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A Fast Iterative Bayesian Inference Algorithm

for Sparse Channel Estimation

Niels Lovmand Pedersen, Carles Navarro Manchón and Bernard Henri Fleury

Department of Electronic Systems, Aalborg University

Niels Jernes Vej 12, DK-9220 Aalborg, Denmark, Email: {nlp,cnm,bfl}@es.aau.dk

Abstract—In this paper, we present a Bayesian channel estima-
tion algorithm for multicarrier receivers based on pilot symbol
observations. The inherent sparse nature of wireless multipath
channels is exploited by modeling the prior distribution of
multipath components’ gains with a hierarchical representation
of the Bessel K probability density function; a highly efficient,
fast iterative Bayesian inference method is then applied to
the proposed model. The resulting estimator outperforms other
state-of-the-art Bayesian and non-Bayesian estimators, either by
yielding lower mean squared estimation error or by attaining the
same accuracy with improved convergence rate, as shown in our
numerical evaluation.

I. INTRODUCTION

The accuracy of channel estimation is a crucial factor de-

termining the overall performance in wireless communication

systems and networks, in terms of bit-error-rate (BER) and

throughput but also of location accuracy when these systems

are equipped with positioning capabilities. When the underly-

ing structure of the channel responses to be estimated is sparse,

compressive sensing and sparse signal representation can be

very powerful tools for the design of channel estimators.

Compressive sensing techniques have attracted considerable

attention in recent years due to their ability to be incorporated

in a wide range of applications. Typically, the signal model

considered reads

y = Φα+w (1)

where y ∈ CM×1 is the measurement vector and Φ =
[φ1, . . . ,φL] ∈ CM×L is the known dictionary matrix with

L > M column vectors φl, l = 1, . . . , L. The vector

w ∈ CM×1 represents the samples of additive white Gaussian

noise with covariance matrix λ−1I and precision parameter

λ > 0. Finally, α = [α1, . . . , αL]
T ∈ C

L×1 is the vector of

weights whose entries are mostly zero. By obtaining a sparse

estimate of α we can accurately represent Φα with a minimal

number of column vectors in Φ.

In the literature many Bayesian and non-Bayesian methods

have been proposed for sparse signal representation. The latter

methods include the very popular convex optimization based

(c) 2013 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other users, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective
works for resale or redistribution to servers or lists, or reuse of any copyrighted
components of this work in other works.

methods for LASSO regression [1], [2] and greedy construc-

tive algorithms such as orthogonal matching pursuit (OMP)

[3] and compressive sampling MP (CoSaMP) [4]. In sparse

Bayesian learning (SBL) [5], [6], a prior probability density

function (pdf) p(α) is specified so that a sparse estimate α̂

is obtained. A widely applied SBL algorithm is the relevance

vector machine (RVM) [5], where a hierarchical representa-

tion1 of the student-t pdf is used for the prior pdf p(α). An

EM algorithm is then derived based on this prior model for the

estimation of the weights. Similarly, [7] uses the EM algorithm

based on a hierarchical representation of the Laplace pdf.2 This

algorithm can be seen as the Bayesian version of the LASSO

estimator. Though the sparse Bayesian inference algorithms

proposed in [5] and [7] are guaranteed to converge, they are

also known to suffer from high computational complexity and

low convergence rate - many iterations are needed before

they terminate. To circumvent this, a fast Bayesian inference

algorithm, known as Fast-RVM, is proposed in [10]. Following

this approach, the Fast-Laplace algorithm is formulated in [8].

However, even though the algorithms in [10] and [8] do lead

to faster convergence than their EM counterparts in [5] and

[7], they still suffer from slow convergence especially in low

and moderate signal-to-noise ratio (SNR) regimes as we show

in this paper.

The estimation of the wireless channel is a practical example

where compressive sensing techniques are utilized. The reason

is that the response of the wireless channel typically holds

a few dominant multipath components and therefore has the

characteristic of being sparse [11]. When sparse channel

models are assumed it seems natural to use tools available

from compressive sensing and sparse signal representation

to estimate the parameters of said channel models. LASSO

regression, OMP, and CoSaMP have been widely applied to

the problem of pilot-assisted channel estimation in orthogo-

nal frequency-division multiplexing (OFDM), cf., [12]–[14].

Bayesian methods have also been previously proposed for

wireless communication systems. Examples include the esti-

mation of the dominant multipath components in the response

of wireless channels [15] and joint channel estimation and

1The hierarchical representation involves specifying a conditional prior pdf
p(α|γ) and a hyperprior pdf p(γ).

2Note that the hierarchical representation of the Laplace pdf used in [7] and
[8] is only valid for real-valued variables. In [9], we extend this representation
to cover complex-valued variables as well.



decoding for clustered sparse channels [16]. In [17], we have

proposed a variational Bayesian inference algorithm for the

estimation of the wireless channel in OFDM. The resulting

estimator, however, suffers from the same complexity and

convergence rate issues as those in [5] and [7].

In this paper, we present a fast iterative sparse Bayesian

estimation algorithm for pilot-assisted channel estimation in

OFDM wireless receivers. We follow the fast inference frame-

work outlined in [10] based on the hierarchical prior model

of the Bessel K pdf for sparse estimation that we propose in

[9], [17]. Our estimator drastically increases the convergence

speed compared to similar algorithms such as Fast-RVM and

Fast-Laplace with no penalization in performance and achieves

favorable BER and mean-squared error (MSE) performance as

compared to both Bayesian and non-Bayesian state-of-the-art

methods.

II. SYSTEM DESCRIPTION

A. OFDM Signal Model

We consider a single-input single-output OFDM system

with N subcarriers. A cyclic prefix (CP) is added to eliminate

inter-symbol interference between consecutive OFDM blocks

and the channel response is assumed static during the trans-

mission of each OFDM block. The received baseband signal

r ∈ C
N for a given OFDM block reads

r = Xh+ n. (2)

The diagonal matrix X = diag(x1, x2, . . . , xN ) contains the

complex-modulated symbols. The entries in h ∈ C
N are the

samples of the channel frequency response at all N subcar-

riers. Finally, n ∈ CN is a zero-mean complex symmetric

Gaussian random vector whose entries are independent with

variance λ−1.

Let the pilot pattern be characterized by the set P ⊆
{1, . . . , N} containing the indices of subcarriers reserved for

pilot transmission. The received signals observed at the pilot

positions rP = [rn : n ∈ P ]T are then divided each by their

corresponding pilot symbol in XP = diag(xn : n ∈ P) to

produce the vector of observations

y , (XP)
−1rP = hP + (XP)

−1nP (3)

where hP and nP are defined analogously to rP . We assume

that all M , |P| < N pilot symbols hold unit power so that

the statistics of the noise term (XP)
−1nP remain unchanged.

We consider a frequency-selective, block-fading wireless

channel with impulse response modeled as a sum of multipath

components:

g(τ) =

K∑

k=1

βkδ (τ − τk) . (4)

In this expression, βk and τk are respectively the complex

weight and the (continuous) delay of the kth multipath com-

ponent, K is the total number of multipath components, and

δ(·) is the Dirac delta function. The channel parameters βk,

τk, and K are all random variables and may vary from the

transmission of one OFDM block to the next. Additional

details regarding the assumptions on the channel model are

provided in Section IV.

By using the parametric model (4) of the channel, we can

rewrite (3) as

y = T (τ )β +w (5)

with hP = T (τ )β, w = (XP)
−1nP , β = [β1, . . . , βK ]T,

τ = [τ1, . . . , τK ]
T

, and T (τ ) ∈ CM×K with entries

T (τ )m,k , exp (−j2πfmτk) ,
m = 1, 2, . . . ,M

k = 1, 2, . . . ,K
(6)

where fm denotes the frequency of the mth pilot subcarrier.

B. Compressive Sensing Signal Model

In order to apply sparse representation methods for the

estimation of h in (2), we must first recast the signal model in

(5) into the form of (1). The main limitation to do so is that

the delay entries in τ are, a priori, unknown at the receiver.

To circumvent this, we consider a grid of uniformly-spaced

delay samples in the interval [0, τmax]:

τ d =
[
0,

Ts

ζ
,
2Ts

ζ
, . . . , τmax

]T
(7)

with ζ > 0 such that ζτmax/Ts is an integer. The symbols

τmax and Ts denote respectively the maximum excess delay

of the channel and the sampling time. The dictionary matrix

Φ ∈ CM×L is now defined as Φ = T (τ d). Thus, the

entries of Φ are of the form (6) with argument τ d. The

number of columns L = ζτmax/Ts + 1 in Φ is thereby

inversely proportional to the selected delay resolution Ts/ζ.

The selection of τ d impacts the dimension of α. By assuming

a vector α with many more entries than the number of

multipath components, we expect most of the entries in α

to be zero. Therefore, we use compressive sensing techniques

to obtain sparse estimates of α.

Notice that the signal model (1) with Φ = T (τ d) is an

approximation of the true signal model (5). The estimate of

the channel vector at the pilot subcarriers is then ĥP = Φα̂.

In order to estimate the full channel h in (2) the dictionary Φ

is appropriately expanded to include a row corresponding to

each of the N subcarrier frequencies. Thus, ĥ = Φ
fullα̂ with

Φ
full
n,l , exp (−j2πfnτdl

) ,
n = 1, 2, . . . , N

l = 1, 2, . . . , L
(8)

where fn denotes the frequency of the nth subcarrier.

III. BAYESIAN INFERENCE LEARNING

We now present the iterative sparse Bayesian inference

algorithm for channel estimation proposed in this paper. First,

we detail the hierarchical prior model leading to the Bessel K

pdf for each entry of α. Based on this model, we apply a fast

Bayesian algorithm to estimate the unknown model parame-

ters. Finally, we briefly comment on the relationship between

our algorithm and other similar state-of-the-art approaches.



A. The Probabilistic Model

Instead of working directly with the prior pdf p(α), in

the SBL framework, p(α) is usually modeled using a two-

layer hierarchical prior model involving a conditional prior

pdf p(α|γ) and a hyperprior pdf p(γ). With this design, the

resulting probabilistic model for signal model (1) is given by

p(y,α,γ, λ) = p(y|α, λ)p(λ)p(α|γ)p(γ)

= p(y|α, λ)p(λ)

L∏

l=1

p(αl|γl)p(γl). (9)

Due to (1), p(y|α, λ) is multivariate Gaussian: p(y|α, λ) =
CN(y|Φα, λ−1I).3 For the noise precision λ, we select a

constant prior, i.e., p(λ) ∝ 1.

The design of the factors p(αl|γl) and p(γl) for each

weight αl heavily influences the sparsity-inducing property

of the prior model. We adopt the hierarchical structure of the

Bessel K pdf, where the first layer is defined as p(αl|γl) =
CN(αl|0, γl) and the second layer is selected to be p(γl) =
Ga(γl|ǫ, η). With these choices, we compute the marginal pdf

p(αl; ǫ, η) =
2η

ǫ+1

2

πΓ(ǫ)
|αl|ǫ−1Kǫ−1(2

√
η|αl|). (10)

In this expression, Kν(·) is the modified Bessel function of

the second kind and order ν ∈ R. The parameter ǫ determines

the sparsity-inducing property of the Bessel K pdf [9]. The

selection ǫ = 0 greatly enforces sparseness on the estimate

as more probability mass concentrates around the origin.

As a consequence, the mode of the resulting posterior pdf

p(α|y, ǫ, η) is more likely to be found close to the axes.

However, selecting a too high ǫ (ǫ ≥ 1) may lead to over-

fitting and thereby non-sparse results. Thus, this parameter

has a similar functionality as the parameter p in the FOCUSS

algorithm [18].

B. Fast Iterative Bayesian Inference

Given fixed estimates γ̂ and λ̂, the posterior pdf

p(α|y, γ̂, λ̂) is a multivariate Gaussian, i.e., p(α|y, γ̂, λ̂) =

CN
(
α|µ̂, Σ̂

)
with

Σ̂ =
(
λ̂ΦH

Φ+ Γ̂
−1

)−1

, (11)

µ̂ = λ̂Σ̂Φ
Hy (12)

where Γ̂ = diag(γ̂1, . . . , γ̂L). The hyperparameters γ and λ
are estimated by maximizing [5], [6]

L(γ, λ) = log(p(y|γ, λ)p(γ)p(λ)). (13)

The cost function (13) can be iteratively maximized using the

EM algorithm by noting that α and y are complete data for

γ and λ. Following the classical EM formulation, the E-step

3Here, CN(·|a,B) denotes a complex Gaussian pdf with mean vector
a and covariance matrix B. We shall also make use of Ga(·|a, b) =
b
a

Γ(a)
xa−1 exp(−bx), which denotes a gamma pdf with shape parameter a

and rate parameter b.

equivalently computes (11)-(12) and the M-step computes

γ̂l =
(ǫ − 2) +

√
(ǫ − 2)2 + 4η〈|αl|2〉

2η
, l = 1, . . . , L, (14)

λ̂ =
M

〈‖y −Φα‖22〉
. (15)

The expectation 〈·〉 in the above expressions are evaluated

with respect to the posterior pdf p(α|y, γ̂, λ̂), where γ̂ and λ̂
are the estimates computed in the previous iteration. After an

initialization procedure, the individual quantities in (11)–(12)

and (14)–(15) are iteratively updated until convergence.

The above EM algorithm suffers from two main disad-

vantages: high computational complexity of the update (11)

and low rate of convergence. In order to overcome the first

drawback a greedy procedure as in [10] can be adopted: as

most of the entries in α are mostly zero, one may start

out with an “empty” dictionary matrix and incrementally fill

the dictionary by adding column vectors. To circumvent the

drawback of low convergence rate, we compute the stationary

points of the EM update γ̂l in (14). For this, we fix γ̂k,

k 6= l at their current estimates, while computing a sequence of

estimates {γ̂[t]
l }Tt=1 according to (14) for T → ∞.4 In this way,

we update the estimates of the components in {γ̂1, . . . , γ̂N}
sequentially, instead of jointly. The generalized EM framework

justifies this modification. As shown in [9], γ̂
[∞]
l corresponds

in fact to the (local) extrema of

ℓ(γl) = L(γl, γ̂−l, λ̂) = − log |1 + γlsl|

+
|ql|2

γ−1
l + sl

+ (ǫ − 1) log γl − ηγl + c (16)

with c being a constant encompassing the terms independent

of γl and the definitions sl , φ
H
l C

−1
−lφl, ql , yHC−1

−lφl, and

C = λ̂−1I +
∑

k 6=l γ̂kφkφ
H
k + γlφlφ

H
l = C−l + γlφlφ

H
l .5

Note that the definition domain of ℓ(γl) is R+. Now, taking the

derivative of ℓ(γl) with respect to γl and equating the result

to zero yields the cubic equation

0 = ηs2l γ
3
l + γ2

l [2ηsl − (ǫ − 2)s2l ]

+ γl[η + (3 − 2ǫ)sl − |ql|2]− (ǫ − 1). (17)

In general (17) has three solutions when γl ranges through R.

These can be determined analytically with a feasible solution

for γl constrained to be positive. The analysis of the sparsity-

inducing property of the Bessel K pdf in [9] shows that we

should select ǫ small. When ǫ < 1, (17) has at least one

negative solution as −(ǫ− 1) > 0. Therefore, (17) has either

no real positive solution or two real positive solutions γ̂
(i)
l

and γ̂
(ii)
l . In the former case, no feasible solution to ℓ(γl)

exists and the corresponding column vector φl is not added

to the dictionary. In the latter case, we simply select γ̂
(i)
l if

ℓ(γ̂
(i)
l ) > ℓ(γ̂

(ii)
l ) and γ̂

(ii)
l otherwise.

We follow the approach in [10] and realize the proposed

4Notice that 〈|αl|
2〉 in (14) is a function of γ̂l as seen from (11) and (12).

5For the derivation of ℓ(γl), we exploit that p(y|γ, λ̂) is Gaussian with

mean zero and covariance matrix C = λ̂−1I +ΦΓΦ
H.
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Fig. 1. Performance comparison of the different algorithms: we have M = 100, L = 200, and 〈K〉 = 10. In (c) the SNR is fixed at 5 dB, 10 dB, and 15
dB.

fast iterative Bayesian inference algorithm by computing each

γ̂l, l = 1, . . . , L, and selecting the one γ̂l that gives rise to the

greatest increase in ℓ(γ̂l) between two consecutive iterations.

Depending on the new value γ̂l, we may then add, delete, or

keep the corresponding column vector φl in the dictionary. The

quantities Σ̂, µ̂, and λ̂ are updated using (11), (12), and (15)

together with the computation of sl and ql, l = 1, . . . , L. The

computational complexity of each iteration is O(LMK̂) when

K̂ < M < L, where K̂ is the number of nonzero components

in µ̂. If λ̂ is not updated between two consecutive iterations,

Σ̂, µ̂, sl, and ql can be updated efficiently according to the

update procedures in [10]. In this case the cost in complexity

is only O(LM). We refer to the proposed algorithm as Fast-

BesselK.

C. Fast-RVM and Fast-Laplace

The Fast-BesselK algorithm described in Section III-B is

parametrized by ǫ and η. In the following, we will show how,

by appropriately setting these parameters, we can obtain Fast-

RVM [10] and Fast-Laplace [8] as particular instances of Fast-

BesselK. For Fast-RVM, the estimation of γl relies on the

maximization of the likelihood p(y|γl, γ̂−l, λ̂), i.e., a constant

prior is assumed for the hyperprior, p(γl) ∝ 1. Hence, by

selecting ǫ = 1 and η = 0 we obtain the cost function ℓ(γl)
used in [10]. In case of Fast-Laplace [8], the exponential

pdf is selected for p(γl). As the gamma pdf reduces to the

exponential pdf by choosing its shape parameter ǫ = 1, we

obtain ℓ(γl) used in [8] from this choice.

IV. NUMERICAL RESULTS

We perform Monte Carlo simulations to evaluate the per-

formance of Fast-BesselK derived in Section III. We consider

a scenario inspired by the 3GPP LTE standard [20] with the

settings specified in Table I. In all investigations conducted

we fix the spectral efficiency of κ , Md(N − M)R/N =
0.92 information bits per subcarrier, which corresponds to

a rate R = 1/2 code. We note that we employ a rate-1/3

convolutional code and use puncturing in order to increase

the spectral efficiency. Unless otherwise specified, M = 100
evenly-spaced pilot symbols are used.

TABLE I
PARAMETER SETTINGS FOR THE SIMULATIONS.

Sampling time, Ts 32.55 ns

CP length 4.69 µs / 144 Ts

Subcarrier spacing 15 kHz

Pilot pattern Evenly spaced, QPSK

Modulation QPSK (Md = 2)

Subcarriers, N 1200

OFDM symbols 1

Information bits 1091

Channel interleaver Random

Convolutional code (133, 171, 165)8
Decoder BCJR algorithm [19]

The multipath channel (4) is based on the model used

in [21] where, for each realization of the channel, the total

number of multipath components K is Poisson distributed

with mean 〈K〉 = 10 and the delays τk, k = 1, . . . ,K , are

independent and uniformly distributed random variables drawn

from the continuous interval [0, 144 Ts]. Conditioned on τk,

k = 1, . . . ,K , the weights βk, k = 1, . . . ,K , are independent,

and weight βk has a zero-mean complex circular symmetric

Gaussian distribution with variance σ2(τk) = u exp(−τk/v)
and parameters u, v > 0.6 In this way {τk, βk} form a marked

Poisson process.

For Fast-BesselK, we set ǫ = 0.5 and η = 1 in all

investigations. We empirically observed that this is a proper

selection of parameters for channel models with both few and

numerous multipath components. Fast-BesselK is compared to

two Bayesian methods, Fast-RVM [10]7 and Fast-Laplace [8]8.

For these three algorithms the noise precision λ is estimated

at every third iteration with the initialization Var(y)/100 [10].

The stopping criterion is based on the difference in ℓ(γ̂l)
between two consecutive iterations [22]. Two non-Bayesian

methods, LASSO and OMP, are also included for comparison.

For LASSO, we use the sparse reconstruction by separable

6The parameter u is computed such that 〈
∑

K

k=1 |βk|
2〉 = 1. In the

considered simulation scenario, 〈K〉 = 10, τmax = 144 Ts, and v = 40 Ts.
7The software is available at http://people.ee.duke.edu/~lcarin/BCS.html.
8The software is available at http://ivpl.eecs.northwestern.edu/.
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Fig. 2. Performance comparison of the different algorithms: unless otherwise specified, M = 100, L = 200, and 〈K〉 = 10. In (b)-(d) the SNR is 15 dB.
The dashed gray curve in (a) corresponds to 〈K〉 = 10.

approximation (SpaRSA) algorithm [23]9. The required reg-

ularization parameter is chosen as 5
√
log(L)/λ [24], which

has been empirically observed to provide satisfactory results.

For OMP, an a priori estimate of the sparsity of α needs to

be set. In all investigations we use 〈K〉 + 10. Finally, the

commonly employed robustly designed Wiener filter (RWF)

[25] for OFDM channel estimation is used as a reference.

Unless otherwise specified, we set the number of rows in

Φ to M = 100 (pilot subcarriers) and the number of columns

in Φ to L = 200, which corresponds to a delay resolution of

Ts/ζ = 0.72 Ts. The performance versus SNR is compared in

Figs. 1(a)-1(b). From Fig. 1(a), we see that Fast-BesselK and

Fast-Laplace outperform the other algorithms in terms of BER

across all the SNR range considered. Specifically, at 1 % BER

the gain is apporiximatly 1 dB over Fast-RVM, LASSO, and

OMP and 2 dB over RWF. Fig. 1(b) shows how Fast-BesselK

yields a lower MSE than the other algorithms. Surprisingly,

the improved performance in MSE achieved by Fast-BesselK

does not lead to a better BER performance when compared to

Fast-Laplace.

The convergence speed of the Bayesian iterative algorithms

is shown in Fig. 1(c). Here, Fast-BesselK achieves a remark-

able improvement compared to Fast-RVM and Fast-Laplace

with MSE values converging in about 10-30 iterations. As

Fig. 1(c) shows, there is no guarantee that the MSE is reduced

at each iteration, due to the objective function (13). Fast-RVM

and Fast-Laplace suffer a significant increase in MSE after

a certain number of iterations; this drawback is significantly

mitigated in the case of Fast-BesselK. The superior conver-

gence speed of Fast-BesselK can be explained by observing

Figs. 2(a)-2(b). Fig. 2(b) shows that the improvement in

convergence rate comes as the Besssel K prior can handle

channels with few multipath components better (i.e., yields

lower MSE). As a consequence, the other methods tend to add

more column vectors to the dictionary matrix, thus, increasing

the number of add, delete, and reestimate iterations as seen

from Fig. 2(a).

Fig. 2(c) shows the MSE versus the number of pilots M .

We observe that, for a given MSE performance, Fast-BesselK

is able to significantly reduce the required pilot overhead.

In particular, Fast-BesselK achieves an MSE on pair with

9The software is available on-line at http://www.lx.it.pt/~mtf/SpaRSA/

LASSO, OMP, and RWF using less than half the number of

pilots. Finally, in Fig. 2(d) we evaluate the MSE performance

versus available delay resolution determined by the number

of columns L in Φ (cf., Section II).10 Several observations

are worth being noticed. Fast-BesselK leads to a noticeable

MSE performance gain as the delay resolution improves as

opposed to the other algorithms. In fact, it appears that, besides

Fast-BesselK, only OMP is able to exploit the improved delay

resolution. The reason for this is that LASSO, Fast-RVM, and

Fast-Laplace produce a solution ĥP = Φα̂ with an increasing

number of nonzero components K̂ in α̂ when increasing L
(there are simply more column vectors in Φ to be added or

deleted). Thus, these algorithms also require an increasing

amount of iterations to be run as opposed to Fast-BesselK

(results not shown).

V. CONCLUSION

In this work, we presented a fast iterative Bayesian infer-

ence channel estimation algorithm based on the hierarchical

Bayesian prior model of the Bessel K probability density

function. Following the framework for fast Bayesian inference

in [10], we proposed an algorithm that significantly lowers

the number of needed iterations as compared to state-of-

the-art Bayesian inference methods with no penalization in

performance. This improvement in convergence rate is directly

related to the Bessel K prior’s ability to handle channels

with few multipath components better than other commonly

employed prior models. Furthermore, our algorithm shows

improved performance when compared to both Bayesian and

non-Bayesian state-of-the-art methods.
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