separate wireless energy transfer unit that
facilitates energy transfer only in one-way and with efficiency α.
We study the energy cooperation made possible by wireless energy
transfer in the two-way channel. Assuming that both users know
the energy arrivals in advance, we find jointly optimal offline
energy management policies that maximize the sum throughput
of the users. We show that this problem is a convex optimization
problem, and find the solution by a generalized two-dimensional
directional water-filling algorithm which transfers energy from one
user to another while maintaining that the energy is allocated
in the time dimension optimally. Optimal solution equalizes the

energy levels as much as possible both among users and among
slots, permitted by causality constraints of the energy arrivals
and one-way energy transfer.

I. INTRODUCTION

The conventional two-way communication channel intro-

duced in [1] consists of two users sending messages to each

other simultaneously over the same physical medium using

their own resources. In such a communication scenario, even

though the users send independent data using their independent

resources, they may implicitly cooperate by feeding back some

information about the signal they received in previous channel

uses. For the memoryless additive Gaussian two-way channel,

the overall two-way channel decomposes into two independent

one-way additive Gaussian channels and users achieve their

single-user capacities simultaneously [2]. Another dimension

of cooperation arises when energy transfer over the physical

medium is possible [3], [4]: Energy may be abundant in one

user in which case the loss incurred by transferring it to the

other user may be less than the gain it yields for the other

user. It is this cooperation that we wish to explore in this

paper which we call energy cooperation.

We consider a two-way communication channel composed

of two users powered by energy harvesting devices. These

devices can harvest energy from the surrounding environment

as in solar cells, water mills or mechanical vibration absorption

devices, etc. In particular, users communicate by using energy

harvested from the environment. We model this scenario
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Fig. 1. Two-way communication model with energy cooperation.

as two users having independent exogenous energy arrival

processes that recharge their batteries. Additionally, we assume

that one-way energy transfer is possible: The first user can

transmit a portion of its energy to the second user through a

separate wireless energy transfer unit subject to a delay and

attenuation as shown in Fig. 1. This is motivated by practical

applications such as RFID systems in which the passive reader

is powered by the energy reflected on it by the sender [5].

Neglecting the other energy expenditures such as computation

and sensing, we focus on the communication performances

of the users under the energy harvesting and one-way energy

transfer constraints. We study the optimization of transmission

policies of the users in this two-way communication channel

with energy harvesting and energy transfer. Assuming that the

users know the realizations of the energy arrival processes

in advance, as in the existing literature [6]–[19], we find

sum throughput maximizing optimal offline transmission and

energy transfer policies of the users.

Offline throughput maximization for an energy harvesting

transmitter has been the subject of the recent literature [6]–

[19]. In [6], transmission completion time minimization prob-

lem for an energy harvesting transmitter is solved. In [7],

throughput maximization problem by a deadline is solved

for an energy harvesting transmitter in a static channel. [8]–

[15] extend the throughput maximization problem and its

solution to fading, broadcast, multiple access, interference

and relay channels. Extensions of this problem to battery

imperfections are considered in [16], [17] and processing

costs are considered in [18], [19]. In [3], we extended the

two-hop cooperative network problem [14], [15] to a setup

where source to relay wireless energy transfer is allowed.

Recently, in [20] two-way communication channel with energy

exchange with a fixed amount of energy in the system is



considered where the channels in each direction are noiseless

and the energy transfer is lossless. Unlike [20], in our setup

the channels are noisy and the energy transfer is lossy.

Although energy transfer via RF energy harvesting may be

inefficient due to path-losses over the wireless channel [21],

more efficient wireless energy transfer methods based on mag-

netic coils exist [22], [23]. We, therefore, base our model on

the possibility of efficient wireless energy transfer and extend

our previous work in [3] to a two-way communication channel

with energy harvesting users and one-way energy transfer. We

formulate the offline sum throughput maximization problem

with energy transfer subject to energy causality at both users.

We show that this problem is a convex optimization problem,

and give the solution via a generalized two-dimensional direc-

tional water-filling algorithm. The energy causality constraints

take a new form when energy transfer is possible: energy can

flow in time from the past to the future for each user and

from the first user to the second at each time. We utilize right

permeable taps for energy flow through time for a single user

and down permeable taps for energy transfer between users.

In the optimal solution, due to the concavity of the throughput

in powers, energy must be spread as equally as possible both

among users and among time slots, subject to the causality

constraints of energy arrivals and one-way energy transfer. We

extend the sum rate maximization formulation in this paper to

the entire capacity region in [4].

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a two-way communication channel consisting

of two users as shown in Fig. 1. The two queues at the nodes

are the data and energy queues with unlimited sizes. The

energies that arrive at the nodes are saved in the corresponding

energy queues. The data queues of both users always carry

some data packets. In addition, energy expenditure is only due

to data transmission; any other energy costs, e.g., processing,

are not considered. There is a separate one-way wireless

energy transfer unit at the first user, which transfers energy

from the first user to the second user.

We assume a memoryless Gaussian two-way channel as

described in [2]. The channel inputs and outputs at the first and

second user are x1, x2 and y1, y2, respectively. Input-output

relations are y1 = x1 +x2+n1 and y2 = x1 +x2+n2 where

n1 and n2 are independent Gaussian additive noises with zero-

mean and unit variances. We assume that the time is slotted

and there are a total of T equal length slots assumed to be

of unit length. At times t = 1, . . . , T , user 1 harvests energy

with amounts E1, E2, . . . , ET and user 2 harvests energy with

amounts Ē1, Ē2, . . . , ĒT . One-way energy transfer efficiency

is α, where 0 ≤ α ≤ 1: When the first user transfers δi amount

of energy to the second user, δi amount of energy exits the

first user’s energy queue and αδi amount of energy enters the

second user’s energy queue in the same slot. Power policy of

user 1 is the sequences Pi and δi; power policy of user 2 is

the sequence P̄i.

For both users, the energy that has not arrived yet cannot

be used for data transmission or energy transfer, yielding the

following energy causality constraints:

k
∑

i=1

Pi ≤

k
∑

i=1

(Ei − δi), k = 1, . . . , T (1)

k
∑

i=1

P̄i ≤

k
∑

i=1

(Ēi + αδi), k = 1, . . . , T (2)

For the Gaussian two-way channel with individual power

constraints P1 and P2, rate pairs (R1, R2) with R1 ≤
1

2
log (1 + P1), R2 ≤ 1

2
log (1 + P2) are achievable [2]. We

formulate the sum throughput maximization problem with

energy transfer subject to energy causality at both users as:

max
P̄i, Pi, δi

T
∑

i=1

1

2
log (1 + Pi) +

1

2
log (1 + P̄i)

s.t.

k
∑

i=1

Pi ≤

k
∑

i=1

(Ei − δi), k = 1, . . . , T

k
∑

i=1

P̄i ≤

k
∑

i=1

(Ēi + αδi), k = 1, . . . , T

k
∑

i=1

δi ≤

k
∑

i=1

Ei, k = 1, . . . , T (3)

The problem in (3) is a convex optimization problem as the

objective function is concave and the feasible set is a convex

set [24]. We write the Lagrangian function for (3) as

L =−

T
∑

i=1

log (1 + Pi) + log (1 + P̄i)

+

T
∑

k=1

µk

(

k
∑

i=1

Pi − (Ei − δi)

)

+

T
∑

k=1

ηk

(

k
∑

i=1

P̄i − (Ēi + αδi)

)

−

T
∑

k=1

ρkδk (4)

The Lagrange multiplier ρk is due to the constraint that δk ≥ 0.

Note that the same constraints apply for Pi and P̄i; however,

Pi and P̄i are always nonzero in the optimal policy, therefore

we exclude those Lagrange multipliers. Similarly, we exclude

the constraints
∑k

i=1
δi ≤

∑k

i=1
Ei in the Lagrangian function

as these constraints can never be satisfied with equality in the

optimal policy1. The KKT conditions for this problem are:

−1

1 + Pi

+

T
∑

k=i

µk = 0, i = 1, . . . , T (5)

−1

1 + P̄i

+

T
∑

k=i

ηk = 0, i = 1, . . . , T (6)

T
∑

k=i

µk − α

T
∑

k=i

ηk − ρi = 0, i = 1, . . . , T (7)

1If user 1 transfers all of its energy at any slot then its instantaneous rate
will be zero. Since the objective function is concave in Pi and P̄i the optimal
solution can never have Pi = 0.



with the additional complementary slackness conditions as:

µk

(

k
∑

i=1

Pi − (Ei − δi)

)

= 0, ∀k (8)

ηk

(

k
∑

i=1

P̄i − (Ēi + αδi)

)

= 0, ∀k (9)

ρkδk = 0, ∀k (10)

From (5), (6) and (7) we get:

Pi =
1

∑T
k=i µk

− 1, i = 1, . . . , T (11)

P̄i =
1

∑T

k=i ηk
− 1, i = 1, . . . , T (12)

ρi =

T
∑

k=i

µk − α

T
∑

k=i

ηk, i = 1, . . . , T (13)

Next, we find the optimal power allocation policies Pi and P̄i

and the optimal energy transfer profile δi for all values of α.

III. OPTIMAL POWER ALLOCATION AND ENERGY

TRANSFER PROFILE

We start by noting that for a given energy transfer profile

δ1, . . . , δT the optimization problem can be separated between

the users and the optimal power profiles P ∗

i and P̄ ∗

i can be

found by the directional water-filling algorithm described in

[8] or the geometric approach described in [6] applied to the

energy arrival profiles Ei − δi and Ēi +αδi for i = 1, . . . , T .

This means that both users’ power allocation profiles are non-

decreasing and only increasing whenever they exhaust all of

the energy in their respective batteries [6], [8].

Lemma 1 The optimal power sequences P ∗

i and P̄ ∗

i are

monotonically increasing sequences: P ∗

i+1 ≥ P ∗

i , P̄ ∗

i+1 ≥ P̄ ∗

i .

Moreover if for some l,
∑l

i=1
P ∗

i <
∑l

i=1
Ei − δ∗i then P ∗

l =

P ∗

l+1
. Similarly, if for some j,

∑j
i=1

P̄ ∗

i <
∑j

i=1
Ēi + αδ∗i

then P̄ ∗

j = P̄ ∗

j+1.

Next, we provide the necessary optimality condition for

energy transfer in the following lemma.

Lemma 2 For the optimal power sequences P ∗

i , P̄
∗

i and en-

ergy transfer sequence δ∗i , if δ∗i 6= 0 for any slot i then,

1 + P ∗

i

1 + P̄ ∗

i

=
1

α
(14)

Proof: From (11)-(13) we have

1 + P ∗

i

1 + P̄ ∗

i

=

∑T
k=i ηk

α
∑T

k=i ηk + ρi
(15)

If there is a non-zero energy transfer, δi 6= 0, we have from

(10), ρi = 0. Therefore, (14) must be satisfied if δi 6= 0. �

Lemmas 1 and 2 will be useful for finding the optimal

power allocation and energy transfer profiles. Now we divide

the problem into two cases, namely α = 1 and α < 1.

A. Energy transfer efficiency α = 1

We consider the case of α = 1 to gain insight on the optimal

solution to this problem. We start by restating (11) and (12)

in the following way,

P ∗

i = νi − 1, i = 1, . . . , T (16)

P̄ ∗

i = ν̄i − 1, i = 1, . . . , T (17)

where the water levels νi and ν̄i in slot i are given by

νi =
1

∑T
k=i µk

, i = 1, . . . , T (18)

ν̄i =
1

∑T
k=i ηk

, i = 1, . . . , T (19)

When α = 1, from Lemma 2 we have ν̄i = νi whenever

there is an energy transfer. If some energy is transferred

through users, the power levels at that slot must equalize. In

view of Lemma 1, energy has to be allocated in time and

user dimensions together. This calls for a two-dimensional

directional water-filling algorithm where energy is allowed to

flow in two dimensions, from left to right (in time) and from

up to down (among users). We utilize right permeable taps to

account for energy which will be used in the future and down

permeable taps to account for energy transfers between users.

We consider the two slot system shown in Fig. 2. Whenever

water flows through a tap (horizontal or vertical), water levels

must equalize among those slots. Water can only flow from

left to right and from up to down. In this example, E1 is large

enough so that levels of the first two slots of user 1 and first

slot of user 2 are equalized in the optimal solution. Since Ē2

is large, there is no need for energy transfer at the second slot

therefore no water flows through that tap.

The two dimensions of the water flow (i.e., in time and

among users) in the resulting water-filling system are coupled.

Therefore, finding the optimal water levels is challenging as

it is not known beforehand which taps will be open or closed

in the optimal solution. While an exhaustive search over the

ordering of opening the taps may be proposed, we provide a

concise algorithm to find the optimal solution. We let each

tap (right/down permeable) have a meter measuring the water

that has already passed through it. If a tap meter has a positive

value, that tap becomes bidirectional and will allow water flow

in both directions. This allows us to recall any energy that

is sent to future slots or transferred to the other user sub-

optimally. First, we fill energy into the slots with all taps

closed. Then, we open only the right permeable taps and

perform directional water-filling for both users individually

[8]. Each right permeable tap measures the total amount of

energy moving through it. If a tap meter has a positive value,

that tap becomes bidirectional in the following step. After this

step, each user has increasing power/water levels.

Then, we open the down taps one by one in a backward

fashion. If water flows down through a tap, the amount is

measured by the meter. Water levels in the slots connected by

the bidirectional taps and the down tap are equalized as much

as possible. This implies that water may flow to the left (past)
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Fig. 2. Two-dimensional directional water-filling with right/down permeable
taps for a two slot system.

through bidirectional taps in order to keep the water level even.

If this happens, the amount of water moving back through the

tap is subtracted from the meter. If a meter becomes zero, the

tap becomes right-permeable again, and no water is allowed

to flow left through it. If a down tap meter becomes positive,

the down tap becomes bidirectional (up and down) in the

remaining steps.

An example run of the algorithm is given in Fig. 3. Initially

we open the right permeable taps and the water levels are

equalized. Then, we open the down permeable taps. In the

second slot there is no need for energy transfer because
E1+E2

2
< Ē2. In the first slot there will be some non-zero

energy transfer since E1+E2

2
> Ē1, and some water flows

through the first down permeable tap. Since user 1’s right

permeable tap has a positive meter at that point, some water is

allowed to flow from right to left thereby equalizing the water

levels of user 1’s first and second slots and user 2’s first slot.

The optimality of this algorithm is verified by checking the

KKT optimality conditions through (11)-(13) with α = 1.

Since the algorithm only terminates whenever νi ≤ ν̄i, ∀i we

have ρi = 1

νi
− 1

ν̄i
≥ 0, ∀i. We will find ηi, µi using (18)

and (19). By construction of the algorithm, the power levels

are always non-decreasing and equalize whenever some water

flows across a directional tap. We define ηi =
1

ν̄i
− 1

ν̄i+1
and

µi = 1

νi
− 1

νi+1
, ∀i. Since power levels are non-decreasing,

we have µi, ηi ≥ 0, ∀i. This means that we can find unique

ηi, µi, ρi ≥ 0 that satisfy the KKT optimality conditions

therefore showing that the algorithm is optimal.

B. Energy transfer efficiency α < 1

For α < 1, we obtain the solution via a generalized two-

dimensional directional water-filling algorithm. To that end,

we define P̃i =
P̄i

α
and formulate the optimization problem in

terms of Pi, P̃i and δi as follows:

E1+Ē1+E2

3

> 0> 0

0 0 0 0

0
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Fig. 3. Two-dimensional directional water-filling with right/down permeable
meter taps for a two slot system: an example run of the algorithm.

max
P̃i, Pi, δi

T
∑

i=1

1

2
log (1 + Pi) +

1

2
log (1 + αP̃i)

s.t.

k
∑

i=1

Pi ≤

k
∑

i=1

(Ei − δi), k = 1, . . . , T

k
∑

i=1

P̃i ≤

k
∑

i=1

(

Ēi

α
+ δi

)

, k = 1, . . . , T

k
∑

i=1

δi ≤

k
∑

i=1

Ei, k = 1, . . . , T (20)

Following the approach in Section II, the solution is

P ∗

i =νi − 1, i = 1, . . . , T (21)

P̃ ∗

i =ν̃i −
1

α
, i = 1, . . . , T (22)

where νi and ν̃i are the water levels for this new problem.

We observe from (21) and (22) that the second user’s bottom

level is 1

α
while the first user’s bottom level is 1. In addition,

the energy arrivals for the second user need to be scaled

by 1

α
. To find the optimal power levels, we make these two

modifications and run the two-dimensional directional water-

filling algorithm on the modified system. This yields νi and

ν̃i. We use (21), (22) and P̄i = αP̃i to find the final power

levels. The required modifications are explained in Fig. 4.

IV. NUMERICAL EXAMPLE

In this section, we provide a numerical example over 3 slots

to illustrate our algorithm. We assume that user 1 harvests

E = [0, 12, 0] mJ and user 2 harvests Ē = [6, 6, 0] mJ and

α = 1. T1i, T2i denote the horizontal taps of the first and

second users connecting the ith and i+1st slots, Qi denotes the

ith vertical tap. The optimal solution is P = [0, 4.8, 4.8] and

P̄ = [4.8, 4.8, 4.8], which is obtained by spreading the energy
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Fig. 4. The required modification to the initial water levels for α < 1.

as equally as possible in two dimensions among the users and

time slots, subject to energy causality. In order to show why

spreading the energy in two dimensions is challenging, we

next consider two sub-optimal orderings of tap openings.

Assume that we open the horizontal taps first and keep

the vertical taps closed. This yields the transient water levels

P = [0, 6, 6] and P̄ = [4, 4, 4]. Now, if we open the vertical

taps, water is transferred in the second and third slots and the

balanced final levels are P = [0, 5, 5] and P̄ = [4, 5, 5]. This

profile is not optimal since the second user changes its power

level when the battery is non-empty, violating Lemma 1.

Now, assume that we open the vertical taps first and keep

the horizontal taps closed. Energy is transferred in the second

slot and the new transient water levels will be P = [0, 9, 0] and

P̄ = [6, 9, 0]. Then, when we open the horizontal taps, we have

P = [0, 4.5, 4.5] and P̄ = [5, 5, 5]. This profile is not optimal

either, as after energy transfer, the first user’s power level is

less than the second user’s power level, violating Lemma 2.

We now show how the two-dimensional directional water-

filling algorithm works. First, we open the horizontal taps

to get P = [0, 6, 6] and P̄ = [4, 4, 4] with the tap meters

reading [0, 6] and [2, 2]. Recall that the taps with positive meter

readings allow bidirectional energy transfer. Next, we open the

vertical taps in a backward fashion. Once Q3 is opened, water

flows to the second user and since T21, T22 are bidirectional

it starts to fill all the slots of the second user. A balance

is established when P = [0, 4.8, 4.8] and P̄ = [4.8, 4.8, 4.8],
which is the optimal solution.

V. CONCLUSIONS

In this paper, we addressed a two-way communication chan-

nel with energy harvesting rechargeable nodes. We formulated

the offline sum throughput maximization problem with a one-

way wireless energy transfer subject to energy causality at

both nodes. We showed that this is a convex optimization

problem. We gave the solution in terms of a generalized two-

dimensional directional water-filling algorithm which utilizes

metered right and down permeable taps for optimal energy

flow among the users and in time.
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