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Abstract—We consider the two user wireless Multiple Access
Relay Channel (MARC), in which nodes A and B want to
transmit messages to a destination node D with the help of a relay
node R. For the MARC, Wang and Giannakis proposed a Com-
plex Field Network Coding (CFNC) scheme. As an alternative,
we propose a scheme based on Physical layer Network Coding
(PNC), which has so far been studied widely only in the context
of two-way relaying. For the proposed PNC scheme, transmission
takes place in two phases: (i) Phase 1 during which A and B
simultaneously transmit and, R and D receive, (ii) Phase 2 during
which A, B and R simultaneously transmit to D. At the end of
Phase 1, R decodes the messages xA of A and xB of B, and
during Phase 2 transmits f(xA, xB), where f is many-to-one.
Communication protocols in which the relay node decodes are
prone to loss of diversity order, due to error propagation from
the relay node. To counter this, we propose a novel decoder which
takes into account the possibility of an error event at R, without
having any knowledge about the links from A to R and B to R.
It is shown that if certain parameters are chosen properly and if
the map f satisfies a condition called exclusive law, the proposed
decoder offers the maximum diversity order of two. Also, it is
shown that for a proper choice of the parameters, the proposed
decoder admits fast decoding, with the same decoding complexity
order as that of the CFNC scheme. Simulation results indicate
that the proposed PNC scheme performs better than the CFNC
scheme.

I. BACKGROUND AND PRELIMINARIES

We consider the two user Multiple Access Relay Channel
(MARC) shown in Fig. 1. Source nodes A and B want to
transmit messages to the destination node D with the help of
the relay node R. All the nodes are assumed to have half-
duplex constraint, i.e., the nodes cannot transmit and receive
simultaneously in the same frequency band. In addition to the
presence of direct link, communication paths exist from the
source nodes A and B to the destination node D, via the relay
node R. As a result, in a two user MARC channel, a diversity
order of two can be achieved, if the transmission scheme is
chosen properly.

A. Background

In a wireless network, due to the superposition nature of
the wireless channel, signals interfere at the nodes. Avoiding
this interference by making the nodes transmit in orthogonal
time/frequency slots incurs a loss of spectral efficiency. The
concept of physical layer network coding, in which the nodes
are allowed to transmit simultaneously resulting in interfer-
ence, was first introduced in [1]. Physical layer Network Cod-
ing (PNC) has been shown to outperform traditional schemes
which involve orthogonal transmissions [1]– [4]. So far, most

of the works on physical layer network coding have mainly
focussed only on the two-way relay channel. In this paper, we
propose a scheme based on PNC for the MARC.

In a two-way relay channel, in order to ensure unique
decodability at the end nodes, the network coding maps used
at the relay node should satisfy a condition called the exclusive
law [5]. These maps satisfying the exclusive law form a
mathematical structure called Latin Squares and the properties
of Latin Squares have been used to obtain the network coding
maps in a two-way relay channel [6]– [8]. An interesting
connection between the proposed PNC scheme for the MARC
and the two-way relay channel is that the network coding map
used at R needs to satisfy the exclusive law, for the proposed
PNC scheme for the MARC to achieve a maximum diversity
order two.

Wireless relay networks, in which the relay nodes decode
the messages are prone to loss of diversity order, due to the
forwarding of erroneous messages. Various methods have been
proposed in the literature to avoid this loss of diversity order.
Cyclic Redundancy Check bits are used so that the nodes
forward only those packets which are decoded correctly [9].
Some works assume the knowledge of all the instantaneous
fade coefficients or error probabilities associated with the
intermediate nodes at the destination node, with the decoder
at the destination using this knowledge to ensure full diversity
[10], [11]. Another method used widely is to use a scaling
factor at the relay nodes which depends on the fade coef-
ficients, with the scaling factor indicated to the destination
using pilot symbols [12], [13]. The proposed scheme does not
suffer from the disadvantages of any of the above methods, yet
ensures maximum diversity order. This is achieved by means
of an efficient choice of the transmission scheme and a novel
decoder used at the destination D.

A Complex Field Network Coding (CFNC) scheme for the
MARC was proposed in [13]. In this paper, as an alternative,
we propose a PNC scheme. As observed in [13], when R
transmits a many-to-one function of A’s and B’s transmission
during the relaying phase and minimum squared Euclidean
distance decoder employed at D, a loss of diversity order
results. In this paper, we show that for the proposed PNC
scheme, making the source nodes also transmit during the
relaying phase, combined with a novel decoder which is not
minimum squared Euclidean distance decoder, ensures the
maximum possible diversity order of two. Furthermore, if
certain parameters are chosen properly, the proposed decoder
for the PNC scheme can be implemented with a decoding
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complexity order same as that of the CFNC scheme.

A

D

B

R
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(b) Phase 2

Fig. 1: The two user Multiple Access Relay Channel

The following are the main advantages of the proposed PNC
scheme over the CFNC scheme proposed in [13]:
• In the CFNC scheme, R transmits a complex linear

combination of A’s and B’s messages and the signal
set used at R during the relaying phase has M2 points,
where M is the size of the signal set used at A and
B. In contrast, since the proposed PNC scheme uses a
many-to-one map, the signal set used during the relaying
phase has only M points and hence the PNC scheme is
expected to perform better than the CFNC scheme, which
is confirmed by the simulation results.

• In the CFNC scheme, R uses a scaling factor which
is a function of the fade coefficients of the A-R and
B-R links, which needs to be indicated to D using
pilot symbols. Since the proposed PNC scheme does not
involve any such scaling factor, there is no need of such
pilot symbols.

Notations: Throughout, vectors are denoted by bold lower case
letters and matrices are denoted by bold capital letters. The set
of complex numbers is denoted by C. CN (0, σ2) denotes a
circularly symmetric complex Gaussian random variable with
mean zero and variance σ2 and N (0, σ2) denotes a Gaussian
random variable with variance σ2. For a matrix A,AT and A∗

denotes its transpose and conjugate transpose respectively. For
a matrix A, rank(A) denotes its rank and det(A) denotes its
determinant. For a complex number x, x∗ denotes its conjugate
and |x| denotes its absolute value. For a vector v, ‖v‖ denotes
its Euclidean norm. The total transmission energy of all the
three nodes is assumed to be equal to Es and all the additive
noises are assumed to have a variance equal to 1. By SNR,
we denote the transmission energy Es. For a signal set S, ∆S
denotes the difference signal set of S, ∆S = {x− x′|x, x′ ∈
S}. The all zero matrix of size n×n is denoted by On. E(X)
denotes the expectation of X.

B. Signal Model

Throughout, a quasi-static fading scenario is assumed with
the channel state information available only at the receivers.

Let S denote the signal set of unit energy used at A and
B, with M = 2λ points, λ being a positive integer. Assume

that A and B want to transmit λ-bit binary tuples to D. Let
µ : Fλ2 → S denote the mapping from bits to complex symbols
used at A and B.

For the proposed PNC scheme, transmission occurs in
two phases: Phase 1 during which A and B simultaneously
transmit and, R and D receive, followed by the Phase 2 during
which A, B and R transmit to D.

Phase 1: Let xA = µ(sA), xB = µ(sB) ∈ S denote
the complex symbols A and B want to convey to D, where
sA, sB ∈ Fλ2 . During Phase 1, A and B transmit scaled
versions of xA and xB respectively. The received signal at
R and D during Phase 1 are respectively given by,

yR = hAR
√
EsaxA + hBR

√
EsbxB + zR, and

yD1 = hAD
√
EsaxA + hBD

√
EsbxB + zD1 , (1)

where a, b ∈ C are constants and the additive noises zR
and zD2 are assumed to be CN (0, 1). The fade coefficients
are Rayleigh distributed, with hAR ∼ CN (0, σ2

AR), hBR ∼
CN (0, σ2

BR), hAD ∼ CN (0, σ2
AD) and hBD ∼ CN (0, σ2

BD).
Let (x̂RA, x̂

R
B) ∈ S2 denote the Maximum Likelihood (ML)

estimate of (xA, xB) at R based on the received complex
number yR, i.e.,

(x̂RA, x̂
R
B) = arg min

(x′
A
,x′
B
)∈S2
|yR − hAR

√
Esax

′
A − hBR

√
Esbx

′
B |.

Phase 2: During Phase 2, A and B transmit scaled versions
of xA and xB respectively and R transmits xR = f(x̂RA, x̂

R
B),

where f : S2 → S is a many-to-one map. The received signal
at D during Phase 2 is given by,

yD2 = hAD

√
EscxA + hBD

√
EsdxB + hRD

√
EsxR + zD2 . (2)

where c, d ∈ C are constants and the additive noise zD2 is
assumed to be CN (0, 1). The fade coefficient hRD is assumed
to be CN (0, σ2

RD).
In order to ensure that the total transmission energy at the

nodes A and B is equal to Es, the constants a, b, c and d are
chosen such that |a|2 + |c|2 = 1 and |b|2 + |d|2 = 1.

From (1) and (2), the received complex numbers at D during
the two phases can be written in vector form as,

[
yD1 yD2

]︸ ︷︷ ︸
yD

=
√
Es
[
hAD hBD hRD

]︸ ︷︷ ︸
h

axA cxA
bxB dxB

0 xR


︸ ︷︷ ︸

C(xA,xB ,xR)

+
[
zD1

zD2

]︸ ︷︷ ︸
zD

. (3)

The matrix C(xA, xB , xR) in (3) is referred to as the code-
word matrix. The restriction of C(xA, xB , xR) to the first
two rows, denoted by Cr(xA, xB) is referred as the re-

stricted codeword matrix, i.e. Cr(xA, xB) =

[
axA cxA
bxB dxB

]
.

The matrices Cr(∆xA,∆xB) =

[
a∆xA c∆xA
b∆xB d∆xB

]
, where

∆xA,∆xB ∈ ∆S are referred to as the restricted codeword
difference matrices.



From (3), the vector yD can also be written as,

yD =
√
EsxAhWA +

√
EsxBhWB +

√
EsxRhWR +zD,

where the matrices WA =

a c
0 0
0 0

 , WB =

0 0
b d
0 0

 , and

WR =

0 0
0 0
0 1

 are referred to as the weight matrices at node

A, B and R respectively.
The contributions and organization of the paper are as

follows: A novel decoder for the proposed PNC scheme is
presented in Section II A. In Section II B, it is shown that
the decoder presented in Section II A achieves a maximum
diversity of two if and only if the following two conditions
are satisfied: (i) the map f satisfies the so called exclusive
law and (ii) the constants a, b, c and d are such that the
restricted codeword difference matrices have full rank for all
non-zero values of ∆xA and ∆xB . In Section III, the condition
under which the proposed decoder admits fast decoding is
obtained. It is shown that when the weight matrices WA

and WR (or WB and WR) are Hurwitz-Radon orthogonal,
the proposed decoder admits fast decoding, with the decoding
complexity order same as that of the CFNC scheme proposed
in [13]. Simulation results which show that the proposed PNC
scheme performs better than the CFNC scheme are presented
in Section IV.

II. A NOVEL DECODER FOR THE PROPOSED PNC SCHEME
AND ITS DIVERSITY ANALYSIS

In Section II A, a novel decoder for the proposed PNC
scheme is presented. In Section II B, the condition under which
the proposed decoder offers a maximum diversity order two
is obtained.

A. A Novel Decoder for the Proposed PNC Scheme

Consider the case when D uses the minimum squared
Euclidean distance decoder given by,(
x̂
D
A , x̂

D
B

)
= arg min

(xA,xB)∈S2

{
|yD1

− hAD
√
Esa xA − hBD

√
Esb xB |2

+|yD2
− hAD

√
Esc xA − hBD

√
Esd xB − hRD

√
Esf(xA, xB)|2

}
.

Since the above decoder does not consider the possibility of
error events at the relay node, it does not offer maximum
transmit diversity order two.

Alternatively, we propose a novel decoder which considers
the possibility of error events at R, given by,(
x̂DA , x̂

D
B

)
= arg min

(xA,xB)∈S2
{m1 (xA, xB) ,

log (SNR) +m2 (xA, xB)} , (4)

where the metrics m1 (xA, xB) and m2 (xA, xB) are given in
(5) and (6) respectively, at the top of the next page.

The idea behind the choice of this decoder is as follows:
If the relay transmits the correct network-coded symbol, the
optimal ML decoding metric at D is given by m1(xA, xB).

The relay transmits a wrong network-coded symbol, inde-
pendent of (xA, xB), if the joint ML estimate at the relay
(x̂RA, x̂

R
B) is such that xR = f(x̂RA, x̂

R
B) 6= f(xA, xB). Under

this condition, the optimal ML decision metric at D is given
by m2(xA, xB). The relay transmits a wrong network-coded
symbol with a probability which is proportional to 1

SNR at
high SNR. Hence to the metric m2(xA, xB), a correction
factor log(SNR) is added and the minimum of m1(xA, xB)
and log(SNR) + m2(xA, xB) is taken to be the decoding
metric at D.

The CFNC scheme proposed in [13] uses minimum squared
Euclidean distance decoder, which has a decoding complexity
of O(M2). Since the decoder given in (4) involves minimiza-
tion over three variables xA, xB and xR, it appears as though
the decoding complexity order is O(M3). In Section III, it
is shown that by properly choosing the constants a, b, c and
d, the decoding complexity order can be reduced to O(M2)
which is the same as that of the CFNC scheme.

The diversity analysis of the decoder given in (4) is pre-
sented in the next subsection.

B. Diversity Analysis of the Proposed Decoder

The following theorem gives the condition under which
the proposed decoder for the PNC scheme offers maximum
diversity order two.

Theorem 1: For the proposed PNC scheme, the decoder
given in (4) offers maximum diversity order two if and only
if the following two conditions are satisfied:

1) The map f satisfies the condition called exclusive law
given by,

f(xA, xB) 6= f(x′A, xB), for xA 6= x′A, ∀ xB ∈ S,
f(xA, xB) 6= f(xA, x

′
B), for xB 6= x′B , ∀ xA ∈ S.

}
(8)

2) The restricted codeword difference matrices
Cr(∆xA,∆xB) have full rank, ∀∆xA 6= 0, ∆xB 6= 0
and ∆xA,∆xB ∈ ∆S.

Proof: See Appendix.
Note that condition 2) does not demand full rank for all the

restricted codeword difference matrices. In fact, whatever may
be the choice of a, b, c and d, it is impossible to obtain full rank
for the restricted codeword difference matrices of the form
Cr(∆xA, 0) (and also Cr(0,∆xB)), since both the entries
of the second row of Cr(∆xA, 0) are zeros. It suffices to
ensure full rank for only those restricted code word difference
matrices for which both ∆xA and ∆xB are non-zeros.

It is easy to find a map f satisfying the exclusive law, since
all maps satisfying the exclusive law form Latin Squares [6].

Definition 1: [14] A Latin Square L of order M on the
symbols from the set Zt = {0, 1, · · · , t − 1} is an M × M
array, in which each cell contains one symbol and each symbol
occurs at most once in each row and column.
Two simple examples of Latin Squares are the Modulo-M
Latin square and the Bit-wise XOR Latin Square. In the
Modulo-M Latin Square, a cell in the M × M is filled with
the modulo-M sum of the row index and column index. In the
bit-wise XOR Latin Square, a cell in the M ×M array is filled



m1 (xA, xB) =
∣∣∣yD1

− hAD
√
Esa xA − hBD

√
Esb xB

∣∣∣2 +
∣∣∣yD2

− hAD
√
Esc xA − hBD

√
Esd xB − hRD

√
Esf(xA, xB)

∣∣∣2 , (5)

m2 (xA, xB) =
∣∣∣yD1

− hAD
√
Esa xA − hBD

√
Esb xB

∣∣∣2 + min
xR 6=f(xA,xB),xR∈S

{∣∣∣yD2
− hAD

√
Esc xA − hBD

√
Esd xB − hRD

√
EsxR

∣∣∣2} . (6)

m3 (xA, xB) =
∣∣∣yD1

− hAD
√
Esa xA − hBD

√
Esb xB

∣∣∣2 + min
xR∈S

{∣∣∣yD2
− hAD

√
Esc xA − hBD

√
Esd xB − hRD

√
EsxR

∣∣∣2} . (7)

the bit-wise exclusive OR of the row index and column index
represented in binary, after binary-to-decimal conversion. For
M = 4, the Modulo-4 Latin Square and the Bit-wise XOR
Latin Square are as shown in Fig. 2.

0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

(a) Modulo-4 Latin
Square

0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

(b) Bit-wise XOR
Latin Square

Fig. 2: Examples of Latin Squares of order 4

In the following example, a choice of a, b, c and d is pro-
vided, which ensures that the restricted codeword difference
matrices have full rank for all non-zero values of ∆xA and
∆xB .

Example 1: Choosing a = 1, b = 1√
2
, c = 0 and d = 1√

2
,

the restricted codeword difference matrices are of the form

Cr(∆xA,∆xB) =

[
∆xA 0
1√
2
∆xB

1√
2
∆xB

]
. Cr(∆xA,∆xB) is

full rank for all ∆xA,∆xB 6= 0 since det (Cr(∆xA,∆xB)) =
1√
2
∆xA∆xB 6= 0.

A sufficient condition under which the decoder given in (4)
admits fast decoding is obtained in the next section.

III. A FAST DECODING ALGORITHM FOR THE PROPOSED
DECODER

In this section, it is shown that by properly choosing the
constants a, b, c and d, the decoder given in (4) can be
implemented efficiently by means of a fast decoding algorithm.

Before presenting the algorithm, we introduce some nota-
tions.

The points in the signal set S are denoted by si, 1 ≤ i ≤M.
From (3), the vector yD

T can be written as,

yD
T =

[
ahAD bhBD 0
chAD dhBD hRD

]
︸ ︷︷ ︸

Heq

xAxB
xR


︸ ︷︷ ︸

x

√
Es + zD

T .

The matrix Heq can be decomposed using QR decomposition
as Heq = QR, where Q is a 2× 2 unitary matrix and R =
[R1 r2] is a 2× 3 matrix, with R1 being upper-triangular of
size 2× 2 and r2 being a column vector of length 2. Let rij
denote the (i, j)th entry of R.

Define ỹD = QTyD
T = [ỹD1

ỹD2
]T .

Also, let

φ1(xA, xB) = |ỹD1 − r11xA
√
Es − r12xB

√
Es|2,

φ2(xA, xB) = |ỹD2 − r22xB
√
Es − r23f(xA, xB)

√
Es|2and

φ3(xB , xR) = |ỹD2
− r22xB

√
Es − r23xR

√
Es|2.

The following proposition gives a sufficient condition under
which Algorithm 1 implements the decoder given in (4).

Algorithm 1 Decoding Algorithm used at D
1: for i = 1 to M do
2: xB ← si
3: Find x̂1A = arg min

xA∈S
{φ1(xA, xB) + φ2(xA, xB)}

4: Find x̂2A = arg min
xA∈S

{φ1(xA, xB)}
5: Find x̂R = arg min

xR∈S
{φ3(xB , xR)}

6: if φ1(x̂
1
A, xB) + φ2(x̂

1
A, xB) < φ1(x̂

2
A, xB) + φ3(xB , x̂R)

+ log(SNR)
then

7: m(xB) = φ1(x̂
1
A, xB) + φ2(x̂

1
A, xB)

8: x̂A(xB) = x̂1A
9: else

10: m(xB) = φ1(x̂
2
A, xB) + φ3(xB , x̂R) + log(SNR)

11: x̂A(xB) = x̂2A
12: end if
13: end for
14: Find x̂B = arg min

xB∈S
m(xB)

15: (x̂DA , x̂
D
B ) = (x̂A(x̂B), x̂B)

Proposition 1: Algorithm 1 implements the decoder in (4),
if the constants a, b, c and d are such that the weight matrices
WA and WR are Hurwitz-Radon (H-R) orthogonal, i.e.,
WAWR

∗ + WRWA
∗ = O3.

1

Proof: The decoding metric of the decoder given in (4)
can be written as,

min
(xA,xB)

{m1 (xA, xB) , log (SNR) +m2 (xA, xB)}

= min
(xA,xB)

{m1 (xA, xB) , log (SNR) +m1 (xA, xB) ,

log (SNR) +m2 (xA, xB)}.
= min

(xA,xB)
{m1 (xA, xB) , log (SNR) +m3 (xA, xB)}. (9)

where the metric m3(xA, xB) is given in (7), at the top of this
page. We have,

m3(xA, xB) = min
xR∈S

{‖yD
T −Heqx

√
Es‖2}

= min
xR∈S

{‖ỹD −Rx
√
Es‖2}. (10)

1A algorithm exactly similar to Algorithm 1 can be used with the roles of
A and B interchanged, if WB and WR are H-R orthogonal.



Since R1 is upper triangular, r21 = 0. Also, the entry
r13 = 0, since WA and WR are H-R orthogonal (follows
from Theorem 2, [15]). Hence, from (10), it follows that,

m3(xA, xB) = |ỹD1
− r11xA

√
Es − r12xB

√
Es|2

+ min
xR∈S

{
|ỹD2

− r22xB
√
Es − r23xR

√
Es|2

}
. (11)

Hence,

min
xA∈S

m3(xA, xB) = min
xA∈S

φ1(xA, xB) + min
xR∈S

φ3(xB , xR).

From (9), the decoding metric can be written as,

min
xB∈S

{
min
xA∈S

(φ1 (xA, xB) + φ2 (xA, xB)) ,

min
xA∈S

φ1 (xA, xB) + min
xR∈S

φ3 (xB , xR) + log (SNR)

}

In Algorithm 1, inside the for loop, xB is fixed and the
operations in lines 3, 4 and 5 entail a complexity order
O(M). The operations from line 6 to line 12 involve constant
complexity, independent of M. Hence the complexity order
for executing the for loop from line 1 to line 13 is O(M2).
The operation in line 14 involves a complexity order O(M).
Hence the overall decoding complexity order of Algorithm 1
is O(M2), which is the same as that of the CFNC scheme
proposed in [13].

Example 2: For the case when a = 1, b = 1√
2
, c = 0 and

d = 1√
2
, the weight matrices are given by, WA =

1 0
0 0
0 0

 ,
WB =

 0 0
1√
2

1√
2

0 0

 and WR =

0 0
0 0
0 1

 . It can be verified

that the matrices WA and WR are H-R orthogonal, i.e.,
WAWR

∗ + WRWA
∗ = O3. Hence, for this case, Algo-

rithm 1 can be used to implement the decoder given in (4).

IV. SIMULATION RESULTS

Simulation results presented in this section compare the per-
formance of the proposed PNC scheme with the CFNC scheme
proposed in [13]. In all the simulation results presented, the
values of the constants are chosen to be a = 1, b = 1√

2
, c = 0

and d = 1√
2

and 4-PSK signal set is used at the nodes. The
Modulo-4 Latin Square is used at the relay node.

Fig. 3 shows the SNR Vs. Symbol Error Probability (SEP)
plots for the case when the variances of all the fading links are
0 dB. It can be seen from Fig. 3 that the PNC scheme performs
better than the CFNC scheme and offers a gain of nearly 3.3
dB at high SNR. Fig. 4 shows a similar plot for the case when
the links from A-R and B-R are stronger than the other links,
i.e., σ2

AR = σ2
BR = 10 dB, σ2

AD = σ2
BD = σ2

RD = 0 dB. It
can be seen from Fig. 4 that for this case, the PNC scheme
offers a gain of nearly 3 dB at high SNR. Fig. 5 shows the
plots for the case when the R-D link is stronger than all other
links, i.e, σ2

AR = σ2
BR = σ2

AD = σ2
BD = 0 dB, σ2

RD = 10

dB. For this case, the PNC scheme offers a gain of about 6.5
dB at high SNR. Also, it can be verified from the plots that
the diversity order for the proposed PNC scheme is two.
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Fig. 3: SNR vs SEP plots for the PNC and CFNC schemes for
4-PSK signal set for σ2

AR = σ2
BR = σ2

AD = σ2
BD = σ2

RD = 0
dB.
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Fig. 4: SNR vs SEP plots for the PNC and CFNC schemes for
4-PSK signal set for σ2

AR = σ2
BR = 10 dB, σ2

AD = σ2
BD =

σ2
RD = 0 dB.

V. DISCUSSION

A scheme based on physical layer network coding was
proposed for the Multiple Access Relay Channel (MARC).
A novel decoder was proposed for the PNC scheme. The
conditions which the network coding map f and the constants
a, b, c and d should satisfy, for the proposed decoder to offer
a maximum diversity order two were obtained. It was shown
that if the constants a, b, c and d are chosen properly, the
proposed decoder can be implemented efficiently by a fast
decoding algorithm. Simulation results presented showed that
the proposed decoder performs better than the CFNC scheme
proposed in [13]. The problem of optimizing the choice of
the constants a, b, c and d to minimize the error probability
in addition to ensuring maximum diversity remains open.
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Fig. 5: SNR vs SEP plots for the PNC and CFNC schemes
for 4-PSK signal set for σ2

AR = σ2
BR = σ2

AD = σ2
BD = 0 dB,

σ2
RD = 10 dB.

Extending the scheme to a Multiple Access Relay network
with more than two source nodes and multiple relay nodes is
a possible direction for future work.
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APPENDIX - PROOF OF THEOREM 1

Let H = (hAR, hBR, hRD, hAD, hBD) denote a particular
realization of the fade coefficients. Throughout the proof, the
subscript H in a probability expression indicates conditioning
on the fade coefficients. For simplicity of notation, it is
assumed that the variances of all the fading coefficients are
one, but the result holds for other values as well.

Let E denote an error event that the transmitted message
pair (xA, xB) is wrongly decoded at D.

The probability of E conditioned on H given in (12), can
be upper bounded as in (13) (eqns. (12) and (13) are shown
at the top of the next page). PH

{
f(x̂RA, x̂

R
B) = f (xA, xB)

}
and PH

{
f(x̂RA, x̂

R
B) 6= f (xA, xB)

}
respectively denote

the probabilities that R transmits the correct and wrong
network coded symbol during Phase 2, for a given H.
Also, PH

{
(x̂DA , x̂

D
B ) 6= (xA, xB)

∣∣ f(x̂RA, x̂
R
B) = f (xA, xB)

}
and PH

{
(x̂DA , x̂

D
B ) 6= (xA, xB)

∣∣ f(x̂RA, x̂
R
B) 6= f (xA, xB)

}
respectively denote the probabilities of E given that R
transmitted the correct and wrong network coded symbol
for a given H. PH{E} can be upper bounded as in (14),
where PH

{
f(x̂RA, x̂

R
B) = x′R

}
denotes the probability that the

network coded symbol transmitted by R is x′R 6= f(xA, xB)
and PH

{
(x̂DA , x̂

D
B ) 6= (xA, xB)

∣∣ f(x̂RA, x̂
R
B) = x′R

}
is the

probability of E given that R transmits x′R, for a given H.
Taking expectation of the terms in (14) w.r.t H, we get (15).

The rest of the proof of Theorem 1 is presented in two
parts as Lemma 1 and Lemma 2. In Lemma 1, it is shown
that P

{
(x̂DA , x̂

D
B ) 6= (xA, xB)

∣∣ f(x̂RA, x̂
R
B) = f (xA, xB)

}
has a diversity order two. Lemma 2 shows that
P
{

(x̂DA , x̂
D
B ) 6= (xA, xB)

∣∣ f(x̂RA, x̂
R
B) = x′R

}
has a diversity

order one. Since P
{
f(x̂RA, x̂

R
B) = x′R

}
has a diversity order

one, Lemma 1 and Lemma 2 together imply that P {E} has
a diversity order two.

Lemma 1: The probability P
{

(x̂DA , x̂
D
B ) 6= (xA, xB)

∣∣
f(x̂RA, x̂

R
B) = f (xA, xB)

}
has a diversity order two.

Proof:
Recall that the decoder used at D given in (4) in Section

II A, involves computation of the metrics m1 and m2 defined
in (5) and (6). Under the condition that R transmitted the
correct network coding symbol, a decoding error occurs at
D only when m1(xA, xB) > m1(x′A, x

′
B) or m1(xA, xB) >

log(SNR) + m2(x′A, x
′
B) for some (x′A, xB) 6= (xA, xB).

Hence P
{

(x̂DA , x̂
D
B ) 6= (xA, xB)

∣∣ f(x̂RA, x̂
R
B) = f (xA, xB)

}
can be upper bounded as in (16), which can be upper bounded
using the union bound as in (17) (eqns. (16) and (17) are given
at the top of the next page).



PH{E} = PH
{

(x̂
D
A , x̂

D
B ) 6= (xA, xB)

∣∣ f(x̂
R
A, x̂

R
B) = f (xA, xB)

}
PH

{
f(x̂

R
A, x̂

R
B) = f (xA, xB)

}
+ PH

{
(x̂
D
A , x̂

D
B ) 6= (xA, xB)

∣∣ f(x̂
R
A, x̂

R
B) 6= f (xA, xB)

}
PH

{
f(x̂

R
A, x̂

R
B) 6= f (xA, xB)

}
(12)

≤ PH
{

(x̂
D
A , x̂

D
B ) 6= (xA, xB)

∣∣ f(x̂
R
A, x̂

R
B) = f (xA, xB)

}
+ PH

{
(x̂
D
A , x̂

D
B ) 6= (xA, xB)

∣∣ f(x̂
R
A, x̂

R
B) 6= f (xA, xB)

}
PH

{
f(x̂

R
A, x̂

R
B) 6= f (xA, xB)

}
(13)

≤ PH
{

(x̂
D
A , x̂

D
B ) 6= (xA, xB)

∣∣ f(x̂
R
A, x̂

R
B) = f (xA, xB)

}
+

∑
f(x̂RA,x̂

R
B)=x′R,

x′R 6=f(xA,xB)

PH
{

(x̂
D
A , x̂

D
B ) 6= (xA, xB)

∣∣ f(x̂
R
A, x̂

R
B) = x

′
R

}
PH

{
f(x̂

R
A, x̂

R
B) = x

′
R

}

(14)

P{E} ≤ P
{

(x̂
D
A , x̂

D
B ) 6= (xA, xB)

∣∣ f(x̂
R
A, x̂

R
B) = f (xA, xB)

}
+
∑

f(x̂RA,x̂
R
B)=x′R,

x′R 6=f(xA,xB)

P
{

(x̂
D
A , x̂

D
B ) 6= (xA, xB)

∣∣ f(x̂
R
A, x̂

R
B) = x

′
R

}
P
{
f(x̂

R
A, x̂

R
B) = x

′
R

}
. (15)

P
{

(x̂
D
A , x̂

D
B ) 6= (xA, xB)

∣∣ f(x̂
R
A, x̂

R
B) = f (xA, xB)

}
= P

{{
m1(xA, xB) > m1(x

′
A, x

′
B), (x

′
A, x

′
B) 6= (xA, xB))

}
∪
{
m1(xA, xB) > log(SNR) +m2(x

′
A, x

′
B), (x

′
A, x

′
B) 6= (xA, xB)

} ∣∣ f(x̂
R
A, x̂

R
B) = f (xA, xB)

}
(16)

≤
∑

(x′A,x
′
B)∈S2

(x′A,x
′
B)6=(xA,xB)

P
{
m1(xA, xB) > m1(x

′
A, x

′
B)
∣∣ f(x̂

R
A, x̂

R
B) = f (xA, xB)

}

+
∑

(x′A,x
′
B)∈S2

(x′A,x
′
B)6=(xA,xB)

P
{
m1(xA, xB) > log(SNR) +m2(x

′
A, x

′
B)
∣∣ f(x̂

R
A, x̂

R
B) = f (xA, xB)

}
. (17)

m4(xA, xB , xR) =
∣∣∣yD1

− hAD
√
Esa xA − hBD

√
Esb xB

∣∣∣2 +
∣∣∣yD2

− hAD
√
Esc xA − hBD

√
Esd xB − hRD

√
EsxR

∣∣∣2 + log(SNR). (18)

P
{
m1(xA, xB) > m2(x

′
A, x

′
B) + log(SNR)

∣∣ f(x̂
R
A, x̂

R
B) = f (xA, xB)

}
= P

{
m1(xA, xB) > min

x′
R
6=f(x′

A
,x′
B

)
m4(x

′
A, x

′
B , x

′
R)
∣∣ f(x̂

R
A, x̂

R
B) = f (xA, xB)

}
(19)

≤
∑

x′
R
6=f(x′

A
,x′
B

)

P
{
m1(xA, xB) > m4(x

′
A, x

′
B , x

′
R)
∣∣ f(x̂

R
A, x̂

R
B) = f (xA, xB)

}
(20)

PH
{
m1(xA, xB) > m4(x

′
A, x

′
B , x

′
R)
∣∣ f(x̂

R
A, x̂

R
B) = f(xA, xB)

}
= PH {| zD1

|2 + |zD2
|2 > log(SNR) + |zD1

+ hAD
√
Esa∆xA + hBD

√
Esb∆xB |2 + |zD2

+ hAD
√
Esc∆xA + hBD

√
Esd∆xB + hRD

√
Es∆xR|2}.

(21)

= PH

{
2Re

{
zD
∗ x

‖x‖

}
≤
− log (SNR)

‖x‖
− ‖x‖

}
= PH

{
w ≤

− log (SNR)
√

2 ‖x‖
−
‖x‖
√

2

}
. (22)

P
{
m1(xA, xB) > m1(x′A, x

′
B)
∣∣ f(x̂RA, x̂

R
B) = f (xA, xB)

}
is equal to the Pair-wise Error Probability (PEP) of a space
time coded 3×1 collocated MISO system, with the codeword
difference matrices of the space time code used at the

transmitter being of the form

a∆xA c∆xA
b∆xB d∆xB

0 f(xA, xB)− f(x′A, x
′
B)

 ,
where ∆xA = xA − x′A,∆xB = xB − x′B . When
∆xA,∆xB 6= 0, these codeword difference matrices are of
rank 2, since the restricted codeword difference matrices
are full rank. When ∆xA = 0 and ∆xB 6= 0 (and also
∆xB = 0,∆xA 6= 0), the codeword difference matrices
are full rank, since f(xA, xB) 6= f(xA, x

′
B) (otherwise

the exclusive law given in (8) will be violated). Since the
codeword difference matrices are full rank, the probability
P
{
m1(xA, xB) > m1(x′A, x

′
B)
∣∣ f(x̂RA, x̂

R
B) = f (xA, xB)

}
has

a diversity order two [16]. Let m4 be a metric as
defined in (18), shown at the top of this page. The

probability P {m1(xA, xB) > m2(x′A, x
′
B) + log(SNR)

∣∣
f(x̂RA, x̂

R
B) = f (xA, xB)

}
can be written in terms of the

metrics m1 and m4 as in (19), which can be upper bounded
as in (20) (eqns. (19) – (22) are shown at the top of this
page).

Let ∆xR = f(xA, xB) − x′R, ∆xA = xA − x′A
and ∆xB = xB − x′B . The probability
PH

{
m1(xA, xB) > m4(x

′
A, x

′
B , x

′
R)
∣∣ f(x̂RA, x̂RB) = f(xA, xB)

}
can be written in terms of the additive noise zD1

and zD2
, as

given in (21).

Let x1 = (hADa∆xA + hBDb∆xB)
√
Es, x2 =

(hADc∆xA + hBDd∆xB + hRD∆xR)
√
Es. Also, let zD =

[zD1 zD2 ] and x = [x1 x2]T . Then (21) can be simplified
as in (22), where w =

√
2Re{z∗D x

‖x‖}, is distributed ac-
cording to N (0, 1). In terms of the Q function, the prob-
ability PH

{
w ≤ − log(SNR)√

2‖x‖ − ‖x‖√
2

}
in (22) can be written



as Q
[

log(SNR)√
2‖x‖ + ‖x‖√

2

]
. Note that ‖x‖ depends on the fade

coefficients. To complete the proof, it suffices to show that
E
(
Q
[

log(SNR)√
2‖x‖ + ‖x‖√

2

])
has a diversity order two.

The vector x can be written as, x =

√
Es [hAD hBD hRD]︸ ︷︷ ︸

h

a∆xA c∆xA
b∆xB d∆xB

0 ∆xR


︸ ︷︷ ︸

∆X

.

Since ∆X∆X∗ is Hermitian, it is unitarily diagonaliz-
able, i.e, ∆X∆X∗ = UΣU∗, where U is unitary and

Σ =

λ1 0 0
0 λ2 0
0 0 0

 with λ1 ≥ λ2. We have ‖x‖2 =

SNR hUΣU∗h∗. Let h̃ = hU = [h̃1 h̃2 h̃3]. The vector
h̃ has the same distribution as that of h, since U is unitary.

Since the rank of ∆X is at least one, λ1 > 0. We consider
the two cases where λ2 > 0 and λ2 = 0.
Case 1: λ2 > 0

For this case, upper bounding Q
[

log(SNR)√
2‖x‖ + ‖x‖√

2

]
by

Q
[
‖x‖√

2

]
, which is upper bounded by e−

‖x‖2
4 , we have

Q

[
log (SNR)√

2 ‖x‖
+
‖x‖√

2

]
≤ e− 1

4 (λ1SNR|h̃1|2+λ2SNR|h̃2|2). (23)

Taking expectation w.r.t |h̃1| and |h̃2|, from (23), we get,
E
(
Q
[

log(SNR)√
2‖x‖ + ‖x‖√

2

])
≤ 1

(1+
λ1SNR

4 )(1+
λ2SNR

4 )
. Hence

E
(
Q
[

log(SNR)√
2‖x‖ + ‖x‖√

2

])
has a diversity order two.

Case 2: λ2 = 0
For this case ‖x‖ =

√
λ1SNR|h̃1|. Hence,

Q

[
log (SNR)√

2 ‖x‖
+
‖x‖√

2

]
= Q

[
log (SNR)√

2
√
λ1SNR|h̃1|

+

√
λ1SNR|h̃1|√

2

]
. (24)

Let r = |h̃1|. Taking expectation w.r.t r, from (24), we get,

E
(
Q

[
log (SNR)√

2 ‖x‖
+
‖x‖√
2

])
=

∫ ∞
r=0

Q

[
log (SNR)√
2
√
λ1SNRr

+

√
λ1SNRr√

2

]
2re−r2dr

=

∫ √
log(SNR)
λ1SNR

r=0

2Q

[
log (SNR)√
2
√
λ1SNRr

+

√
λ1SNRr√

2

]
re−r2dr︸ ︷︷ ︸

I1

+

∫ ∞
r=

√
log(SNR)
λ1SNR

2Q

[
log (SNR)√
2
√
λ1SNRr

+

√
λ1SNRr√

2

]
re−r2dr

︸ ︷︷ ︸
I2

.

In the following, we show that the integrals I1 and I2
have diversity order two. Note that log(SNR)√

2
√
λ1SNRr

+
√
λ1SNRr√

2
,

as a function of r, attains the minimum value when r =√
log(SNR)
λ1SNR

and the minimum value equals
√

2 log(SNR).

Since, Q(x) is a decreasing function of x, we have,
Q
[

log(SNR)√
2
√
λ1SNRr

+
√
λ1SNRr√

2

]
≤ Q

[√
2 log(SNR)

]
. Hence,

we have,

I1 ≤ 2Q
[√

2 log(SNR)
] ∫ √

log(SNR)
λ1SNR

r=0

re−r
2

dr

≤ 2

SNR

(
1− e−

log(SNR)
λ1SNR

)
.

Since for small x, e−x can be approximated as 1 −
x, at high SNR, we have I1 ≤ 2

SNR
log(SNR)
λ1SNR

. Since

lim
SNR→∞

− log
(

2 log(SNR)
λ1SNR2

)
log(SNR)

= 2, I1 has a diversity order at

least two.

Let r0 =
√

log(SNR)
λ1SNR

. The integral I2 can be upper

bounded as, I2 ≤
∫∞
r=r0

Q
[

log(SNR)√
2
√
λ1SNRr

+
√
λ1SNRr√

2

]
rdr.

Let r′ = log(SNR)√
2
√
λ1SNRr

+
√
λ1SNRr√

2
. As a function of r, r′

is monotonically increasing for r ≥ r0. Also, for r ≥ r0, r

can be written in terms of r′ as, r =
r′+
√
r′2−2 log(SNR)√

2λ1SNR
.

We have, dr = dr′ 1√
2λ1SNR

(
1 + r′√

r′2−2 log(SNR)

)
. Since

r ≤ 2r′√
2λ1SNR

, I2 can be upper bounded in terms of r′ as,

I2 ≤
∫ ∞
√

2 log(SNR)

Q(r′)r′

λ1SNR

(
1 +

r′√
r′2 − 2 log(SNR)

)
dr′

=
1

λ1SNR

∫ ∞
√

2 log(SNR)

Q(r′)r′dr′︸ ︷︷ ︸
I21

+
1

λ1SNR

∫ ∞
√

2 log(SNR)

Q(r′)r′
2√

r′2 − 2 log(SNR)
dr′︸ ︷︷ ︸

I22

.

Upper bounding Q(r′) by e−
r′2
2 , I21 can be shown to be

upper bounded as 2
λ1SNR2 , which falls as SNR−2. Upper

bounding Q(r′) by e−
r′2
2 , and using the transformation t =

r′
2 − 2 log(SNR), I22 can be upper bounded as,

I22 ≤
1

λ1SNR2

∫ ∞
0

te−
t
2

√
t
√
t+ 2 log(SNR)

dt

+
2 log(SNR)

λ1SNR2

∫ ∞
0

e−
t
2

√
t
√
t+ 2 log(SNR)

dt

≤ 1

λ1SNR2

∫ ∞
0

e−
t
2 dt+

1

λ1SNR2

∫ ∞
0

e−
t
2

√
t
dt

=
2 + 2

√
2π log(SNR)

λ1SNR2
.

where the second inequality above follows from the facts
that 1√

t+2 log(SNR)
≤ 1√

t
and 1√

t+2 log(SNR)
≤ 1 for

sufficiently large SNR. The last equality follows from
the fact that

∫∞
0

e−
t
2√
t
dt =

√
2Γ(1/2) =

√
2π, where

Γ(z) is the integral, Γ(z) =
∫∞

0
e−ttz−1dt. Since,



lim
SNR→∞

− log
(

2+2
√

2π log(SNR)
λ1SNR2

)
log(SNR)

= 2, I22 has a diversity

order 2. This completes the proof of Lemma 1.
Lemma 2: The probability P

{
(x̂DA , x̂

D
B ) 6= (xA, xB)

∣∣
f(x̂RA, x̂

R
B) = x′R

}
, x′R 6= f(xA, xB), has a diversity order

one.
Proof: Let m4 denote the metric as defined in (25),

shown at the top of the next page. Under the condition
that R transmitted the wrong network coded symbol x′R, a
decoding error occurs at D only when m4(xA, xB , x

′
R) >

m4(x′′A, x
′′
B , x

′′
R) or m4(xA, xB , x

′
R) > m1(x′′A, x

′′
B), for

some (x′′A, x
′′
B) 6= (xA, xB) and x′′R 6= f(x′′A, x

′′
B). Hence,

P
{

(x̂DA , x̂
D
B ) 6= (xA, xB)

∣∣ f(x̂RA, x̂
R
B) = x′R

}
can be upper

bounded as in (26) (eqns. (26) – (29) are shown at the top
of the next page). Using the union bound, from (26), we get
(27).

Since the matrix

a(xA − x′′A) c(xA − x′′A)
b(xB − x′′B) d(xB − x′′B)

0 x′R − x′′R

 ,
has rank at least one for (xA, xB) 6= (x′′A, x

′′
B),

P
{
m4(xA, xB , x

′
R) > m4(x′′A, x

′′
B , x

′′
R)
∣∣ f(x̂RA, x̂

R
B) = x′R

}
has a diversity order at least one.

Let ∆xR = x′R − f(x′′A, x
′′
B), ∆xA = xA − x′A

and ∆xB = xB − x′B . The probability
PH

{
m4(xA, xB , x

′
R) > m1(x

′′
A, x

′′
B)
∣∣ f(x̂RA, x̂RB) = x′R

}
can

be written in terms of the additive noise zD1
and zD2

, as
given in (28).

Let x1 = (hADa∆xA + hBDb∆xB)
√
Es, x2 =

(hADc∆xA + hBDd∆xB + hRD∆xR)
√
Es. Also, let zD =

[zD1 zD2 ] and x = [x1 x2]T . Then (28) can be simplified as
in (29), where w =

√
2Re{z∗D x

‖x‖}, is distributed according
to N (0, 1). Hence,

PH

{
w ≤ log (SNR)√

2 ‖x‖
− ‖x‖√

2

}
= 1{‖x‖2≤log(SNR)}

(
1−Q

[
log (SNR)√

2 ‖x‖
− ‖x‖√

2

])
+ 1{‖x‖2>log(SNR)}Q

[
− log (SNR)√

2 ‖x‖
+
‖x‖√

2

]
. (30)

Taking expectation with respect to the fade coefficients in
(30), P

{
w ≤ log(SNR)√

2‖x‖ −
‖x‖√

2

}
can be upper bounded as,

P

{
w ≤ log (SNR)√

2 ‖x‖
− ‖x‖√

2

}
≤ P

{
‖x‖2 ≤ log(SNR)

}
+

∫
H:{‖x‖2>log(SNR)}

Q

[
− log (SNR)√

2 ‖x‖
+
‖x‖√

2

]
dH.

(31)

The vector x can be written as, x =

√
Es [hAD hBD hRD]︸ ︷︷ ︸

h

a∆xA c∆xA
b∆xB d∆xB

0 ∆xR


︸ ︷︷ ︸

∆X

.

Since ∆X∆X∗ is Hermitian, it is unitarily diagonalizable,
i.e, ∆X∆X∗ = UΣU∗, where U is unitary and Σ =

λ1 0 0
0 λ2 0
0 0 0

 with λ1 ≥ λ2. Since the rank of ∆X is at

least one, λ1 > 0. We have ‖x‖2 = SNR hUΣU∗h∗. Let
h̃ = hU = [h̃1 h̃2 h̃3]. The vector h̃ has the same distribution
as that of h, since U is unitary. Hence, we have,

P
{
‖x‖2 ≤ log(SNR)

}
= P

{
λ1|h̃1|2 + λ2|h̃2|2 ≤

log(SNR)

SNR

}
≤ P

{
λ1|h̃1|2 ≤

log(SNR)

SNR

}
.

Since, |h̃1|2 is exponentially distributed,

P
{
‖x‖2 ≤ log(SNR)

}
≤
(

1− e−
log(SNR)
λ1SNR

)
.

At high SNR, 1 − e−
log(SNR)
λ1SNR can be approximated as

− log(SNR)
λ1SNR

. P
{
‖x‖2 ≤ log(SNR)

}
has a diversity order at

least one since lim
SNR→∞

− log
(

log(SNR)
λ1SNR

)
log (SNR)

= 1. Since Q(x) <

e−
x2

2 , the integral on the right hand side of (31) can be upper
bounded as,∫

H:{‖x‖2>log(SNR)}
Q

[
− log (SNR)√

2 ‖x‖
+
‖x‖√

2

]
dH

≤
∫
H:{‖x‖2>log(SNR)}

e−
(− log(SNR)

‖x‖ +‖x‖)
2

4 dH. (32)

We consider the following two cases when λ2 > 0 and λ2 =
0.
Case 1: λ2 > 0
For this case, from the integral in (32), we get,∫

H:{‖x‖2>log(SNR)}
Q

[
− log (SNR)√

2 ‖x‖
+
‖x‖√

2

]
dH

≤
∫ ∞
|h̃1|2=0

∫ ∞
|h̃2|2=0

elog(SNR)e−
SNR(λ1|h̃1|

2+λ2|h̃2|
2)

4

e−|h̃1|2e−|h̃2|2d|h̃1|2 d|h̃2|2

=
SNR(

1 + λ1SNR
4

) (
1 + λ2SNR

4

) ,
which falls as SNR−1 at high SNR.
Case 2: λ2 = 0 For this case,

I ,
∫
H:{‖x‖2>log(SNR)}

Q

[
− log (SNR)√

2 ‖x‖
+
‖x‖√

2

]
f(H)dH

≤
∫
|h̃1|>

√
log(SNR)√
λ1 SNR

Q

[√
λ1SNR|h̃1| −

√
log(SNR)√

2

]
2|h̃1|e−|h̃1|2d|h̃1|. (33)

The above inequality follows from the fact that for |h̃1| >√
log(SNR)√
λ1 SNR

, − log(SNR)√
λ1SNR|h̃1|

< −
√

log(SNR).

Let r = |h̃1|. From (33), since Q(x) < e−
x2

2 the integral I



m4(xA, xB , xR) =
∣∣∣yD1

− hAD
√
Esa xA − hBD

√
Esb xB

∣∣∣2 +
∣∣∣yD2

− hAD
√
Esc xA − hBD

√
Esd xB − hRD

√
EsxR

∣∣∣2 + log(SNR). (25)

P
{

(x̂
D
A , x̂

D
B ) 6= (xA, xB)

∣∣ f(x̂
R
A, x̂

R
B) = x

′
R

}
=
∑

(x′′A,x
′′
B)∈S2

(x′′A,x
′′
B)6=(xA,xB)

P
{{
m4(xA, xB , x

′
R) > m4(x

′′
A, x

′′
B , x

′′
R), x

′′
R 6= f(x

′′
A, x

′′
B)
}

∪
{
m4(xA, xB , x

′
R) > m1(x

′′
A, x

′′
B)
} ∣∣ f(x̂

R
A, x̂

R
B) = x

′
R

}
(26)

≤
∑

(x′′A,x
′′
B)∈S2

(x′′A,x
′′
B)6=(xA,xB)

∑
x′′R∈S,

x′′R 6=f(x
′′
A,x
′′
B)

P
{
m4(xA, xB , x

′
R) > m4(x

′′
A, x

′′
B , x

′′
R)
∣∣ f(x̂

R
A, x̂

R
B) = x

′
R

}

+
∑

(x′′A,x
′′
B)∈S2

(x′′A,x
′′
B)6=(xA,xB)

P
{
m4(xA, xB , x

′
R) > m1(x

′′
A, x

′′
B)

∣∣ f(x̂
R
A, x̂

R
B) = x

′
R

}
. (27)

PH
{

log(SNR) +m4(xA, xB , x
′
R) > m1(x

′′
A, x

′′
B)
∣∣ f(x̂

R
A, x̂

R
B) = x

′
R

}
= PH {| zD1

|2 + |zD2
|2 + log(SNR) > |zD1

+ hAD
√
Esa∆xA + hBD

√
Esb∆xB |2 + |zD2

+ hAD
√
Esc∆xA + hBD

√
Esd∆xB + hRD∆xR|2}.

(28)

= PH

{
2Re

{
zD
∗ x

‖x‖

}
≤

log (SNR)

‖x‖
− ‖x‖

}
= PH

{
w ≤

log (SNR)
√

2 ‖x‖
−
‖x‖
√

2

}
. (29)

can be upper bounded as,

I ≤
∫
r>

√
log(SNR)
√
λ1 SNR︸ ︷︷ ︸
r0

e

−

(
1 +

λ1SNR

4

)
︸ ︷︷ ︸

k1

r−

√
λ1SNR log(SNR)

4 + λ1SNR︸ ︷︷ ︸
k2



2

e
− log(SNR)

4
+

log(SNR)λ1SNR
16+4λ1SNR︸ ︷︷ ︸

k3

dr

(34)

Let r0, k1, k2 and k3 be defined as shown in (34). From
(34), the upper bound on I can be written as,

I ≤ k3
2

∫
r>r0

2(r − k2)e−k1(r−k2)
2

dr + k2 k3

∫
r≥r0

e−k1(r−k2)
2

dr.

Since
∫
r≥r0 e

−k1(r−k2)2dr =
√

π
KQ

[
(r0 − k2)

√
2k1

]
,

I ≤ k3

2k1
e−k1(r0−k2)2 + k2 k3

√
π

k1
Q
[
(r0 − k2)

√
2k1

]
.

Since Q
[
(r0 − k2)

√
2k1

]
≤ 1, e−k1(r0−k2)2 ≤ 1, and k3

can be approximated as one at high SNR, substituting for
r0, k1, k2 and k3, we get,

I ≤ 1

2
(
1 + λ1SNR

4

) +

√
πλ1SNR log(SNR)

(4 + λ1SNR)
√

1 + λ1SNR
4

.

Since the above upper bound on I falls as SNR−1 at high
SNR, I has a diversity order at least 1. This completes the
proof of Lemma 2.
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