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Abstract—In this paper we optimize constellation sets to be
used for channels affected by phase noise. The main objective is
to maximize the achievable mutual information of the constel-
lation under a given power constraint. The mutual information
and pragmatic mutual information of a given constellation is
calculated approximately assuming that both the channel and
phase noise are white. Then a simulated annealing algorithmis
used to jointly optimize the constellation and the binary labeling.
The performance of optimized constellations is compared with
conventional constellations showing considerable gains in all
system scenarios.

I. I NTRODUCTION

This paper investigates the constellation design for trans-
mission over AWGN channels affected by phase noise. Our
main goal is to show that a significant improvement with
respect to the conventional QAM and PSK constellations can
be obtained by optimizing the constellation space considering
both thermal and phase noise effects in the optimization
process. The shape of the optimized constellation depends
strongly on the communication system model, the channel
model, the power constraints and the objective function to
be optimized. Even for small signal sets with only 8 signals
several different constellations can be obtained, each being
optimal for a given set of parameters. We refer the readers to
[1], [2], [3] and [4] and the reference within for a detailed
study of the algorithms and methods used for constellation
optimization over the AWGN channel.

Recently ( [5],[4]) we have proposed a joint signal-labeling
optimization scheme for designing constellations which max-
imize the (pragmatic) achievable mutual information under
the peak power constraint as a function of signal to noise
ratio (SNR) using a simulated annealing (SA) algorithm for
transmission over non linear satellite channels. In this paper we
use the same algorithm focusing on the channels with phase
noise, imposing an average power constraint.

In order to use the SA algorithm we first need to calculate
the mutual information of the constellation for a channel
affected by white additive Gaussian and phase noise. The
problem of calculating the channel capacity impaired by
additive Gaussian and phase noise is open in general and is an
active research theme. Some asymptotic results for discrete-
time channels at high SNR has been proposed by Lapidoth
in [6] for phase noise both with and without memory. In [7]

Kats and Shamai show that the capacity-achieving distribution
of the discrete-time non coherent channel under the average
power constraint is discrete with an infinite number of mass
points. Also some upper and lower bounds on channel capacity
are obtained. In particular, the upper bound is shown to be
tight for asymptotically high SNR. More recently, Barbieri
and Colavolpe have used a Monte Carlo simulation method to
estimate the achievable information rate of the AWGN channel
with phase noise, modelled as a Wiener process, assuming a
uniformly distributed input [8] and [9]. However these results
are either too complex computationally or valid only in the
larger limit of constellation points. In [10] the authors calcu-
late the mutual information for any given constellation with
uniform distribution over the signal space and assuming the
memoryless phase noise modelled as Tikhonov distribution.
In this paper we provide a very close approximation for the
mutual information which is computationally much faster.

Optimizing the constellation space under the phase noise
has achieved a lot of attention in the literature. In [11] a
64-ary constellation is patented which is robust over the
phase noise channels. In [12] the authors first provide an
approximate expression for the symbol error rate of a given
constellation in the presence of phase jitter and then use a
gradient descent algorithm for finding a constellation which
minimizes this expression. This approach does not take into
the account the SNR as an optimization parameter. In the
same paper the authors also explore the design of circular
(APSK) constellations for use over phase noise channel. In
[13] the authors optimize the 16-ary APSK constellations in
the presence of nonlinear phase noise. In the first step the
authors fix the number of rings and the number of signals over
each ring. In the second step they find the optimal radii and
phases of each ring minimizing the symbol error rate following
the detectors and decoders suggested in [14].

Our approach in this paper is different from the previous
works in several ways. First of all we provide an expression
for the achievable mutual information (AMI) in the presence
of white phase noise and thermal noise. The AMI is then maxi-
mized as a function of thermal and phase noise variances under
a given power constraint. Furthermore, we do not impose
any particular a-priori structure over the constellation space
and our method allows for a joint signal-labeling optimization
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when the pragmatic achievable mutual information (PAMI) is
the target function to be maximized [15].

The rest of this paper is organized as follows. In section
II we describe the notations and formulate the optimization
problem. An approximate fast method for calculating AMI and
PAMI in the presence of phase noise is also presented in this
section. We also provide a short description of the optimization
algorithm. The optimization results for 8-ary constellations
are presented in section III where we also provide several
capacity curves of several optimized constellations. In section
IV we provide end-to-end simulation results of our optimized
constellations. Finally we conclude the paper in section V and
discuss some future works.

II. STATEMENT OF THE OPTIMIZATION PROBLEM

We consider a complex constellationχ with M = 2m

elements. The elements ofχ are referred as constellation
points or simply signals. The Euclidean distance between
two points in the complex plane is denoted byd(., .), and
dH(., .) is used to denote the Hamming distance between two
binary sequences. The signals are associated to the bits at
the input of the modulator through the one-to-one labeling
µ : χ → {0, 1}m. In particular, for any given signalx, µi(x)
is the value of theith bit of the label associated to it. A labeling
for χ is called a Gray mapping if for any two signalxi, xj ∈ χ
we havedH(µ(xi), µ(xj)) = 1 if d(xi, xj) ≤ d(xi, xk), for
all xk ∈ χ.

A. Channel model and assumptions for the optimization prob-
lem

We consider a Complex Additive White Gaussian Noise
(AWGN) channel with phase jitter, i.e., the received signal
can be written as

y = xejϕ + n

wheren is a complex Gaussian random variable with concen-
tration Kn = 1/σ2, x is the transmitted constellation point
andϕ is the phase rotation. We assume thatϕ has a Tikhonov
(also known as Von Mises) probability distribution function
(PDF) with concentrationKϕ, i.e.,

p(ϕ) =
eKϕ cos(ϕ)

2πI0(Kϕ)
,

whereI0(.) is the modified Bessel function of the first kind of
order zero. As we have mentioned we consider only the resid-
ual phase error caused by the imperfect phase synchronization,
and therefore the obtained results are independent from any
specific phase-estimation technique. This simplification allows
us to obtained a simple and fast approximation for the mutual
information of any given constellation.

Our goal is to find the constellation that maximizes AMI of
the channel, when all the constellation points are transmitted
with the same probability. Therefore we wish to solve the
optimization problem

χ∗ = argmax
χ

C(χ) (1)

where

C(χ) = Ex,n,ϕ

{

log2
p(y|x)

1
M

∑

u p(y|u)

}

= m− En,x,ϕ

{

max
u

∗ log
p(y|u)

p(y|x)

}

, (2)

where we used the short hand notationmax∗ , log
∫

exp.
Note that in general one needs to solve the above optimization
problem under some power constraints over the constellation
space. In this paper we focus only on average power constraint
and fix it to one.

In order to calculateC(χ) we need first to computep(y|u)
for any given input/ouput signalsu andy = uejϕ+n. Sinceϕ
is assumed to be a random variable with Tikhonov distribution
we have

log(p(y|u)) = log

∫ π

−π

p(y|u, ϕ′)p(ϕ′)dϕ′ (3)

= B +
∗

max
ϕ′

[

λ(ϕ′)−
Kn

2
|y − uejϕ

′

|2
]

= B −
Kn

2
|u|2 +

∗

max
ϕ′

[

λ(ϕ′) +Knℜ(y
∗uejϕ

′

)
]

,

where we have introducedλ(ϕ) = Kϕ cos(ϕ), and we have
collected in the variableB all constant terms w.r.t.u.

The main step to obtain a fast and accurate approximation
of the mutual information is to substitute themax∗ operation
in last row of (3) with the maximum operation. Letz , y∗u
and f(ϕ) = λ(ϕ) + Knℜ(ze

jϕ), to find the maximum we
need to find the solutions of the equation∂f

∂ϕ
= 0 resulting in

∂λ(ϕ)

∂ϕ

∣

∣

∣

∣

ϕ=φ

= Kn

∂

∂ϕ
ℜ(zejϕ)

∣

∣

∣

∣

ϕ=φ

obtaining the following expression forφ

sin(φ) = −|z|
Kn

Kϕ

sin(arg z + φ)), (4)

whereφ is a function ofz. Equation (4) has the solution

φ(z) = − arctan
Aℑ(z)

1 +Aℜ(z)
, (5)

where we have definedA , Kn

Kϕ

. Substituting the above
equation in (3) we obtain

log(p(y|u)) ≈ B −
Kn

2
|u|2 + λ(φ(y∗u)) +Knℜ(y

∗uejφ(y
∗u)).

The normalized logarithm in (2) can then be approximated as

log

(

p(y|u)

p(y|x)

)

≈ λ(φ(y∗u))− λ(φ(y∗x))

+
Kn

2

(

2ℜ(y∗uejφ(y
∗u))− 2ℜ(y∗xejφ(y

∗x))− |u|2 + |x|2
)

.

(6)

Finally, in order to calculate the mutual information we need
to first calculate themax∗ operation of (6) with respect tou
and then take the average with respect to bothn andϕ in (2).
To rapidly compute these averages we used the Gauss-Hermite



quadrature formula with degreek = 7 per each of the three
noise dimension [16].

In the “pragmatic” receivers where the detector and the
binary decoder are separated and no iterations take place
between them the relevant measure to be optimized is the
PAMI (see [15]). For a given constellationχ and labelingµ,
the symmetric PAMI of the channel is defined as

CP (χ, µ) =

m
∑

i=1

I(µi(X);Y ) ≤ C(χ), (7)

whereX is the transmitted signal,Y is the received symbol,
andI(.; .) denotes the mutual information function. For PAMI,
the loss in terms of channel capacity compared to optimal joint
detection and decoding, not only depends on the constellation,
but also on the labeling. In general, non-Gray mappings induce
a higher loss of capacity at high SNR’s. The approximated
computation of (7) can be performed using the previously
described approach with some slight modifications that we
omit for brevity (for detail the reader is referred to [4]).

B. Simulated annealing algorithm for joint signal/labeling
optimization

In [5] simulated annealing (SA) algorithm has been used
for maximizingC(χ) andCP (χ, µ) in the absence of the phase
noise. We use the same algorithm for optimizing the constel-
lation for phase noise channels. SA, under some conditions
on the cooling schedule, guarantees convergence to the global
optimum. However, these conditions are not usually feasible,
as they impose a very slow cooling schedule. When these
conditions are not satisfied, one may argue about the optimality
of the obtained constellations. Therefore it is important to
choose carefully the parameters of the SA algorithm in order
to provide agood local optimum.

The main adaptation needed to speed up the SA algorithm
for maximizing the capacity is to define a maximum dis-
placement length as a function of time. For details on such
adaptation we refer the readers to [5] and the references within.
The output of this algorithm -with the chosen parameters- is
independent of the initial conditions for constellations with up
to 16 signals, suggesting that the algorithm is optimal for such
small constellations. However for larger constellations the SA
algorithm becomes very slow and its output depends on the
initial conditions.

III. O PTIMIZATION RESULTS

In this section we present some of the 8 point optimized
constellations and their corresponding capacity curves asa
function of both SNR, Kn/2 and the phase noise stan-
dard deviation PNSD=σϕ =

√

1/Kϕ. We also compare
the capacity curves of these optimized constellations with
conventional 8-PSK constellation. As we will see, the shape
of the optimized constellation strongly depends on both SNR
and σϕ. Note that for each pair ofσϕ and SNR values and
the chosen objective function (AMI or PAMI) one needs to
run the SA algorithm to find the optimized constellation.
In figure 1 we plot both AMI and PAMI curves of the

optimized constellations for several values of PNSD and values
of SNR from 1 to 15. The solid and dashed curves correspond
respectively to AMI and PAMI of the optimized constellations.
As it can be noticed, the loss due to the pragmatic approach
is quite small (less than 0.2 dB) in all cases. This is true also
for higher order constellations. In Figure 2 we present the
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Fig. 1. AMI and PAMI for optimized constellation for variousσϕ and SNR
values.

optimized 8-ary constellations for six different values ofPNSD
with the SNR fixed into 12 dB, and obtained maximizing
the AMI. For comparison, in Figure 3 we also show two
constellations obtained by optimizing PAMI. As it can be
seen, the constellations are slightly different from thosein the
previous figure.

To check the robustness of designed constellation to the mis-
match with respect to the actual channel SNR in Figure 4 we
report the AMI of the constellations of Figure 2, optimized for
a target SNR of 12 dB, as a function of the actual channel SNR
(solid lines). Comparing these curves with the ones in Figure 1
one can see that the constellations optimized at SNR=12 have
performances close to the optimized constellations even for
lower channel SNR values. However this is true only for small
constellations. In Figure 4 we also plot the AMI curves for the
constellation optimized atσϕ = 0 (only AWGN) but used over
the channel affected by phase noise (dashed lines). The loss
due to the constellation suboptimality in this case is dramatic,
showing that a constellation design that neglects the presence
of phase noise can lead to very poor system performance. In
particular, the loss increases with the target AMI to the point
where it becomes infinite, as the AMI curves saturate below
the maximum value of 3.

To check the robustness of designed constellation to the
mismatch with respect to the actual channel PNSD in Figure 5
we plot the AMI of the constellations of Figure 2 as a
function of the channel PNSD. We also plot for reference
the capacity curve for the 8-PSK constellation. Constellations
designed for a target PNSD does not degrade their performance
robustness when the channel PNSD is smaller, while their
performance rapidly degrades when it becomes larger. Finally,
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Fig. 2. Optimized 8-ary constellations for six different values ofσϕ. The
objective function is the AMI and the SNR is fixed into 12 dB in all cases.
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Fig. 3. Optimized 8-ary constellations for two different values ofσϕ. The
objective function is the PAMI and the SNR is fixed to 12 dB in both cases.

as it can be seen in Figure 5, the constellations optimized for
high PNSD do not always saturate to the maximum spectral
efficiency when used over channels with a lower phase noise
standard deviation. Thus, there is a trade-off between the
performance of the optimized constellations with respect to
SNR and PNSD. Also we should notice that the optimized
constellation over AWGN channel is not robust even for small
channel PNSD values. This becomes particularly important
when one needs to choose a constellation for a system where
the PNSD is not accurately estimated, as it may cause a
large loss in performance. These observations remain validfor
larger constellations sets where the constellation performance
becomes even more sensible to small changes of PNSD.
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Fig. 4. Performance of optimized constellations in Figure 2as a function
of SNR. The solid lines are the AMI for the optimized constellations for
the given PNSD, the dashed-line curves are the AMI for the constellation
optimized for the AWGN but used in the presence of the phase noise.
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Fig. 5. Performance of optimized constellations in Figure 2as a function of
the phase noise standard deviationσϕ.

IV. SIMULATION RESULTS

In order to check the validity of our design approach, we
have simulated the performance of the optimized constellations
over a realistic system, using a powerful “capacity achieving”
encoding scheme. In Figure 6 we report the results of the
comparison of a set of 8 point constellations pragmatically
encoded with a rate 5/6 binary serially concatenated convo-
lutional code (SCCC). The details of the encoder structure
can be found in [17]. We have considered the constellations
reported in Figure 3, which have been optimized for the
PAMI function fixing SNR=12 dB and PNSD=0 and 25
degree. Looking at Figure 4 one can verify that this SNR
corresponds to a PAMI of 2.5, thus justifying our choice
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Fig. 6. Performance comparison of several 8 points constellations using a
rate 5/6 SCCC code. Dashed lines refer to the performance over the AWGN
channel, solid lines refer to the AWGN channel affected by phase noise with
PNSD=25 degrees.

for the code rate (R = 5/6). Dashed curves refer to the
AWGN channel without phase noise (channel PNSD=0). In
this case the optimal constellation outperforms the 8-PSK
constellation, reported for reference, by roughly 0.8 dB. The
constellation designed for PNSD=25 shows a loss of about 0.3
dB w.r.t. 8-PSK. Solid lines refer to the case of AWGN channel
affected by phase noise with PNSD=25. The situation in this
case drastically changes. 8-PSK performance is not capable
of delivering reliable communication for any value of SNR
and its performance curve is not reported. The constellation
optimized for PNSD=0 shows a loss of 19 dB, while the
optimal constellation for PNSD=25 shows a loss of only 2.8
dB w.r.t. the AWGN channel and 3.9 dB w.r.t. the optimal
constellation on the AWGN channel. Notice that these losses
perfectly match those predicted by the PAMI computation in
Figure 4 . Furthermore, to verify the difference between the
PAMI and AMI optimization, in Figure 6 we also report the
results obtained using a constellation optimized for the latter,
associated to a Gray labeling. The constellation loses about
0.2 dB.

V. CONCLUSIONS

In this paper we addressed the problem of constellation
optimization for channels affected by phase noise. We first
presented a fast approximated method to calculate the AMI
of a given constellation for channels with white phase and
thermal noise. Then the simulated annealing algorithm was
used to maximize the AMI under the average power constraint.
Our method allows also for a joint signal/labeling optimiza-
tion of the constellation in pragmatic system scenarios, by
maximizing the PAMI. We studied the performance of the
optimized constellations both as a function of signal to noise
ratio and of the phase noise standard deviation. We have also
studied the robustness of our design to possible mismatches
with respect to the actual channel conditions. In particular, it
is observed that constellations optimized for AWGN channels
alone are very sensitive to the phase noise, while other designs

show more robustness to variations of PNSD and/or SNR.
Finally to check the validity of our design approach we
have simulated the optimized constellations over a realistic
scenario including a capacity achieving code, obtaining results
perfectly in line with the one predicted by AMI and PAMI
calculations. This fact confirms that AMI and PAMI are the
correct optimization functions to be considered for designing
constellations to be embedded in system using turbo-codes.
Even though we focused only on 8 point constellations, our
method can be used to optimize much larger constellations.
The results will be presented in an upcoming paper.
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