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Abstract

In this thesis we consider low complexity downlink traffic scheduling for green ve-

hicular roadside infrastructure. In multiple roadside unit (RSU) deployments, the

energy provisioning of the RSUs may differ, and it is therefore desirable to balance

RSU usage from a normalized energy viewpoint. We consider both splittable and

unsplittable RSU assignment scheduling (SRA and URA). We first derive an offline

integer linear programming bound for the normalized min-max RSU energy usage,

which can be solved for a given input sample function. We then show that in the

SRA case there is a polynomial complexity 2-approximation bound for the normalized

min-max energy schedule. These bounds are used for comparisons with several pro-

posed online scheduling algorithms. The first scheduler is a low complexity Greedy

Online Algorithm (GOA) that makes greedy RSU selections followed by minimum en-

ergy time slot assignments. A normalized min-max online algorithm is then proposed

(TOAA) which is an online version of the 2-approximation bound for SRA scheduling.

Then, the Greedy Flow Graph Algorithm (GFGA), which makes greedy RSU selec-

tions followed by time slots reassignment whenever a new vehicle is assigned to the

same RSU. This is done using a locally optimum integer linear program that can be

efficiently solved using a minimum cost flow graph. Two low complexity algorithms
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are then introduced based on a potential function scheduling approach. The One-

Objective algorithm, uses a primary objective based on normalized min-max energy.

The second, the Bi-Objective algorithm, uses the same primary objective combined

with a total energy secondary objective. These algorithms have provable performance

guarantees, in that their worse-case competitive ratio performance is upper bounded.

Results from a variety of experiments show that the proposed scheduling algorithms

perform well. In particular, we find that in the SRA case, the TOAA and GFGA

algorithms perform very close to the lower bound, but at the expense of having to

reassign time slots whenever a new vehicle arrives. In the URA case, our low com-

plexity One-Objective algorithm performs better than the others over a wide range

of traffic conditions.
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Notation and abbreviations

AP Access Point

DL Down-Link

ILP Integer Linear Program

MCFG Minimum Cost Flow Graph

MILP Mixed Integer Linear Program

RSU Road Side Unit

V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle

VANETs Vehicular Ad-Hoc Networks

GOA Greedy Online Algorithm

WAVE Wireless Access in Vehicular Environment

TOAA 2-Approximation Online Algorithm

SRA Splittable RSU Assignment

URA Unsplittable RSU Assignment

ITS Intelligent Transportation Systems

DSRC Dedicated Short Range Communications

WLANs Wireless Local Area Networks

vii



UMTS Universal Mobile Telecommunication System

WiMAX Worldwide Interoperability for Microwave Access

RDS Radio Data System

TMC Traffic Message Control

MANETs Mobile Aad Hoc Networks
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Chapter 1

Introduction

In the future, Intelligent Transportation Systems (ITS) will support a large variety

of new vehicular applications such as road safety, entertainment, and Internet access

services. ITS will be built, in part, on vehicular ad-hoc networking (VANET) tech-

nologies which enable both vehicle-to-vehicle and vehicle-to-infrastructure communi-

cations. VANETs are currently designed to use dedicated short-range communication

in the 5.9 GHz band, which is licensed by the US Federal Communications Commis-

sion. This is referred to as Wireless Access in Vehicular Environment and is based

on extensions to the IEEE 802.11 wireless LAN standard. Before ITS can realize its

full potential however, many technical issues remain to be addressed. This area of

research is the focus of this thesis.

1.1 Energy Efficiency

Global energy consumption is rapidly increasing to satisfy growing industrial and per-

sonal needs. For this reason, energy use has become a major concern of governments
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everywhere, and is increasing the push for alternate energy sources. With the growth

and pervasiveness of networking technologies, green communications is now receiving

a lot of attention from researchers. In addition to decreasing overall energy use, in

some cases grid connected power is unavailable, and renewable energy is needed for

network operation. In these types of systems, reduced energy consumption may lead

to lower capital and operating costs, which motivates the need for energy efficient

designs.

Energy efficiency in vehicular ad hoc networks (VANETs) has been recently stud-

ied. This has typically not been considered an issue in the vehicles themselves, since

the radios are powered by the car engine. And from the roadside infrastructure point

of view, most previous work assumes that grid connected power is available at rea-

sonable cost. When this is not the case however, a viable alternative for roadside

infrastructure is to use green energy sources. In reference (Peirce and Mauri, 2007),

the US Department of Transportations Vehicle Infrastructure Integration (VII) Ini-

tiative has studied the deployment of roadside infrastructure for vehicle monitoring

and safety applications. It has estimated that a significant fraction of rural roadside

infrastructure would have to be solar powered, and clearly the deployment costs can

be reduced significantly by energy efficient designs. In vehicular infrastructure, due to

the dependence of power consumption on vehicle-to-infrastructure distance, a smart

traffic scheduler can significantly conserve communication energy costs.

1.2 Thesis Motivation and Overview

This thesis considers the problem of traffic scheduling in green vehicular roadside

infrastructure. In multiple roadside unit (RSU) arrangements, it is often desirable to

2
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load balance the energy consumption across the roadside units so that energy provi-

sioning costs can be reduced as much as possible. We first derive an integer linear

programming bound for the normalized min-max RSU energy usage. Then, a poly-

nomial complexity 2-approximation bound for the min-max energy schedule is given.

Since the ILP bound is NP-hard, the polynomial schedule can be used as an approx-

imation for the formulated problem. These bounds are used for comparisons with

several proposed online scheduling algorithms. First-Come-First-Assigned (GOA) is

a low complexity algorithm which makes greedy RSU selection decisions followed by

a minimum energy time slot assignment. The second, the Greedy Flow Graph Algo-

rithm (GFGA), makes the same RSU selection but reassigns time slots whenever a

new vehicle is assigned to the same RSU using a minimum cost flow graph scheduler.

A normalized min-max online algorithm (1-obj) is then proposed using a potential

function scheduling approach and an online version of our 2-approximation bound

(TOAA) is introduced. A bi-objective algorithm motivated by the 1-obj scheduler is

also proposed. A variety of results are presented which compare the performance of

the proposed schedulers.

3



Chapter 2

A Brief Review of Vehicular Ad

Hoc Networks

Vehicular ad hoc networks (VANETs) are an emerging technology which will eventu-

ally provide vehicle safety, information, and entertainment services. In VANETs, two

types of data communications are defined, vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I). These modes can be used to transmit data between vehicles and

between vehicles and fixed roadside units (RSUs), respectively. Like many wireless

ad-hoc networks, VANETs are not necessarily dependent on a fixed infrastructure for

communications. From the architectural perspective, VANETs fall within three cate-

gories, Cellular/WLAN, pure ad-hoc, and hybrid. In a Cellular/WLAN configuration,

vehicles use fixed cellular gateways or WLAN access points to connect to the Inter-

net, gather traffic information, or for routing purposes. In the ad-hoc configuration,

ad-hoc networks are formed where vehicles exchange data using vehicle-to-vehicle

communication. In the hybrid architecture, a combination of cellular, WLAN, and

ad-hoc networks can be used.

4
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Short radio transmission range, self-organization, self-management, and low band-

width are some of the similarities that VANETs share with other ad-hoc networks

(Li and Wang, 2007). However, VANETs have some unique characteristics which

distinguish them from other ad-hoc networks, which are described as follows.

• Highly dynamic topology: Due to their fast speed, vehicles may remain within

wireless transmission range for short time periods, which can cause the VANET

topology to change rapidly.

• Frequent network disconnection: For the same reasons, the connectivity of ve-

hicles can change frequently, and as a result, there may be a high probability

of network disconnection especially when traffic density is low. In some appli-

cations such as Internet access, this can lead to problematic service.

• Sufficient energy and storage: Since radio equipment is powered by the vehicle’s

engine, there is typically ample energy and computing power.

• Geographical type of communication: In VANETs, end points are often identi-

fied with their geographical locations, while in many other networks, end points

are defined by a simple identifier.

• Mobility modeling and predication: The characteristics of high node mobility

and dynamic network topology can magnify the role of mobility prediction in

protocol design. However, vehicle locations are constrained to highways, roads,

and streets, which makes location predication possible.

• Communication environments: VANETs operate in two typical environments.

In rural settings, the traffic pattern of the vehicles tend to be straightforward,

5



M.A.Sc. Thesis - Amir M. Khezrian McMaster - Electrical Engineering

while in urban settings, the lack of direct line-of-sight communications makes

these environments much more complex (Li and Wang, 2007).

• Timing constraints: In VANETs, there are some applications which impose

hard time constraints such as Cooperative Collision Warning and other types

of safety applications.

• Interaction with on-board sensors: Vehicles may be equipped with on-board

sensors which will provide information such as the vehicle location. This can

be used for routing and data scheduling purposes.

Beside the characteristics mentioned above, there are other technical challenges

associated with the design and deployment of VANETs. Fading effects, mobility and

multipath propagation may have a strong affect on radio operation. Although some

applications involve fixed infrastructure, others are expected to work reliably using

decentralized communications (Hartenstein and Laberteaux, 2008). In this case, no

central coordination can be assumed, and therefore synchronization and management

of transmission events may become difficult, and may lead to less efficient use of the

channel. In addition, to avoid information abuse, privacy and security requirements

must be satisfied. Receivers need to be assured that received information is from a

trusted source and message content is not tampered with. Although certificate au-

thorities can be used to secure VANETs, this may compete with privacy issues (Toor

et al., 2008). From the application and economic perspective, there are other issues to

be addressed. The cost/benefit tradeoffs, their impact on safety and transportation

efficiency are some of the concerns which need further study.
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2.1 Applications and Their Technical Requirements

VANET applications are continually emerging and evolving, and their associated

technical challenges are still being resolved. Typically, applications are categorized as

safety, traffic efficiency, and infotainment (Hartenstein and Laberteaux, 2008; Toor

et al., 2008; Yousefi et al., 2006). In this section, some of these applications and their

requirements are briefly discussed.

Safety applications: Many people are hurt in traffic accidents. Vehicular com-

munications can help to avoid accidents by extending road visibility and by providing

real-time safety information. This is one of the main concerns of Intelligent Trans-

portation Systems (ITS). Accident rates can be reduced by providing safety informa-

tion, which alerts drivers and helps them to react to unforeseen events. Some common

safety applications are as follows:

• Curve speed warning: This alert gives the driver a warning when approaching

a curve too quickly, using GPS and digital maps.

• Lane change warning: This system assists drivers who want to perform a lane

change, by monitoring the position of the vehicle within the roadway, and by

checking blind spots and issuing appropriate warnings.

• Cooperative collision warning: This service improves driving safety by giving

warnings or by breaking the car automatically when the distance between ve-

hicles becomes less than a set threshold (Khaled et al., 2009). This system can

also be used to warn nearby vehicles about an existing accident, making them

aware of the situation, and helping them to alter their paths if required.

• Incident management: Whenever an accident or a problem occurs on the road,
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the incident and the traffic flow can be managed through vehicular communi-

cation.

Traffic efficiency: In addition to road safety, traffic information and monitoring

are another set of capabilities that vehicular ad-hoc networks can provide. These

applications can be used to avoid congestion, traffic jams, and to assist personal

navigators in route selection. Platooning, vehicle tracking, notification services, traffic

jam prevention, and weather reporting are some of the applications that can be defined

in this category. We introduce some of them briefly.

• Platooning: This service can be used to permit vehicles to travel closely and

safely in an efficient way, which can reduce highway congestion (Khaled et al.,

2009).

• Vehicle Tracking: Such a system allows manufacturers and trusted parties to

remotely monitor vehicle statistics and provide supporting services.

• Notification Services: Travel information such as weather and traffic flow con-

ditions can be provided via Internet access. This service can also help drivers

to find the best routes to their destinations. This can result in road congestion

reduction and smoother traffic flow, thus increasing road capacity.

Infotainment applications: The main goal of these types of applications is to

provide services such as Internet access, distributed games, instant messaging, tourist

and leisure information access, and parking bookings.

• Parking place management: This service allows drivers to find and book parking

spots. Vehicle parking can also be provided without driver assistance (Khaled

et al., 2009).

8
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• Distributed games: Entertainment applications can be managed between a lim-

ited group of vehicles through V2V communication. Card games and real-time

talking are two examples.

• Peer to peer applications: This service provides the capability of information

sharing via V2V communication without using an application server. Instanta-

neous messaging, file transfer, and voice over IP are some examples.

• Internet Connectivity: The vast usage of the Internet has made Internet access a

daily requirement for modern life. Since many user applications require Internet

access to provide services, providing this facility to passengers and VANET

applications is important (Toor et al., 2008). The viability of Internet access

and its technical issues, such as the performance provided by IEEE 802.11 access

points, are discussed in many papers (Bychkovsky et al., 2006; Hadaller et al.,

2007; Ott and Kutscher, 2004).

In order to ensure good performance for vehicular applications, their requirements

must be identified (Khaled et al., 2009). We now briefly introduce some important

network related characteristics of VANET applications.

• Location awareness: Vehicles exchange information not only with other vehi-

cles, but also with fixed roadside infrastructure. Vehicular information exchange

in a geographical area requires reliable and scalable communication capabilities.

Safety services, such as alert cooperative collision warning and incident man-

agement, needs to know the actual position of the vehicles. This is also true

for certain comfort applications such as parking booking. In addition to GPS,

many other technologies, such as cellular or WiFi, can be used to obtain vehicle
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positioning information.

• Time awareness: Many applications must satisfy time constraints in order to

provide effective service, especially those related to safety. For instance, a driver

is able to react quickly if data is delivered without a significant delay following

an alert. This requirement may not be easy to achieve, especially when there is

high vehicular mobility.

• Permanent Access: Permanent access is one the challenging issues for VANETs.

In urban areas, the number of stations to which a mobile user can be connected

may be high. In contrast, in rural environments, the density of stations may

be low, which leads to a high possibility of connection loss. At the application

level, some services, such as file transfer or data download, need a relatively

permanent connection.

• Penetration rate dependency: Penetration rate is defined as the percentage

of VANET equipped vehicles. This plays an especially important role in the

operation of safety and critical applications. Although low penetration rates

can cause problems in safety applications, high penetration rates can lead to

transmission problems and poor network performance.

• Geocast capability: Geocast is defined as the capability of sending messages

to different geographical regions. This is considered efficient if messages are

delivered both in sparse and dense geographical areas by an efficient use of

bandwidth (Khaled et al., 2009).

• Mobility: Permanent access to a network can be affected by mobility. The

sender-to-receiver distance has a direct impact on the probability of packet

10
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reception. Besides physical distance, existence of buildings or vehicles, and

interference with other radio equipment are some of other effects that should

be taken into account (Khaled et al., 2009).

2.2 Communication Technologies

There are a large number of wireless technologies which can provide the platform re-

quired for V2V and V2I communications. We briefly review the technologies relevant

to vehicular networks.

• Bluetooth: Bluetooth is a short range communication technology which can

be used for vehicular networks. However, its coverage limitation narrows the

use of this technology to intra-vehicle applications.

• WLAN: Wireless Local Area Networks (WLANs) comprise a set of standards

from the IEEE 802.11 group. IEEE 802.11a/b/g technologies typically provide

tens of Mbps of throughput over 100 meter distances.

• DSRC: Dedicated Short Range Communications (DSRC) is a short to medium

range communication service operating at 5.9 GHz. DSRC is designed to sup-

port a wide range of V2I and V2V communications. IEEE 802.11p (also referred

as WAVE) has been developed to support the application requirements of in-

telligent transportation systems (ITS). IEEE 802.11p is used as a groundwork

in DSRC, which enables data transmission between high speed vehicles and

between these vehicles and fixed infrastructure.

• Cellular networks: UMTS, Universal Mobile Telecommunication System, is a

11
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technology which can be used for vehicular network communications. However,

coverage, message delay, and usage costs, are a concern.

• WiMAX: Worldwide Interoperability for Microwave Access (WiMAX) is a

communication technology which fills the gap between 3G and WLANs. IEEE

802.16e is a standard developed for mobile users connected to base stations,

making it the most appropriate version of WiMAX for vehicular applications.

• RDS and TMC: RDS, or Radio Data System, was developed to carry digital

data using the FM radio band. RDS offers a data rate of 1187.5 bps and a

transmission range of 80 km. Traffic Message Control (TMC) usually uses RDS

to transmit traffic information. TMC systems can be used to broadcast traffic

information to users, informing them of road problems.

2.3 Routing

In this section we review routing in VANETs. The main objective in routing is

to forward packets with a minimum of delay and use of network resources. Many

routing protocols, some of which are derived from mobile ad hoc networks (MANETs),

have been developed for VANETs. However, fast vehicle movement, and dynamic

information exchange requirements, leads to poor performance in some protocols. For

example, the dynamic nature of VANET topologies makes finding and maintaining

routes a challenging task. This has been studied recently and many protocols have

been proposed, which can be classified into the following categories (Li and Wang,

2007; Kumar and Dave, 2011; Chen et al., 2008): Topology-based, position-based,

cluster-based, broadcast, and geocast.
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2.3.1 Topology-based Routing Protocols

Topology-based routing protocols use link information to route packets. They can be

divided into two sub-categories: Proactive and Reactive.

Proactive routing protocols

Proactive routing protocols continually maintain knowledge of the available paths in

the network. For this reason, there is no need to perform route discovery whenever

there is a communication request. Typically, each node maintains a table, each entry

of which indicates the next hop node towards a particular destination. However,

if the network topology changes frequently, maintaining these tables may expend a

significant amount of overhead. Some proactive protocols that can be named are

DSDV and OLSR (Kumar and Chand, 2010a).

Reactive/ad-hoc routing protocols

In response to the maintenance problem of proactive protocols, reactive protocols

were developed. They maintain only the routes which are currently in use, leading to

a reduction in network overhead when only a small subset of available paths is needed.

However, recent studies have shown that most ad-hoc routing protocols (e.g., AODV

and DSR) suffer from the highly dynamic nature of vehicular topologies due to their

poor route convergence and low communication throughput. To improve the frequent

route breakage problem of AODV, two protocols, PRAODV and PRAODVM, use

speed and location information to predict link lifetimes (Li and Wang, 2007).

13
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2.3.2 Geographical Routing Protocols

In location-based routing protocols, the forwarding nodes are selected based on the

geographical location of the source, destination, and neighbouring nodes obtained

from street maps, traffic models or navigation systems. Greedy Perimeter Stateless

Routing (GPSR), one of the best known location-based protocols, forwards packets

to a node that is geographically closest to the destination. It uses face routing when

greedy routing fails (Li and Wang, 2007). It is argued that geographic routing per-

forms well in evenly distributed node conditions or highway scenarios compared to

city settings since there are fewer obstacles. In VANETs, position-based routing faces

large challenges in a built-up city environment containing an uneven distribution of

vehicles and constrained mobility due to road patterns. A-STAR, GPCR, and GSR

are some algorithms developed to deal with these issues using street maps.

2.3.3 Cluster-Based Routing

In cluster-based protocols, nodes are clustered to provide scalability; and within a

cluster, a node is selected to play the role of a virtual network infrastructure. The

selected node, also known as the cluster head, is responsible for coordinating intra and

inter-cluster communications. Intra-cluster communication is performed via direct

links while nodes within different clusters communicate through cluster heads. Cluster

heads usually have a role in controlling media access and ensuring routing scalability.

COIN and LORA CBF are some examples of cluster-based algorithms. Although

scalability is the advantage of cluster-based routing protocols, delay and the overhead

of cluster maintenance are main drawbacks of this method.
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2.3.4 Broadcast

Broadcast is used in routing methods such as traffic sharing, weather, emergency,

road condition and advertisement announcements. It can also be used as a mecha-

nism in unicast routing protocols to find routes. The simplest broadcast service is

flooding where each node re-broadcasts any received packet to all nodes except the

one it received the packet from. Flooding is easy to implement and it guarantees all

nodes will eventually receive the message. The main drawback of flooding however,

is that as the number of nodes increases, the algorithm performance becomes poor

very quickly since the bandwidth required to broadcast can increase exponentially.

BROADCOMM protocol, which is based on a hierarchical structure for a highway

network, was developed to improve broadcasting delay and routing overhead. UMB

is another protocol designed to overcome interference, packet collisions, and hidden

node problems during message dissemination (Li and Wang, 2007).

2.3.5 Geocast Routing

Geocast is a location-based multicast routing. It divides the network into geographical

regions where packets from the source node are sent to nodes which are within certain

geographical areas. Geocast can be implemented by defining a multicast group to

be within a certain geographical area, and can use either flooding or non-flooding

approaches to broadcast data. In flooding approaches, to avoid network congestion

and message overhead, the flooding is restricted inside a forwarding zone. The non-

flooding approaches, which are based on unicast routing, can use regional flooding

in the destination node area. Many applications can benefit from geocast routing.

For instance, whenever an accident occurs, vehicular sensors can report it to nearby
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vehicles for proper attention. Vehicles outside the area do not need to be alerted (Li

and Wang, 2007).

2.4 Data Scheduling in VANETs

Vehicles typically remain in the coverage area of roadside units (RSU) for relatively

short periods of time due to their fast movement, especially in highway settings.

In order to serve as many vehicle demands as possible, reduce download delay and

energy needed to transmit, smart scheduling is important. In addition, since upload

and download requests compete for the same bandwidth, selecting the request to be

served at a particular time is critical. Scheduling algorithms are evaluated in terms of

the performance metrics which are needed to satisfy application services. Examples

of these are fairness, responsiveness, time constraints, data size, service ratio, quality

of service, and data quality (Kumar and Chand, 2010a). Some of these are briefly

discussed below.

• Time Constraints: Due to the speed of vehicles, requests in vehicle-roadside

data access may have time constraints and must typically be served before the

vehicle leaves the RSU transmission range.

• Service Ratio: Service ratio is defined as the ratio of the number of requests

served on time, to the total number of requests.

• Quality of Service: QoS is associated with time constraints that vehicle re-

quests impose on the scheduler (Xu et al., 2006).

• Quality of Data: Data may become stale if the vehicle loses the upload op-

portunity before it moves out of the RSU range. Data quality is associated with
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how recent requested data items are updated (Zhang et al., 2010).

Vehicles communicate with roadside infrastructure to upload or download specific

data items. Upload requests are mainly used to move data to the Internet when the

roadside unit (RSU) acts as an Internet gateway, or to update a buffered data item

when the infrastructure is used as a buffering point between vehicles. Value-added

advertisement, real-time traffic, and map downloading are some examples which can

benefit from data buffering at the RSU.

Unicast and broadcast communications are the methods used to serve single or

multiple requests, where appropriate. There are two major broadcast methods: push-

based and pull-based. In push-based broadcast, the RSU sends data periodically ac-

cording to a static schedule, which is based on historic data access statistics or pre-

defined request profiles. Vehicles then listen to the broadcast channel passively. In

pull-based (on-demand) broadcasting, data items are disseminated according to ex-

plicit requests submitted by vehicles. This method is generally scalable to a large and

dynamic client population. In addition, no assumption is needed about the data ac-

cess pattern, which makes it appropriate for dynamic workload environments. Three

methods, opportunistic, vehicle-assisted, and co-operative, are approaches used for

data delivery in the pull-based settings.

• Opportunistic: Passing vehicles or the infrastructure provides the required in-

formation when a target vehicle needs it (Kumar and Chand, 2010a).

• Vehicle-Assisted: Packets are carried with a vehicle and it is delivered to the in-

frastructure or to other vehicles when they are encountered (Kumar and Chand,

2010a).
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• Co-operative: Vehicles download part of the desired information and vehicle

sharing is used to obtain the complete content.

In reference (Zhang et al., 2010), a scheduling scheme called D ∗ S was proposed

which considers both data size and time constraints. In order to take advantage of

broadcasting, the scheduler was extended to the D ∗ S/N scheme to serve multiple

requests with a single data transmission. To provide trade-offs between service ratio

and data quality, and balance between download and upload demands, the Two-Step

algorithm was proposed. In the first step of the algorithm, one of the download or

upload priority queues is chosen. In the next step, a request from the selected queue

is chosen. The D ∗ S/N and D ∗ S/R schemes are used to choose a request from the

download and upload queues, respectively. In D ∗ S/N , requests are prioritized by

the DSN Value measurement, which is defined as the product of urgency and data

size, divided by the number of pending requests for the same data item. In D ∗ S/R,

the DSR Value measurement is defined with the same policy except that data size

is divided by the service rate of download requests in the download queue for a data

item. A request with the lowest DSR Value (for upload requests) or DSN Value (for

download requests) is served first. The paper compared their scheduling algorithms

with three naive schemes, FCFS, FDF, and SDF, and showed their performance and

limitations. Based on (Zhang et al., 2010), in (Shahverdy et al., 2010), a scheduling

algorithm was introduced in which each file is chopped into several segments. If a

vehicle is not able to finish downloading all requested segments from a particular

RSU, then it has the opportunity to continue downloading the remaining segments

from others. The scheduling algorithm works in two steps. In the first step, requests

are separated based on whether the requested item is asked for the first time or it is
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part of a resumed item. In the second step, using the D ∗ S scheme, it selects one

of the two queues to serve a request from the chosen queue. In (Kumar and Chand,

2010b), in addition to the deadline and data size, request priority is considered in the

scheduling. The proposed algorithm, D ∗ S/P , serves requests with higher priority

first, otherwise the scheme behaves similar to the method introduced in (Shahverdy

et al., 2010). When a request arrives, its importance is evaluated and responded

to with respect to its priority, otherwise, it is handled using the D ∗ S scheme. The

performance of the proposed algorithm was studied in terms of service ratio. Reference

(Xu et al., 2006) introduced another algorithm called SIN-α which considers urgency

and the number of outstanding requests in its scheduling. Motivated by urgency and

improved algorithm efficiency, SIN-α defines sin-α as the ratio of urgency to the

relative weight of the number of outstanding requests, and it serves a request with

minimum sin-α first. The paper introduced a new metric, drop rate, defined as the

ratio of the number of requests missing their deadlines, to the total number of requests,

and compared the proposed algorithm with three schemes including EDF, MRF, and

R*W. In contrast to (Zhang et al., 2010; Kumar and Chand, 2010b; Shahverdy et al.,

2010) which assume a single RSU, a group of RSUs is considered in (Gui and Chan,

2011). It proposed MPO, a motion prediction based scheduling scheme for vehicle-

to-infrastructure data access. To obtain good performance and a balanced schedule,

vehicular requests are transferred among RSUs. They are prioritized based on the

D ∗ S/N scheduling scheme proposed in (Zhang et al., 2010). Requests missing their

deadlines are discarded in each scheduling cycle, and they are transferred to a nearby

RSU using vehicle motion prediction. This is based on the probabilistic mobility

nature of the Manhattan Mobility Model. If the motion prediction is correct, the
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transferred request will have a good chance for reasonable service. This paper also

introduced MMPO, a multi-item vehicle request scheduling algorithm. The proposed

algorithm was studied and compared with other schedulers including First Come First

Serve (FCFS), Smallest Data size First (SDF) and Earliest Deadline First (EDF).

2.5 Energy Efficiency in Wireless Networks

Recent studies have proposed many methods to save energy in wireless communica-

tion systems (Gong et al., 2010). For example, reference (Mamechaoui et al., 2013)

studied green networking in wireless mesh networks. They included a survey of pro-

posed methods to save energy in the three lower layers of the protocol stack. Power

consumption is also a critical issue in wireless ad-hoc networks since many nodes

are portable devices such as laptops, which are battery powered. The wireless LAN

interface is one of power-consuming components of these types of devices. Many pa-

pers have proposed various methods to put mobile devices into reduced power sleep

modes, and techniques for minimizing transmission and reception activities so that

energy consumption can be reduced (Zhou et al., 2005; Li et al., 2003; Ning et al.,

2005). Reference (Ning et al., 2005) introduced a packet-driven method called IEEE

802.11NPS which can reduce energy use by 60% compared to the conventional WLAN

power save mode. Transmission range control is another approach used for energy

savings in wireless ad-hoc networks. Using throughput and throughput per unit of

energy as the optimization metrics, (Park and Sivakumar, 2002) analyzed the optimal

throughput as a function of transmission power. They demonstrated that the opti-

mum transmission range to maximize system throughput is a function of the network

load, network size, and the number of stations. In reference (Chang and Tassiulas,
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2000) an energy-efficient routing algorithm was proposed. Given a set of origin and

destination nodes and information generation rates at the origin nodes, They pro-

posed flow augmentation algorithms and a flow redirection algorithm to balance the

energy consumption rate among nodes so that node lifetime is maximized.

In vehicular ad-hoc networks (VANETs), vehicles communicate by using vehicle-

to-vehicle (V2V) communication, or with fixed infrastructure using a vehicle-to-

infrastructure (V2I) communication mode. Vehicular radios are less energy con-

strained than in many other applications since they draw power from the vehicle

engine. Nevertheless, vehicular communication involves other wireless devices such

as roadside transceivers which may have to be energy-efficient since they may oper-

ate from batteries or solar energy. This motivates new designs which optimize the

power consumption of the entire vehicular communication system. Reference (Feng

et al., 2010) studied green networking (i.e., energy-efficiency) in VANETs and derived

a relation between optimal transmission range and network data traffic. Using data

traffic input, They enable vehicles to adjust their transmission range as a function

of transportation traffic in order to save energy. Reference (Zou et al., 2011) stud-

ied energy savings in RSU scheduling, and proposed a two step algorithm. Given

a set of RSUs, they find the optimum RSU on/off switching schedule while main-

taining vehicle connectivity. Addressing power consumption and quality-of-service,

(Toutouh and Alba, 2011) developed the DE OLSR routing protocol which improves

on the standard version of OLSR in terms of energy consumption. Reference (Zhang

et al., 2011) developed a novel cross-layer framework for V2I communication networks.

Based on this framework, a sub-carrier assignment policy is proposed, which aims to

minimize power consumption while guaranteeing delay QoS requirements. Reference
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(Hammad et al., 2013) also studied the problem of scheduling for energy-efficient

roadside infrastructure. It proposed three online scheduling algorithms all of which

attempt to reduce downlink infrastructure-to-vehicle energy communication costs.

Using minimum cost flow graph scheduling, it introduced the Greedy Minimum Cost

Flow (GMCF) algorithm. Two other algorithms with reduced complexity compared

to GMCF, i.e., Nearest Fastest Set (NFS) and Static Scheduler (SS), were proposed.

The performance of the online algorithms were compared in terms of energy use.
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Chapter 3

Vehicle-to-Infrastructure

Scheduling Algorithms

3.1 Introduction

A significant barrier to the widespread deployment of vehicular roadside infrastructure

is the cost of providing electrical-grid power connections. In many locations, grid-

power is simply unavailable, while in others, the connection costs are too prohibitive

to be commercially feasible. An alternative to wired power in these situations is to

operate all or some of the RSUs using green energy sources, such as solar or wind

power. In (Peirce and Mauri, 2007) a cost-benefit analysis was presented as part

of the US Department of Transportation’s Vehicle Infrastructure Integration (VII)

Initiative. This study includes cost projections for an initial vehicular infrastructure

roll-out that focuses on safety and vehicle monitoring applications. In this report

it was estimated that 40% of all initial rural free-way roadside infrastructure would

have to be solar powered. A breakdown of the deployment costs also showed that
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d1

d2

Roadside Unit

Vehicle v at t1 Vehicle v at t2

Figure 3.1: Roadside Unit (RSU) Example. Vehicle v is shown at two different times, t1
and t2, and distances from the RSU, where d1 � d2. Communication at time t2 is preferred
in terms of downlink RSU energy cost.

over 63% of these roadside unit costs would be consumed by solar energy provisioning,

e.g., solar panels, batteries, and their associated electronics. The projected costs of

these nodes comes to almost 1B dollars in the proposed initial deployment, and it is

clear that these costs can be significantly reduced by energy efficient designs.

In some vehicular settings, vehicle location may be accurately known. This occurs

for example, in highway situations where vehicles tend to travel at relatively constant

speeds. Reference (Hammad et al., 2010) showed that this knowledge can be used to

improve downlink energy consumption by deferring communication until vehicles are

in favourable energy positions. An example of this is illustrated in Figure 3.1. In this

example, vehicle v is shown at two different times, t1 and t2, and at corresponding

distances from the RSU given by d1 and d2, respectively. Communication at time t2

may be preferred by the RSU, if the downlink energy costs are lower compared with

those at time t1. In order to exploit this advantage, the downlink communication

requirements of the vehicles must be delay tolerant.

In this chapter we consider the delay tolerant RSU scheduling problem when there

are more than one roadside units (RSUs) in tandem. In multiple roadside unit (RSU)
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arrangements, the energy provisioning of the RSUs will often be different, and it is

desirable to energy-balance the loading from a normalized energy viewpoint. We first

derive an integer linear programming bound for the normalized min-max RSU en-

ergy usage, which can be solved for a given input sample function. We then derive

a polynomial complexity 2-approximation bound for the min-max energy schedule

under splittable RSU assignment scheduling. These bounds are used for comparisons

with proposed online scheduling algorithms. The first is a low complexity Greedy

Online Algorithm (GOA) scheduler that makes greedy RSU selections followed by a

minimum energy time slot assignment. The second, the Greedy Flow Graph Algo-

rithm (GFGA), makes the same RSU selection but reassigns time slots whenever a

new vehicle is assigned to the same RSU using a minimum cost flow graph sched-

uler. A normalized min-max online algorithm, referred to as TOAA, is then proposed

which is an online version of our 2-approximation bound. Two algorithms are then

proposed based on a potential function scheduling approach. The first, the One-

Objective algorithm, uses a primary objective based on normalized min-max energy.

Theoretical results are presented which show that this algorithm has provable per-

formance guarantees, based on its worse-case competitive ratio. The second, the

Bi-Objective algorithm, uses the same objective, followed by a secondary minimum

total energy objective. Results from a variety of experiments show that the proposed

scheduling algorithms perform well. The results show that in the SRA scheduling

case, the TOAA algorithm performs very close to the lower bound, but it must reas-

sign time slots whenever a new vehicle arrives. In the URA case, our low complexity

One-Objective algorithm performs better than the others over a wide range of traffic

conditions and does not have this restriction.
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Roadside Unit 1

Vehicle i Vehicle j

Roadside Unit M

Figure 3.2: Multiple Roadside Units (RSUs). Vehicles pass through the coverage areas of
M roadside units, any of which can provide the required vehicular communications. RSU i
has a relative energy capacity of ηi.

3.2 Related Work

Recent research in vehicular networks has included topics such as routing algorithms

(Li and Wang, 2007), applications (Khaled et al., 2009), security (Zhang et al., 2009),

and medium access control performance (Mittag et al., 2008). For example, studies

have illustrated the suitability of IEEE 802.11p for highway applications (Bychkovsky

et al., 2006; Ott and Kutscher, 2004). In (Jhang and Liao, 2008; Zhao et al., 2008;

Nandan et al., 2005), proxy vehicles are used to decrease vehicle contention and

improve roadside unit utilization.

Vehicular network connectivity and inter-vehicle interference can be traded-off us-

ing transmitter power control. These effects have been extensively studied in (Mittag

et al., 2008; Festag et al., 2007; Rawat et al., 2009). However, power control from an

energy efficiency viewpoint has normally not been considered, since vehicle-to-vehicle

communications is powered from the car engine which has enormous energy reserves.

Most work also assumes that grid connected power is readily available at the roadside

units, which may not always be the case.

Reference (Zhang et al., 2010) introduced simple schedulers for the roadside unit
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based on transmission requirement inputs and message deadlines. This work however,

did not consider energy efficiency at the RSU. An optimization approach was used in

(Alcaraz et al., 2009) to maximize RSU throughput given the locations and velocities

of vehicles within radio coverage range. Their scheduler was designed and integrated

into the IEEE 802.11e contention free periods. Again however, the focus of this study

did not include the energy consumption of the RSU.

RSU scheduling was considered from an energy consumption viewpoint in reference

(Hammad et al., 2013). This study focused on minimizing the downlink energy costs

in the common case where passing vehicle communication requirements are delay

tolerant. It was shown that significant energy savings are possible in this case, using

an energy aware scheduler at the RSU. This study is the starting point for our work,

however, our focus is on scheduling in the multiple roadside unit case.

3.3 System Model and Scheduling Definitions

A roadside scenario is considered that consists of a tandem set of roadside units

(RSUs). This type of arrangement will be common in cases, for example, where high

capacity is needed to accommodate evolving peak traffic conditions. An example

of this is given in Figure 3.2 where vehicles are shown traveling through a tandem

coverage area ofM RSUs. For convenience, we describe the system with unidirectional

vehicular traffic, but our algorithms and results are applicable to the multi-directional

case. In our development we will assume that all vehicles pass by the same set of

RSUs, such as in a highway environment, but this is also not a requirement.

The RSUs are assumed to intercommunicate among themselves using back-haul

communication links so that scheduling decisions can be coordinated. We also assume
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that each RSU uses a single radio for downlink communication but the RSUs operate

independently from one another without interference. Channel time is assumed to be

time-slotted and power control is used on the downlink (i.e., RSU-to-vehicle direction)

so that each time slot can carry B bits, regardless of vehicle location within a given

RSU coverage area.

It is assumed that when a vehicle j enters the coverage area of RSU 1, its downlink

communication requirement is determined, and the system schedules this communi-

cation for some future time. In certain situations, such as in a highway scenario,

good estimates of RSU downlink energy communication costs can be obtained. In

(Hammad et al., 2010) it was shown that when there is a strong deterministic compo-

nent of path loss versus distance, schedulers can be devised which can greatly reduce

downlink RSU energy use. Due to the coverage range associated with the RSUs,

the average power consumption of an energy efficient RSU design may be strongly

dominated by downlink transmission power. For this reason, the RSUs will generally

prefer to communicate with nearby vehicles rather than more distant ones. In the

example shown in Figure 3.1, communications at time t2 is preferable to time t1 since

d1 � d2. To use this option however, requires that there is sufficient packet delay

tolerance, and we assume that any vehicle can be served at any time throughout its

transition time in the RSU coverage area (Hammad et al., 2013).

The inputs and outputs of our scheduling problem are more formally stated as

follows.

INPUT: We are given a set ofM tandem RSUs indexed by the setM = {1, 2, . . . ,M}

(as shown in Figure 3.2). For each RSU i, there is an energy normalization fac-

tor, ηi, which gives its relative energy capacity. We consider a finite sequence
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of N arriving vehicles indexed by the set N = {1, 2, . . . , N}, where each vehicle

j has an RSU-to-vehicle communication requirement of Hj, in units of time

slots. It is assumed that Hj must be fulfilled by a given subset, Mj ⊂ M,

of the RSUs. The entire time considered consists of T time slots given by the

set T = {1, 2, . . . , T} over which the scheduling is to occur. We are also given

estimates of the per time slot energy cost for downlink communications from

RSU i to vehicle j during time slot t, defined by εi,j,t. Below, we will also use

the notion of normalized energy cost of vehicle j on RSU i during time-slot t,

which is defined as ε̃i,j,t := εi,j,t/ηi, i.e., the normalized energy cost for downlink

communications from RSU i to vehicle j during time slot t. This setting is quite

general, since it also allows for a vehicle j to choose never to be processed by a

particular RSU i, by setting εi,j,t =∞ for all time-slots t ∈ T . For example, it

may be the case that an RSU i hosts the content of a specific type that vehicle

j doesn’t have any demand for; therefore j will never schedule any demand on

i.

OUTPUT: A scheduler output gives an RSU-to-vehicle transmission schedule. We

define

xi,j,t =


1 if RSU i sends to vehicle j in time slot t,

0 otherwise.

(3.1)

Given the inputs defined above, the objective of the scheduler is to select values

for xi,j,t such that all vehicle communication requirements are satisfied, and the

maximum normalized downlink RSU energy cost across all RSUs is minimized,
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i.e.,

min
xi,j,t

max
i∈M

∑
t∈T

∑
j∈N

xi,j,t εi,j,t / ηi (3.2)

Two RSU assignment options are considered, as follows.

1. Splittable RSU Assignment (SRA): The Hj communication requirement for ve-

hicle j may be satisfied by any combination of the RSUs in the set Mj.

2. Unsplittable RSU Assignment (URA): The Hj communication requirement for

vehicle j must be satisfied by a single RSU selected from the set Mj.

The splittable RSU assignment case (RSA) can be reduced to the case of all vehicles

having a unit communication requirement, by splitting vehicle j with communication

requirement Hj into Hj unit-requirement vehicles. Therefore, from now on we will

assume that the communication requirements in the splittable case are Hj = 1 for

all vehicles j. Obviously, in the unsplittable RSU assignment (URA) case, Hj can be

any non-negative integer.

The generated schedules can be either offline or online. In offline scheduling, the

complete set of inputs is provided to the scheduler all at once, i.e., the former has

knowledge of all past and future vehicular inputs. Offline scheduling is used in Section

3.4 to derive lower bounds on energy performance which are then used for comparisons

in Chapter 4. In online scheduling, the inputs are provided to the scheduler in real

time and it must assign the values of xi,j,t in a causal fashion based solely on past

and current input values.
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3.4 Offline Min-Max Energy Bounds

In this section we derive offline bounds for normalized min-max RSU energy use.

The formulation given considers the unsplittable RSU assignment (URA) case where

a vehicle’s requirements must be assigned to a specific RSU. SRA scheduling is a

special case of this, as discussed below. Accordingly, we define the following set of

binary scheduling variables.

ai,j =


1 if RSU i is assigned to vehicle j,

0 otherwise.

(3.3)

The RSU assigned to j must belong to the setMj. Using the xi,j,t and εi,j,t variables

defined in Section 3.3, a lower bound on min-max energy use can then be computed

using the following integer linear program (ILP) referred to as ILP-Bound.

minimize
xi,j,t

∑
t∈T

∑
j∈N

∑
i∈M

εi,j,t xi,j,t (ILP-Bound)

subject to
∑
t∈T

xi,j,t = ai,j Hj, ∀j ∈ N , i ∈Mj (3.4)

∑
i∈Mj

ai,j = 1, ∀j ∈ N (3.5)

∑
j∈N

∑
t∈T

xi,j,t εi,j,t/ηi ≤ E , ∀i ∈M (3.6)

∑
j∈N

xi,j,t ≤ 1, ∀i ∈M,∀t ∈ T (3.7)

xi,j,t ∈ {0, 1}, ∀{i ∈M, j ∈ N , t ∈ T } (3.8)

ai,j ∈ {0, 1}, ∀{i ∈M, j ∈ N} (3.9)

31



M.A.Sc. Thesis - Amir M. Khezrian McMaster - Electrical Engineering

In ILP-Bound, the objective function is simply the total downlink energy used by

the RSUs. Constraint (3.4) ensures that vehicle communication requirements are

fulfilled by summing the appropriate values of xi,j,t over all RSUs. The ai,j term

ensures that the entire vehicle communication requirement is served by the assigned

RSU. Constraint (3.5) requires that vehicle j is assigned to one RSU. Constraint (3.6)

places a common upper bound, E , on the total normalized energy used by each RSU

where ηi is the normalization factor for RSU i. Since E is not known a priori, we can

do a binary search on its value, solving ILP-Bound each time, to get the minimum

value of E that achieves an optimal normalized min-max energy bound, i.e., a bound

on the best load balancing possible. We will refer to E as the minmax bound, and we

will denote by Eopt the best possible minmax bound. Constraint (3.7) ensures that

a given time slot can only contain a single transmission, but allows for simultaneous

operation of the M RSUs. Note that only minor simplifications to ILP-Bound are

needed to obtain the splittable RSU assignment (SRA) case. Constraints (3.5) and

(3.9) are removed and constraint (3.4) is changed to
∑

t∈T
∑

i∈Mj
xi,j,t = Hj,∀j ∈ N

ILP-Bound can be solved directly using branch and bound techniques and CPLEX

8.1.0 has been used with data generated from MATLAB. These results are used for

comparisons with online algorithms to be introduced in Section 3.5. However, the

complexity of computing ILP-Bound is very high, and in the next section we show

that there is a polynomial complexity 2-approximation bound for the splittable RSU

assignment case.
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3.4.1 2-Approximation Bound for Splittable RSU Assign-

ment (SRA)

In this section we consider the splittable RSU assignment (SRA) case where each

vehicle has a unit time slot communication requirement. We notice that our problem

is a version of the offline load-balancing (i.e., minimum makespan) machine schedul-

ing problem, or, even more specifically, an extension of the Generalized Assignment

Problem. Based on the classic algorithm by Shmoys and Tardos (Shmoys and Tardos,

1993), we develop a bi-objective algorithm that attempts to achieve objective (3.2),

and minimize the total energy used to achieve that objective. The process is as

follows.

First, we show how to compute a schedule of minmax bound at most 2E of total

energy cost C, if a schedule of cost C and bound E exists. Note that C is the minimum

total energy needed to achieve a minmax bound of E . Then we apply this algorithm

repeatedly over different choices of E until we get a schedule close to Copt, 2Eopt, where

Eopt is the optimal minmax bound that can be achieved and Copt is the minimum total

energy needed to achieve this bound.

For any E0 ≥ E , a solution to the following integer program, ILP(E0), will give a

schedule of all vehicles that can be scheduled on some RSU with normalized energy

at most E0 and a minmax bound at most E : if xi,j,t = 1 then vehicle j is scheduled

on RSU i at time-slot t.

minimize
∑
j∈N

∑
t∈T

∑
i∈M

εi,j,t xi,j,t (ILP(E0))

subject to
∑
t∈T

∑
i∈Mj

xi,j,t = 1 ∀j ∈ N (3.10)
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∑
j∈N

xi,j,t ≤ 1 ∀t ∈ T , i ∈M (3.11)

∑
j∈N

∑
t∈T

ε̃i,j,t xi,j,t ≤ E ∀i ∈M (3.12)

xi,j,t ∈ {0, 1} ∀i ∈M, j ∈ N , t ∈ T (3.13)

xi,j,t = 0 if ε̃i,j,t > E0 (3.14)

Constraint (3.12) enforces the minmax bound. Constraint (3.10) ensures that a vehi-

cle is fully processed, and constraint (3.11) ensures that only one vehicle is processed

in each time slot on each RSU. The last constraint makes sure that vehicles with

energy requirement on an RSU greater than E0 ≥ E are not scheduled at that RSU.

Note that, due to constraints (3.10) and (3.11), the xi,j,t variables can only take values

in {0, 1}.

Unfortunately, the integer program ILP(E0) is NP-hard to solve since it solves the

Generalized Assignment problem, which is NP-complete. Therefore, we have relaxed

it by allowing x to be fractional. In what follows, LP(E0) refers to the fractional

relaxation of the integer program ILP(E0), and it can be solved using standard LP

algorithms in polynomial time. Algorithm 1 performs a binary search on the minmax

bound E , in order to compute a fractional solution of minimum total cost. This

happens in the while statements 4 to 12 using the binary search accuracy parameter

ξ. Then it rounds the solution to an integral one, by applying a modification of the

well-known Generalized Assignment Algorithm by Shmoys and Tardos (Shmoys and

Tardos, 1993).
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Algorithm 1 2-Approximation Bound

1: ξ → Binary search accuracy
2: E :=

∑
j∈N

∑
t∈T ε̃i,j,t

3: P := E
4: while P/E < ξ do
5: (x,C) := (Solution, Objective) of LP(E0) (if feasible)
6: P := P/2
7: if LP(E0) is feasible then
8: E := E − P
9: else

10: E := E + P
11: end if
12: end while
13: Round fractional matching x of vehicles to time-slots and RSUs, to an integer

matching xround.
14: For each xround(i, j, t) = 1, schedule job j in time slot t on RSU i.

To simplify the exposition, we assume that, for each RSU i, the normalized ener-

gies ε̃i,j,t are ordered as follows:

ε̃i,1,1 ≥ ε̃i,1,2 ≥ . . . ≥ ε̃i,1,l ≥ ε̃i,2,1 ≥ ε̃i,2,2 ≥ . . . ≥ ε̃i,2,l ≥ . . . ≥ ε̃i,n,l

Theorem 1. If LP(E0) has a feasible solution with a total energy cost of C, then

there exists a schedule of makespan at most E + E0 and a total energy cost of at most

C.

The theorem is proven by an algorithm that rounds a feasible (fractional) solution

of LP(E0) to a schedule. First, we solve LP(E0) to get a fractional solution x. Then

we construct a tripartite graph T (x) = (V ∪ Q ∪W,E), with node set V ∪ Q ∪W ,

defined as follows: V is the set of vehicle nodes :

V = {vj : j = 1, ..., n}.
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Q is the set of (time-slot, RSU) nodes, called time nodes :

Q = {q(t,i) : t = 1, ..., l, i = 1, ...,m}.

W is the set of RSU nodes :

W = {wis : i = 1, ...,m, s = 1, ..., hi},

where hi = d
∑

j

∑
t xi,j,te. Note that every RSU i generates hi nodes in W . The edge

set of T (x) is E = {(vj, q(t,i)) ∈ V × Q : ε̃i,j,t < ∞} ∪ {(q, w) ∈ Q ×W}. The edge

costs are 0 for all edges in Q×W , and c(vj, q(t,i)) := εi,j,t. The graph T (x) is shown

in Figure 3.3. For every path vj, q(t,i), wis we define a value x′(vj, q(t,i), wis) as follows:

• If
∑n

j=1

∑l
t=1 xi,j,t ≤ 1 for a RSU i, there is only one node, wi1, corresponding

to RSU i, in set W . In this case, we set x′(vj, q(t,i), wi1) := xi,j,t.

• Otherwise, for RSU i, there are minimum j1 and t1 which
∑j1

j=1

∑t1
t=1 xi,j,t ≥ 1.

It should be noted that
∑j1

j=1

∑t1−1
t=1 xi,j,t < 1. We set x′(vj, q(t,i), wi1) := xi,j,t, for

1 ≤ j ≤ j1, 1 ≤ t ≤ t1−1. We also set x′(vj1 , q(t1,i), wi1) := 1−
∑j1

j=1

∑t1−1
t=1 xi,j,t.

Up to here, we are sure that the sum of the components of x′ for the paths

incident to wi1 is exactly 1. If
∑j1

j=1

∑t1
t=1 xi,j,t > 1, a node wi2 is created to set

the rest of the unassigned value of xi,j1,t1 to it. Therefore

x′(vj1 , q(t1,i), wi2) := xi,j1,t1 − x′(vj1 , q(t1,i), wi1) =

j1∑
j=1

t1∑
t=1

xi,j,t − 1.

Next, we apply the same strategy to the rest of vehicles j ≥ j1 and times

t > t1. In general, for each s = 2, ..., hi − 1, we find the minimum indices js
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Figure 3.3: The graph T (x). To simplify the figure, the source node s and the edges
connecting it to nodes vi are not shown.

and ts, such that
∑js

j=1

∑ts
t=1 xi,j,t ≥ s. We set x′(vj, q(t,i), wis) := xi,j,t, and

x′(vjs , q(ts,i), wis) := 1 −
∑js

j=js−1+1

∑ts−1
t=ts−1+1 xi,j,t. If

∑js
j=1

∑ts
t=1 xi,j,t > 1, a

node wi(s+1) is created to set the rest of the unassigned value of xi,js,ts to it.

Therefore

x′(vjs , q(ts,i), wi(s+1)) := xi,js,ts − x′(vjs , q(ts,i), wis) =

js∑
j=1

ts∑
t=1

xi,j,t − s.

If (jhi−1, thi−1) is the last (vehicle,time) pair for which this general method

applies, then for t > thi−1 and j ≥ jhi−1 we create a node wihi and set

x′(vj, q(t,i), wihi) := xi,j,t.
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Note that the value of every variable xi,j,t is assigned to either a single x′(vjs , q(ts,i), wis)

or is split between two x′(vjs , q(ts,i), wis), x
′(vjs , q(ts,i), wi(s+1)), therefore

xi,j,t =

hi∑
s=1

x′(vj, q(t,i), wis), ∀j, t, i. (3.15)

Let ε̃maxis , ε̃minis denote the maximum and minimum, respectively, of the normalized

energy needed for communication ε̃i,j,t corresponding to used (x′(vj, q(t,i), wis) > 0)

paths (vj, q(t,i), wis) ending at node wis. Note that since vehicle j is (fractionally)

assigned by LP(E0), ε̃maxis ≤ E0, ∀i, s. A non-negative vector z of edges weights on

the edges of a bipartite graph is a fractional matching if, for each node u, the sum of

the weights on the edges incident to u is at most 1. The fractional matching exactly

matches a node u if this sum is exactly 1. A fractional matching z is a matching if

each component of z is 0 or 1. The cost of a fractional matching is the summation of

the cost of each edge e weighted by its edge weight ze. The graph T (x) is tripartite,

but we can extend the definition of fractional matching to this case by thinking of

paths (vj, q(t,i), wis) as “edges” connecting V to W (through Q). Then the following

lemma is easy to prove by the construction of T (x), the definition of x′, and the fact

that x is feasible for LP(E0):

Lemma 1. The vector x′ is a fractional matching in T (x) of total energy at most C.

Also, we have ε̃minis ≥ ε̃maxi(s+1) for each i = 1, ...,m, s = 1, ..., hi − 1.

Proof. (of Theorem 1) This is an extension of the proof of Shmoys and Tardos

(1993). By Lemma 1, x′ is a fractional matching in graph T (x) of cost at most C,

which matches all the vehicles exactly to the RSU’s through time slots. It can be

extended to a flow in a standard way as follows: We give capacity 1 to all edges of
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T (x). We add a source node s and edges (s, vj), ∀j with capacity 1 (the demand of

vehicle j) and cost 0 each. We also set x′(s, vj) := 1, ∀j. It is easy to see that the

extended x′ is a flow that saturates all edges from s and has total energy cost C, and

since all capacities are integral, we can compute an integral minimum cost flow x′′ of

cost at most C, that also satisfies the same total demand. This new flow gives us an

assignment of all vehicles to RSU’s through a single time slot each, i.e., a schedule,

of cost at most C. An obvious upper bound for the energy load on each RSU i is

hi∑
s=1

ε̃maxis = ε̃maxi1 +

hi∑
s=2

ε̃maxis (3.16)

≤ ε̃maxi1 +

hi−1∑
s=1

ε̃minis (3.17)

≤ ε̃maxi1 +

hi−1∑
s=1

n∑
j=1

l∑
t=1

ε̃i,j,tx
′(vj, q(t,i), wis) (3.18)

≤ ε̃maxi1 +

hi∑
s=1

n∑
j=1

l∑
t=1

ε̃i,j,t x
′(vj, q(t,i), wis) (3.19)

(3.15)
= ε̃maxi1 +

l∑
t=1

n∑
j=1

ε̃i,j,t xi,j,t (3.20)

≤ E0 + E (3.21)

where the last inequality is due to the fact ε̃maxis ≤ E0, ∀i, s.
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3.5 Online Scheduling Algorithms

The results in Section 3.3 give lower bounds on the downlink min-max RSU energy

needed to fulfill vehicular packet requirements. In this section we consider online al-

gorithms for performing the required scheduling in real time. As previously discussed

in Section 3.3, in the online case the scheduling decisions can only be made using

data consisting of past and current inputs. In the following sections we present low

complexity algorithms that operate to load balance the normalized energy use across

the RSUs, with varying levels of complexity and performance.

3.5.1 Greedy Online Algorithm (GOA)

The GOA algorithm uses both a greedy RSU selection and a greedy assignment of

time slots. The details are shown in Algorithm 2. When a vehicle enters the network

of RSUs, taking into account the energy that RSUs require to serve it, the RSU with

the least accumulated normalized energy usage is selected. This is shown in Step 8 and

this vehicle is added to the set of vehicles assigned to that RSU, i.e., Sr. Time slots

(Hv for vehicle v) are then assigned from those available (i.e., from the set Ur,t), which

minimize the cost of serving that vehicle, which is shown in Step 6. Once these time

slots have been allocated, in Step 9 they are removed from Ur,t and are unavailable to

any subsequently arriving vehicles. The value of Ci,t is also updated. As previously

discussed, in the SRA case, rather than assigning the vehicle to a particular RSU,

we view the Hv time slot requirement for vehicle v to be Hv separate single time slot

vehicles, allowing them to be assigned across multiple RSUs. A major advantage of

GOA is that it is very simple to implement.
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Algorithm 2 Greedy Online Algorithm (GOA)

1: Ur,t → Set of unassigned RSU r time slots at time t.
2: Cr,t → Accumulated normalized energy usage of RSU r at time t.
3: Pr → Normalized energy usage of RSU r for a new vehicle.
4: for all t ∈ {0, 1, . . .} do
5: for each vehicle v that arrives to the system (at time t) do
6: Find time slots from set Ur,t that minimizes the energy cost of communication

with vehicle v for all RSUs in the set Mv.
7: Update Pr, for each RSU, if the time slots obtained in step 6 are used to

serve vehicle v.
8: Assign v to RSU r = arg mini∈Mv

Ci,t + Pi.
(i.e., Sr ← Sr ∪ v.)

9: Update Ur,t by removing those time slots from r assigned in Step 6 and
update the value of Ci,t to account for the new assignments.

10: Update the schedule for RSU r using the solution generated in Step 6.
11: end for
12: Using the current schedule for each RSU, continue RSU-to-vehicle transmission

(at time slot t).
13: end for

3.5.2 Greedy Flow Graph (GFGA) Scheduler

As in the GOA algorithm, in the Greedy Flow Graph (GFGA) algorithm, RSU selec-

tion is made for a newly arrived vehicle based on minimum RSU energy use plus the

energy that RSUs require to serve it. Once the target RSU is chosen, time slots are

allocated to the vehicles which are assigned to that RSU based on a minimum cost

energy schedule. This is computed using all currently available vehicular information

and remaining backlog, and is recomputed whenever a new vehicle arrival occurs.

The algorithm is shown in Algorithm 3 and is described in detail as follows.

When a new vehicle arrives to the system, it is assigned to the RSU which currently

has the minimum accumulated normalized energy usage. Ci,t is defined to be the

normalized energy usage for RSU i at time t as shown in Step 10. Sr ⊆ N is defined

to be the set of active vehicles currently assigned to RSU r. In Step 7 we update the
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set of unassigned time slots for which all vehicles assigned to RSU r will be active.

Then in Step 8 we use these updated inputs to find the minimum energy time slot

assignment by solving the following ILP.

minimize
xr,j,t

∑
t∈Tr

∑
j∈Sr

εr,j,t xr,j,t (3.22)

subject to
∑
t∈Tr

xr,j,t = H̃j, ∀j ∈ Sr (3.23)

∑
j∈Sr

xr,j,t ≤ 1, ∀t ∈ Tr (3.24)

xr,j,t ∈ {0, 1}, ∀{j ∈ Sr, t ∈ Tr} (3.25)

ILP 3.22 to 3.25 is similar to ILP-Bound except that it solves for the minimum energy

schedule for a single RSU r, using the currently available inputs Sr and Tr. The ob-

jective function therefore only considers the energy cost for RSU r. Constraint (3.23)

satisfies the residual (i.e., remaining unserved) transmission requirement for vehicle

j, denoted by H̃j. The other constraints follow similarly from ILP (3.4) to (3.9). In

Step 11, once the new assignments are made, the value of Ci,t is updated. As pre-

viously discussed, in the SRA case, rather than assigning the vehicle to a particular

RSU, we view the Hj time slot requirement of vehicle j to be Hj separate one time

slot vehicles, allowing them to be assigned across multiples RSUs.

The form of ILP (3.22) to (3.25) is such that it can be solved in time complexity

which is polynomial in the number of time slots, using a minimum cost flow graph

formulation (Ahuja et al., 1994). This is shown for RSU r in Figure 3.4, where

G = (V,E) is defined by a set V of vertices (nodes) and a set E of edges (arcs)

connecting the nodes. For each edge (i, j) ∈ E there is a capacity ui,j that gives the
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Algorithm 3 Greedy Flow Graph (GFGA) Scheduler

1: Cr,t → Accumulated normalized energy usage of RSU r at time t.
2: Sr → Set of vehicles currently assigned to RSU r.
3: Tr → Set of unassigned time slots for which vehicles in Sr are within RSU r

coverage.
4: Pr → Normalized energy usage of RSU r for a new vehicle.
5: for all t ∈ {0, 1, . . .} do
6: for each vehicle v that arrives to the system (at time t) do
7: For each RSU, update Tr to the union of unassigned time slots for which all

vehicles in Sr are within the RSU r coverage.
8: Solve ILP 3.22 to 3.25 for each RSU r using the vehicles in Sr for the time

slots in Tr. This can be done in time which is polynomial in |Tr| using a
minimum cost flow graph.

9: Update Pr, for each RSU, if the time slots obtained in step 8 are used to
serve vehicle v.

10: Assign v to RSU r = arg mini∈Mi
Ci,t + Pi.

(i.e., Sr ← Sr ∪ v.)
11: Update the schedule for RSU r using the solution generated in Step 8. Update

the value of Ci,t to account for the new assignments.
12: end for
13: Using the current schedule for each RSU, continue RSU-to-vehicle transmission

(at time slot t).
14: end for

maximum flow on the edge, and an associated cost, ci,j, that denotes the cost per unit

of flow on that edge. These are written as ordered pairs, (ui,j, ci,j), on each graph

edge in Figure 3.4.

The flow enters and exits the graph at dummy nodes S and D, respectively. The

first column of nodes represents all vehicles in Sr, where Nr = |Sr|. The second

column represents all time slots in Tr, where Tr = |Tr|. Each vehicle node has edges

connected to the time slot nodes during which the vehicle is inside the RSU r coverage

area. The capacity for an edge from the source S to a vehicle node is the residual

communication requirement for vehicle j in time slots. The capacity for an edge from
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Figure 3.4: Minimum Energy Flow Graph Scheduler. Each edge is labeled with an ordered
pair, (ur,j,t, εr,j,t), where ur,j,t and εr,j,t are the capacity and cost of using edge (i, j). The

input and output links, I and O, carry a flow of
∑N

i=1 H̃i with a 0 edge cost.

any time slot node to the destination D is 1 which prevents time slots from being used

more than once. The edges between vehicle and time slot nodes also have a capacity

of 1 which ensures that only one unit of transmission requirement can be assigned to a

given time slot. The cost for using the edges originating from Node S or terminating

at Node D is zero. Finally, the cost of the edges between the vehicle and time slot

nodes is given by εr,j,t which is the energy cost of communication from RSU r to vehicle

j at that time. Finding the minimum cost flow for graph G provides the minimum

energy the RSU must consume to schedule vehicle transmission requirements for the

given set of inputs. The Integrality Property Theorem (Ahuja et al., 1994) ensures

that provided input flows and capacities are integer, the resulting minimum cost flow

will also be integer. Since our vehicle to time slot edge capacities are 1, the resulting

path flows are binary and give the optimum values for xr,j,t.

Once the schedule for RSU r has been updated via Step 11 in Algorithm 3, this

becomes the active schedule for that RSU. Finally, in Step 13 all RSUs will transmit
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Algorithm 4 2-Approximation Online Algorithm (TOAA)

1: Cr → Accumulated normalized energy usage of RSU r.
2: S → Set of vehicles currently in the coverage area of RSUs.
3: W → Set of unassigned time slots for which vehicles in S are within RSUs cov-

erage.
4: for all tc ∈ {0, 1, . . .} do
5: for each vehicle v that arrives to the system (at time tc) do
6: (S ← S ∪ v.)
7: Update W to the union of unassigned time slots for which there is at least a

vehicle within the coverage of an RSU.
8: Solve (ILP(E0)) for time slots W using vehicles in S. Algorithm 1 can be

used to solve the ILP.
9: Update the schedule for all RSUs using the solution generated in Step 8.

10: end for
11: Using the current schedule for each RSU, continue RSU-to-vehicle transmission

(at time slot tc). Update the value of Ci to account for the new transmission.
12: Remove vehicles which are served in step 11, from S.
13: end for

if time slot t has been assigned.

3.5.3 2-Approximation Online Algorithm (TOAA) for Split-

table RSU Assignment

In this section we present an online version of Algorithm 1, referred to as the 2-

Approximation Online Algorithm (TOAA). RSU and time slot selection are made for a

newly arrived vehicle based on minimizing both normalized makespan (i.e. maximum

normalized RSU energy), and total time (i.e., total energy). This is computed using

currently available vehicular information and remaining backlog, and is computed

whenever a new vehicle arrives. Recall that this algorithm is for the splittable RSU

assignment case (SRA) and Hj = 1 for all vehicles j. This algorithm is shown in

Algorithm 4 and described in detail as follows.
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Ci is defined as accumulated normalized energy usage of RSU i. S is defined to be

the set of active vehicles currently within the coverage area of RSUs. In step 7, W

is updated to the set of unassigned time slots for which there is at least a vehicle in

the coverage area of an RSU. In step 8 we use these updated inputs to find the best

minimum and a balanced energy time slot assignment by solving the following ILP.

minimize
∑
j∈S

∑
t∈W

∑
i∈M

εi,j,t xi,j,t (ILP(E0))

subject to
∑
t∈W

∑
i∈Mj

xi,j,t = 1 ∀j ∈ S (3.26)

∑
j∈S

xi,j,t ≤ 1 ∀t ∈ W , i ∈M (3.27)

∑
j∈S

∑
t∈W

ε̃i,j,t xi,j,t + Ci ≤ E ∀i ∈M (3.28)

xi,j,t ≥ 0 ∀i ∈M, j ∈ S, t ∈ W (3.29)

xi,j,t = 0 if pi,j,t > t0 (3.30)

Note that (ILP(E0)) is similar to the 2-Approximation Bound that solves the bi-

objective ILP to minimize the makespan and total energy, using currently available

inputs S andW . The objective function is minimizing total energy needed to schedule

vehicles in set S. Constraint (3.26) ensures that vehicle demands are satisfied. Each

time slot for a given RSU can be assigned to a vehicle by constraint (3.27). Taking

into account the accumulated normalized energy usage of the RSUs, constraint (3.28)

places an upper bound on the normalized energy needed to serve vehicles in set S for

each RSU. If Copt and Eopt are the optimal bound for the ILP, Algorithm 1 can be

used to find a schedule with Copt and 2Eopt.
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3.5.4 One-Objective and Bi-Objective Online Scheduling Al-

gorithms

As in Section 3.4.1, we note that our problem can be viewed as an online load-

balancing machine scheduling problem where time is replaced by energy. Based on

this observation, we develop online algorithms for both the splittable (SRA) and

unsplittable (URA) RSU assignment cases. Recall that in the splittable case, Hj = 1

for all vehicles j, and εi,j,t is the energy needed for RSU i communicating with j during

time-slot t. In the unsplittable case, we will abuse notation, and we will also use εi,j,t

to denote the energy needed by RSU i to communicate with j during a set of Hj time-

slots t which have been chosen greedily, i.e., t is the set of Hj most energy-efficient

time-slots available for RSU i. The normalized energies ε̃i,j,t are defined analogously.

Suppose that the vehicles are ordered according to their arrival order, and that

newly arrived vehicle j is being scheduled on RSU i (while vehicles 1, 2, . . . , j−1 have

already been scheduled on RSU’s). Then the load lr(j) on RSU r = 1, 2, . . . ,m after

j vehicles have been scheduled is recursively defined as

lr(j) =

 lr(j − 1) + εr,j,t, r = i

lr(j − 1), otherwise

(obviously we set lr(0) = 0 for all r). The normalized load of RSU i after the

scheduling of j vehicles is defined as l̃i(j) = li(j)/ηi. The two objective functions that

are the objectives of our scheduling problem, given that k vehicles arrive, become:

Min-max: Compute a schedule that minimizes L(k) := maxi l̃i(k).

Total energy: Compute a schedule that minimizes E(k) :=
∑m

r=1 lr(k).
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Note that min-max is a fairness objective doing load-balancing across all RSU’s, so

it uses the normalized loads, while total energy is a quantity that doesn’t depend on

the relative capacities of the RSU’s, and, therefore, uses the regular loads.

Since the vehicles arrive in real time, we design online algorithms that compute a

solution to our scheduling problem while their input arrives in a piece-meal fashion;

this is in contrast to our offline algorithms that assume the whole input is available

from the start, and which we use in order to calculate lower bounds for the online ones.

In this section, we present two online algorithms that are variations of the well-known

algorithm of Aspnes et al. (J. Aspnes and et al., 1997). The One-Objective algorithm

attempts to optimize the min-max objective, and the Bi-Ojective algorithm attempts

to do so with the minimum total energy. Intuitively, every time a new vehicle arrives

and the One-Objective algorithm is run, it attempts to estimate the optimal min-max

value and then make a placement decision for the vehicle requirement that will keep

the schedule close to its estimate. This is done by using an exponential potential

function of the RSU loads. The algorithm returns the updated load and its estimate

of the optimal. The Bi-Objective algorithm still solves the min-max problem like the

One-Objective algorithm does, but, in this case, it also tries to estimate the minimum

total energy needed to achieve the min-max, by doing a binary search over the total

energy “budget” needed to achieve this maximum load.

We present a theoretical analysis of the performance of our One-Objective al-

gorithm, by extending the proofs of (J. Aspnes and et al., 1997) for bounding the

competitive ratio. The competitive ratio is a standard measure of performance for on-

line algorithms and is defined as the worst-case ratio of the objective value achieved
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by the online algorithm over the objective value achieved by the optimal offline algo-

rithm, i.e., the competitive ratio measures the worst (over all possible input sequences)

gap between the solution quality of the online algorithm and that of the optimal all-

knowing offline algorithm. Obviously, the competitive ratio is a pessimistic measure,

and one would expect an online algorithm to do better in practice.

Let A∗ be the offline algorithm that, given a sequence of k vehicles, calculates a

schedule with RSU loads l∗i (k), that minimizes the normalized maximum load L∗(k) =

maxi l̃
∗
i (k), using the minimum possible total energy E ∗(k) =

∑n
i=1 l∗i (k). If A is one

of our online algorithms, and L(k) is the worst maximum RSU load it achieves over

all possible input sequences of length k, then its competitive ratio is L(k)/L∗(k). We

will show that for the One-Objective algorithm, this ratio is bounded by O(logm).

In what follows, the parameters Λ and ∆, such that Λ ≥ L∗ and ∆ ≥ E∗, are

the algorithms’ estimates of min-max and the corresponding optimal total energy,

respectively.

One-Objective Algorithm

The One-Objective algorithm is run every time there is a new arrival j; it takes as

input the current estimate Λ of the min-max L∗ and the current RSU load vector

~l (together with the set of time-slots that are already occupied for every RSU). Its

output is a new estimate as well as a new load vector, after the new arrival has been

scheduled. Note that none of the previous arrivals is rescheduled. Its analysis will use

parameters a, β, γ. Once a has been set, β and γ are also determined, as described

below. The following lemma shows that the competitive ratio for min-max is upper-

bounded by 4β = O(logm), where the factor 4 is due to the fact that the algorithm is
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Algorithm 5 One-Objective(Λ, l)

1: Λ → Estimate of L∗ initialized with min(i,t)εi,1,t
2: β → Designed performance guarantee of the algorithm
3: j → Vehicle currently being scheduled
4: for all i, t do
5: l̄i := li/(Λ ∗ ηi)
6: ε̄i,t := εi,j,t/(Λ ∗ ηi)
7: Γi,t := (al̄i+ε̃i,t − al̄i)
8: end for
9: (i′, t′) = arg min(i,t)Γi,t

10: while (li′ + εi′,j,t′)/ηi′ > βΛ do
11: Λ = 2 ∗ Λ
12: for all i do
13: li := 0
14: end for
15: for all i, t do
16: l̄i := li/(Λ ∗ ηi)
17: ε̄i,t := εi,j,t/(Λ ∗ ηi)
18: Γi,t := (al̄i+ε̃i,t − al̄i)
19: end for
20: (i′, t′) = arg min(i,t)Γi,t
21: end while
22: Schedule vehicle j to RSU i′ at time-slot(s) t′

23: li′ := li′ + εi′,j,t′
24: return (Λ, l)

using the estimate Λ instead of L∗(k) in its calculations. Initially, and assuming that

j is the vehicle that we are scheduling now, Λ = mini,t εi,j,t. We give the description

of the algorithm for the splittable (SRA) case, but the same description, as well as

Theorem 2 that follows, also work for the URA case, if t in the indexing of εi,j,t is

the greedily-chosen set of time-slots reserved on RSU i by the (possibly non-unit)

requirement Hj of vehicle j.

Theorem 2. If L∗ ≤ Λ, then there exists β = O(logm) such that the One-Objective

algorithm produces a valid schedule. Therefore, the load on an RSU never exceeds
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βΛ.

Proof. This is an extension of the proof in (J. Aspnes and et al., 1997). We name the

vehicles using their order in their arrival ordering, i.e., vehicle j is also the j-th vehicle

arrival. In what follows, we define l̄i(j) := li(j)/(Λ ∗ ηi) and ε̄i,t(j) := εi,j,t/(Λ ∗ ηi),

for all vehicles j and all RSU i and (sets of) time-slots t. We define the potential

function

Φ(j) =
m∑
r=1

al̄r(j)(γ − l̄∗r (j)), Φ(0) = mγ, (3.31)

where m is the number of RSUs, and a, γ > 1 are constants to be defined later. If we

assume that vehicle j + 1 is assigned to RSU i′ by the online algorithm and to RSU

i by the offline algorithm, then

Φ(j + 1)− Φ(j) = (γ − l̄∗i′(j))(a
l̄i′ (j+1) − al̄i′ (j))− ε̄i,j+1,ta

l̄i(j+1)

≤ γ(al̄i′ (j)+ε̄i′,j+1,t′ − al̄i′ (j))− ε̄i,j+1,ta
l̄i(j)

≤ γ(al̄i(j)+ε̃i,j+1,t − al̄i(j))− ε̄i,j+1,ta
l̄i(j)

= al̄i(j)(γ(aε̄i,j+1,t − 1)− ε̄i,j+1,t). (3.32)

The first inequality comes from the fact that l̄∗r (j) is non-negative. The last inequality

is true since (i′, t′) = arg min(v,s)(a
l̄v(j)+ε̃v,j+1,s − al̄v(j)).

Inequality 0 ≤ ε̄i,j+1,t ≤ L∗(j + 1)/Λ ≤ 1 is true, since the optimal algorithm

assigns vehicle j + 1 to RSU i at time-slot(s) t. Hence the potential function does

not increase if, for x ∈ [0, 1], we have γ(ax − 1) ≤ x; this is true if we set γ to satisfy

a = 1 + 1/γ. By adding-up (3.32) from 0 to j − 1, we get

m∑
r=1

al̄r(j)(γ − 1) ≤ γm,
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Then

al̄r(j) ≤
m∑
r=1

al̄r(j) ≤ γm

γ − 1
⇒ l̄r(j) ≤ log

γm

γ − 1
, ∀r

which implies that

L(j) = max
i

li(j)

ηi
≤ Λ log

γm

γ − 1
= ΛO(logm). (3.33)

If we pick a, then γ is defined by a = 1 + 1/γ and β by β = loga
γm
γ−1

, so that

Theorem 2 holds.

Theorem 3. The One-Objective algorithm produces a schedule where the competitive

ratio of the min-max energy load on the RSUs is upper bounded by 4 β.

Proof. Theorem 2 gives a bound on the min-max performance of the algorithm for

a series of vehicles scheduled by One-Objective when the upper bound on min-max

energy, Λ, is known and fixed. This information however, will not be given a priori,

and therefore we must use estimates of Λ. The algorithm works by starting at a small

estimate of Λ, and each time we schedule a downlink transmission, we test that the

bound is still valid by ensuring that the updated energy load on the RSU in question

does not exceed βΛ (from Equation (3.33)). Assuming that j is the initial vehicle

to be scheduled at time t, the starting value for Λ is given by mini,t εi,j,t. We refer

to a period of time where Λ remains fixed as a “phase”, and each time the test on

βΛ fails, we double Λ. This is shown in Algorithm 5 in the while loop. When we

enter this loop, a new phase begins and we reset our energy load variables and begin

processing vehicles with the new (doubled) value of Λ.

52



M.A.Sc. Thesis - Amir M. Khezrian McMaster - Electrical Engineering

After all vehicles have been processed, assume that the system finishes while in

phase φ, counting from an initial phase 0. From Theorem 2 we know that in phase

p, the bound on the min-max performance of the algorithm is given by β 2p Λ0 where

Λ0 is the initial value chosen for Λ during phase 0. This is due to the doubling of Λ

at the start of each phase. Therefore, the total bound on competitive ratio is given

by
∑φ

p=0 β 2p Λ0 = β (2φ+1 − 1) Λ0. From Theorem 2 it can be shown that when

entering phase φ, the min-max performance of the optimal offline algorithm must

exceed 2φ−1Λ0, otherwise a new phase would not have started. Combining these last

two results, we see that the competitive ratio of Algorithm 5 is bounded by 4 β.

Bi-Objective Algorithm

Motivated by the exponential potential function approach used in Section 3.5.4,

we modify One-Objective to obtain the Bi-Objective algorithm. Although the Bi-

Objective algorithm uses an exponential decision function as in the One-Objective

algorithm, it also tries to accomplish this with minimum total energy. Initially the

algorithm works exactly as in One-Objective as it sets the current energy budget ∆

to, essentially infinity, and finds the best min-max estimate Λ. Once such a Λ has

been identified, it’s value is held constant, and the algorithm does a binary search on

the total energy budget ∆. The idea is to find the smallest ∆ that maintains Λ as a

good estimate for min-max performance. Initially, and assuming that the vehicle we

are scheduling now is vehicle j, Λ = mini,t εi,j,t and ∆ =
∑m

i=1 ηiβΛ.

As before, we give the algorithm description for the SRA case, but the same

description works for the URA case. Note that since the algorithm performs a binary

search on the estimate ∆, the final ∆ is doubled to account for the case the last step
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of the binary search brings ∆ below E∗. β is defined by β = loga
γ(m+1)
γ−1

, where γ and

a are selected as they were picked for One-Objective.
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Algorithm 6 Bi-Objective(Λ, l)

Λ → Current estimate of L∗ initialized with min(i,t)εi,1,t
∆ → Estimate of E∗ initialized with

∑m
i=1 ηiβΛ

β → Designed performance factor
j → Vehicle currently being scheduled
for all i, t do
l̄i := li/(Λ ∗ ηi)
ε̄i,t := εi,j,t/(Λ ∗ ηi)
l̂i := li/∆
p̂i,t := εi,j,t/∆

Γi,t = (al̄i+ε̄i,t − al̄i) + (a
∑m

r=1 l̂r+p̂i,t − a
∑m

r=1 l̂r)
end for
(i′, t′) = arg min(i,t)Γi,t
while (li′ + εi′,j,t′)/ηi′ > βΛ do

Λ = 2 ∗ Λ
∆ =

∑m
i=1 ηiβΛ

for all i do
li := 0

end for
for all i, t do
l̄i := li/(Λ ∗ ηi)
ε̄i,t := εi,j,t/(Λ ∗ ηi)
l̂i := li/∆
p̂i,t := εi,j,t/∆

Γi,t = (al̄i+ε̄i,t − al̄i) + (a
∑m

r=1 l̂r+p̂i,t − a
∑m

r=1 l̂r)
end for
(i′, t′) = arg min(i,t)Γi,t

end while
while

∑m
r=1 lr + εi′,j,t′ ≤ β∆ do

∆ = ∆/2
for all i, t do
l̂i := li/∆
p̂i,t := εi,j,t/∆

Γi,t = (al̄i+ε̄i,t − al̄i) + (a
∑m

r=1 l̂r+p̂i,t − a
∑m

r=1 l̂r)
end for
(i′, t′) = arg min(i,t)Γi,t
if (li′ + εi′,j,t′)/ηi′ > βΛ then

break
end if

end while
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∆ = ∆ ∗ 2
for all i, t do
l̂i := li/∆
p̂i,t := εi,j,t/∆

Γi,t = (al̄i+ε̄i,t − al̄i) + (a
∑m

r=1 l̂r+p̂i,t − a
∑m

r=1 l̂r)
end for
(i′, t′) = arg min(i,t)Γi,t
Schedule vehicle j to RSU i′ at time-slot(s) t′

li′ = li′ + εi′,j,t′
return (Λ, l)
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Chapter 4

Performance Evaluation

In this chapter we discuss the performance of the proposed algorithms. A wide

variety of experiments have been performed and we will present samples which are

representative of the results that we have obtained. The theoretical bound for min-

max RSU energy consumption as derived in Section 3.3 is referred to as Bound in

the graphs and is compared to the online algorithms discussed in Section 3.5. The

input data to the schedulers is taken from a highway environment where vehicles are

assumed to maintain constant speed throughout the RSU coverage areas (Khabazian

and Ali, 2008) (Hammad et al., 2013). It has been shown that in this type of scenario,

good estimates of energy costs can be readily made (Wang, 2005)(C. Sommer and

Dressler, 2011). The associated energy cost inputs are based on vehicle position

and associated estimates of downlink transmission energy costs. We assume that

the energy costs come from a distance dependent exponential path loss model with

a path loss exponent of α = 3. However, in many practical systems there will be

dominant deterministic propagation with random components due to effects such as

shadowing. Therefore, we also include results which incorporate errors due to strong
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shadowing components. The models used assume Poisson process vehicle arrivals as

in (Wang, 2005), (Khabazian and Ali, 2008) and (Bilstrup et al., 2008). For all the

experiments we assume that M = 4 and that the RSU coverage radius is 1 Km. The

relative energy capacities of the four RSUs are set to 1, .67, .33, and .167, respectively.

Three combinations of RSUs are assumed from the set of all RSUs. When a vehicle

is assigned to one of these subsets, the vehicle demands have to be satisfied by the

RSUs specified within the subset. RSUs (4,3,1), (4,2), and (3,2) form the three RSUs

subsets. Vehicles are assigned to a subset with a uniform distribution. The values

of the points in the graphs are normalized to the first point of the Bound graph in

each figure. Each figure includes a pair of graphs, consisting of plots for maximum

normalized RSU energy, and total RSU energy.

In the first set of results we consider three classes of vehicles with the same arrival

rate but different speeds of 20, 25 and 30 m/s, i.e., vehicles within each class have the

same speed. In these results, 15% of the demands are “bursty” meaning that those

vehicle’s average demands are 20 unit demands higher than the others. To obtain a

mix of traffic conditions, the total simulation time is divided into 5 cycles. In the first

period, vehicle arrival rate is 8/100 vehicles/sec and the following time cycles arrival

rate are 1.4, 0.4, 1.5, and 1.0 times the arrival rate of the first cycle respectively.
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Figure 4.1: Maximum and Total RSU Energy vs. Vehicle Demand. Splittable RSU Assign-
ment (SRA).
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Figure 4.2: Maximum and Total RSU Energy Use vs. Vehicle Demand. Unspilttable RSU
Assignment (URA).
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Figures 4.1 and 4.2 show min-max normalized energy use and total energy used

across the RSUs as a function of varying vehicular demands with the uniform dis-

tribution of U(1, 13) for the SRA and URA cases, respectively. From these figures,

it can be seen that as vehicular demands increase, min-max normalized energy and

total energy increase, as would be expected. This is due to having to serve vehicles

at increasingly less favourable locations as downlink time slot contention increases.

From Figure 4.1, it can be seen that the energy cost of the 2-approximation offline

algorithm is close to the energy cost of the bound obtained from CPLEX for this

input data. It can also be seen that its online version, TOAA, performs close to this

optimum performance, which it is, in part, due to the fact that it reschedules time

slot assignments whenever there is a new vehicle arrival. This increased complexity

is clearly helping the min-max performance of the algorithm. In addition, GFGA

performs well as it reschedules time slot assignments, but, since it makes greedy RSU

selections for load-balancing, its performance is worse than TOAA. In the SRA case

the GOA, 1-, and 2-Objective algorithms perform significantly worse that the bound

especially when vehicle demand is high. The GOA algorithm performs the best of

these three, but it operates with significantly higher total energy use than the other

two. It can be concluded that when vehicle demands can be serviced across multiple

RSUs (i.e., SRA case), the most important factor is to ensure that scheduling is effi-

cient from a normalized energy viewpoint. In the SRA (versus URA) cases that we

have considered, it is generally easier for a sophisticated algorithm to obtain results

which are close to the theoretical minimum min-max energy. However, these algo-

rithms require time slot re-scheduling, which is undesirable from an implementation

viewpoint.
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The situation is quite different when vehicular requests must be assigned to a

specific RSU, i.e., the unsplittable RSU assignment (URA) case shown in Figure 4.2.

This scenario is clearly more difficult from an algorithm complexity perspective, but

it is probably a more desirable feature in practical implementations. When this is the

case, the 2-approximation algorithm and it’s online version (TOAA) are not available.

In the GFGA algorithm, due to the constraint that the URA case imposes and the

greedy RSU selections of the scheduler, the gap between the GFGA algorithm and the

bound is much higher than in the SRA case from both normalized min-max and total

energy viewpoints. It can also be seen that GOA performs significantly worse than

the other algorithms in terms of total energy, and slightly worse than the 1-Objective

algorithm from a min-max normalized energy viewpoint. With respect to total energy,

the performance of the Bi-Objective algorithm is good in comparison with other online

algorithms; however, its performance in terms of min-max normalized energy is not

as good as the scheduling produced by the One-Objective algorithm. This result is

significant in that the best online min-max performance that we obtained (i.e., the

1-Objective algorithm) also performs better than the GOA algorithm from a total

energy viewpoint. It can be seen in Figure 4.2 that the 2-Objective algorithm trades

off normalized min-max energy use for total RSU energy as one would expect.
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Figure 4.3: Maximum and Total RSU Energy Use vs. Vehicle Speed. Splittable RSU
Assignment (SRA).
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Figure 4.4: Maximum and Total RSU Energy Use vs. Vehicle Speed. Unsplittable RSU
Assignment (URA).
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In Figures 4.3 and 4.4 we now show results for the SRA and URA cases, respec-

tively, where there are two classes of vehicles. The first class operates at a speed of

20 m/sec and the speed of the second class is varied over the values 20, 24, 28, and 32

m/sec, which are plotted on the x-axis. The vehicle arrival rates for the two classes

in the SRA and URA cases are 11/100 and 1/10 vehicles/sec, respectively. All other

parameters remain as they were in the first set of experiments. In these figures it can

be seen that both the normalized min-max and total energy increases with vehicular

speed, as one would expect. This is caused by the fact that as vehicle speed increases,

vehicles on average, spend less time in energy favourable locations.

It can be seen from Figure 4.3 that in the SRA case, the TOAA algorithm per-

forms the best from a min-max normalized energy viewpoint as in the previous set of

results. As before, this algorithm achieves results which are very close to the ILP and

2-approximation bounds. Taking advantage of rescheduling, GFGA still performs sig-

nificantly better than the other online algorithms from both min-max normalized and

total energy viewpoints. In this particular case however, the GOA algorithm performs

slightly better than 1-Objective. When splittable RSU assignment is permitted, it is

generally difficult to predict which of these algorithms will perform better in terms

of min-max normalized energy. Interestingly, although the two algorithms are very

similar min-max normalized energy-wise, the GOA algorithm operates with signifi-

cantly higher total energy consumption, so from that point of view the 1-Objective

algorithm is making better overall decisions. It is able to achieve similar min-max

energy performance but with lower overall total energy expenditure.

In the URA case, Figure 4.4, the results are similar to that obtained in the first set

of results. The 1-Objective algorithm achieves the best min-max normalized energy
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and it does not do worse than the GOA algorithm in terms of total energy. In

general we find that, as one would expect, an inefficient schedule in the URA case

incurs larger energy penalties than in the SRA case. We also find that that the gap

between the best online algorithms and the offline bound is much larger for the URA

results. Although we have no way of knowing how tight the ILP bounds are, this

large gap gives us some hint of the complexity of the scheduling problem under the

URA assumption.
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Figure 4.5: Maximum and Total RSU Energy vs. Vehicle Demand. Splittable RSU Assign-
ment (SRA). Shadowing.
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Figure 4.6: Maximum and Total RSU Energy Use vs. Vehicle Demand. Unsplittable RSU
Assignment (URA). Shadowing.
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Figure 4.7: Maximum and Total RSU Energy Use vs. Vehicle Speed. Splittable RSU
Assignment (SRA). Shadowing.
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Figure 4.8: Maximum and Total RSU Energy Use vs. Vehicle Speed. Unsplittable RSU
Assignment (URA). Shadowing.
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In the next set of graphs, the same assumptions hold as in the results presented

thus far, except that the energy cost data that is fed to the schedulers includes

random components. The reason that this is done is to ensure that when scheduler

input data is not ideal, that the algorithms do not produce results which would

be biased in some way, due to this randomness. In the results presented, this was

done by adding propagation shadowing effects to the extracted data, which result in

unpredictable randomness in these estimates. The scheduling is therefore based on

this input, but the actual costs incurred include the energy perturbations due to the

random components. A conventional log-normal shadowing model is used with zero

mean and standard deviation of σ = 4 dB. When uncertainty increases, as one would

expect, the energy cost of the algorithms increase and their schedules are worse than

the case we have an exact prediction of the energy cost. Figures 4.5, 4.6, 4.7 and 4.8

are the experiments corresponding to Figures 4.1, 4.2, 4.3 and 4.4 from before.

Comparing these sets of graphs with the previous ones clearly show that GOA,

GFGA, and TOAA total RSU energy usage can often be about twice that for the pre-

vious cases, and over 20% higher for the Bi-Objective and One-Objective algorithms

(Figures 4.5, 4.6). The comparisons are similar for the max RSU energy results. As

one would expect, the introduction of random components into the input data results

in poorer scheduling decisions, as was noted in (Hammad et al., 2013). However,

other than creating a greater split between the performance of the algorithms, it can

be seen that the relative algorithm performance is the same as it was previously.

Figure 4.6 shows that the same argument is true for the URA case. The gap

between the GOA algorithm and both the One-Objective and Bi-Objective algorithms

increases as uncertainty is added to the system, which shows that these two algorithms

71



M.A.Sc. Thesis - Amir M. Khezrian McMaster - Electrical Engineering

are low-penalty schedulers.

Figures 4.5, 4.6, 4.7 and 4.8 also show that the performance of the online algo-

rithms compared with the Bound are much less favourable when there are random

components in the energy cost data inputs to the schedulers. This is to be expected

since the scheduling decisions are based on less accurate information. In Figure 4.7

for example, TOAA is about 400% higher than the bound at the highest speed value,

compared with almost exactly matching the bound from Figure 4.3. Overall, in the

URA case, the better behavior of both the One-Objective and Bi-Objective algo-

rithms over GOA can clearly be seen. It can also be concluded that when there is

uncertainty in the energy cost predictions, the GOA algorithm energy cost growth is

more than other algorithms.
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Chapter 5

Conclusions

In this thesis we have considered the issue of low complexity energy efficient schedul-

ing in vehicular networks when there are multiple roadside units (RSUs) in tandem.

The objective is to minimize energy use as much as possible while load balancing

the normalized energy costs across the roadside units. The thesis considered both

the splittable (SRA) and unsplittable (URA) RSU assignment cases. In SRA, down-

link communication requests can be split across multiple RSUs, whereas, in URA, a

single RSU must satisfy the request. An offline integer linear program was derived

which provides a lower bound for the normalized min-max RSU energy usage. For

the splittable RSU assignment case, a polynomial complexity 2-approximation bound

for the normalized min-max energy schedule was introduced. Low complexity online

scheduling algorithms were then introduced. The Greedy Online Algorithm makes

greedy RSU selections followed by minimum energy time slot assignments. The sec-

ond, the Greedy Flow Graph Algorithm (GFGA), makes the same RSU selection but

reassigns time slots whenever a new vehicle is assigned to the same RSU, using a

minimum cost flow graph scheduler. An algorithm was then proposed (TOAA) which
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is an online version of the 2-approximation bound for the SRA scheduling case. Two

low complexity algorithms were then introduced using a potential function scheduling

approach. The One-Objective algorithm, uses an objective based on normalized min-

max energy. This algorithm was shown to have provable performance guarantees, i.e.,

its worse-case competitive ratio compared with the lower bound is upper bounded.

The second, the Bi-Objective algorithm, uses the same objective, but combined with

a total energy secondary objective.

Results from a variety of experiments show that the proposed scheduling algo-

rithms perform well. In particular, we find that in the SRA case, the TOAA algorithm

performs very close to the lower bound, but at the expense of having to reassign time

slots whenever a new vehicle arrives, which is undesirable in many practical scenarios.

In the URA case, our low complexity One-Objective algorithm performs better than

the others over a wide range of traffic conditions. Since the Bi-Objective algorithm

also tries to minimize the total energy usage, its performance in min-max normalized

energy is not as good, but it is still better than GOA in the URA case.

In this thesis, energy load-balancing in a tandem of RSUs has been considered

from a normalized energy point of view. However, it was assumed that the vehicle

requirements are delay tolerant which may not always be the case. In some cases, such

as in safety applications, time constraints play a significant role, and it is necessary to

consider real-time deadlines. In some applications a level of QoS is required and if it is

not guaranteed, the provided service may not be feasible. While power consumption

was the focus of this thesis, other performance metrics, such as QoS, service ratio

and throughput, can be used to evaluate the scheduling algorithms. These could be

considered in future work.
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