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Abstract—In this paper, outage performance of network
topology-aware distributed opportunistic relay selection strate-
gies is studied with focus on the impact of different levels of
channel state information (CSI) available at relays. Specifically,
two scenarios with (a) exact instantaneous and (b) only statistical
CSI are compared with explicit account for both small-scale
Rayleigh fading and path loss due to random inter-node dis-
tances. Analytical results, matching closely to simulations, suggest
that although similar diversity order can be achieved in both
cases, the lack of precise CSI to support relay selection translates
into significant increase in the power required to achieve the same
level of QoS. In addition, when only statistical CSI is available,
achieving the same diversity order is associated with a clear
performance degradation at low SNR due to splitting of system
resources between multiple relays.

I. I NTRODUCTION

A. Motivation and related work

Cooperative relaying has been recognized as a cost-effective
alternative to achieve diversity/multiplexing gains, by forming
a virtual multi-antenna system from multiple single-antenna
nodes. However, this reduction in requirements for individual
nodes comes at a price of additional coordination overhead
for the communication system. Capable of reducing such
overhead, opportunistic relaying has been proposed in [1],
as a technique that instead of coordinated transmission by
k relays utilizes only one relay with the best connection to
the destination node. Such approach removes the need for
tight coordination, while delivering the same diversity order
and enabling distributed relay selection implementation,for
instance, using timer-based methods.

For the original opportunistic relaying in [1], each relay
needs an accurate estimate of current state of the channel
between itself and the destination. Due to random channel
fluctuations and additional complexity, imposed by the require-
ment to deliver CSI to transmitters, active research efforts have
been concentrated on the analysis and design of opportunistic
relaying with less dependence on precise CSI feedback. For
example, the impact of available CSI on outage performance
has been studied in [2] for the cases when the source node has
access to different levels of information about the source-relay-
destination path. In [3], a two-hop decentralized opportunistic
relaying strategy with only local incoming CSI at receiversand
index-valued CSI feedback at transmitters has been proposed

and analyzed. Authors show that for a network ofn source-
destination pairs andm half-duplex non-cooperating relays,
throughput ofm/2 bps/Hz can be delivered through multiuser
diversity. The impact of outdated CSI has been recently studied
for opportunistic DF relaying in [4].

However, current solutions generally rely on modeling of
the fluctuation in inter-node links by small-scale fading only,
without explicit account for propagation path loss due to
spatial separation of communicating nodes. One common
approach to incorporate the effect of path loss into the system
model is to link the variance of small-scale fading with static
inter-node distance [5, p.73]. Another approach is to explicitly
account for the random node placement in the network, i.e.
to account for network topology. Analytical basis for such
approach can be developed using stochastic geometry methods
[6]. In [7] decentralized relay selection schemes for AF
opportunistic relaying have been considered for the scenario
where relays have access local-only CSI. However, only the
special case of the destination located in the far-field was
considered in [7], so that the distance from the destination
to all cooperating nodes was assumed to be identical.

The aim of this paper is to assess the impact of the level of
available CSI on outage performance of a cooperative system
with account for spatial dimension. Specifically, we consider
two cases where relays have access to (a) exact instantaneous
local CSI, both for the source-relay and for relay-destination
links; and (b) exact instantaneous CSI for incoming links and
only statistical CSI for the relay-destination links, which can
be translated into ordering of relays with respect to distance
to the destination. Note that relays operate in a distributed
fashion, with no information exchange between relays. Differ-
ent from [1], [2], we take into account inter-node distances
and randomness in node locations, such that the choice of
the best relay now depends on signal attenuation due to
propagation over random distance. On the other hand, arbitrary
respective locations of the destination and cooperating relays
are considered, such that the scenario in [7] can be viewed as
a special case.

B. Contributions and organization

Contributions of this paper are twofold. First, we compare
the effects of different levels of CSI available to relays and
highlight the cost of limited CSI on required power consump-
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Fig. 1. Illustration of system setup: the BS at the center of the cellW aims
to communicate with a destination through one ork randomly distributed
relays.

tion to achieve certain QoS. Second, for the scenario with sta-
tistical CSI, we provide a tractable analytical framework based
on stochastic geometry, that accurately captures performance
of such random cooperative system. This paper is organized
as follows. Network model, transmission strategy and CSI
assumptions are presented in Section II. Distributed relay
selection strategies based on these assumptions are analyzed
in Section III. Outage performance results are presented and
discussed in Section IV and Section V concludes the paper.

II. SYSTEM MODEL

A. Network model

We consider a circular cellW of radius R with a base
station (BS) acting as sources at the cell center, one desti-
nation d at distancerd from the BS and multiple randomly
distributed relays constituting a realization of a homogeneous
Poisson point process (PPP)Φl(W ) = {x1, . . . , xl, . . . , xL}
with intensity λl. The number of relaysL = |Φl(W )| in a
realization of the point process is Poisson-distributed as

Pr(|Φl(W )| = L) = e−Λl(W ) (Λl(W ))L

L!
, (1)

where Λl(W ) =
∫

W

λl(w)dw is the intensity measure of

Φl(W ), andλl(w) is the intensity function of the process at
some locationw in the cellW . Fig. 1 illustrates the setup.

B. Signal model

Two time slot model is considered, as in [1]. In the first
time slot, the BS broadcasts a message, and all candidate

relays inΦl(W ) listen. Direct link between the source and
the destination is assumed to be unavailable. The signalul

received by the relayxl ∈ Φl(W ) can be written as

ul =

√

Ps

1 + rαsl
h∗

slm+ wl, (2)

wherePs is the source transmission power,hsl is the complex
baseband Rayleigh fading coefficient,rsl is the distance be-
tween the source and the relayxl, α is path loss exponent,m
is the transmitted message andwl is additive white Gaussian
noise with varianceσ2

l .
The probabilitypl of successful reception of the source

signal at the relayxl at a particular locationrsl can be
expressed as

pl = Pr

(
|hsl|2

1 + r2sl
≥

22R − 1

Ps/σ2
l

)

= Ersl

{

e−θl(1+rαsl)
}

,

(3)
where R is required data rate,θl =

(
22R − 1

)
/
(
Ps/σ

2
l

)

is the threshold for correct decoding at the relay, and the
expectation is taken with respect to the random distancersl
from the source to the relay. The relays that are able to decode
the source messagem form a PPPΦj of relays qualified for
retransmission:

Φj(W ) =

{

xl ∈ Φl(W ) :
|hsl|2

1 + rαsl
≥ θl

}

. (4)

Depending on available CSI at the relay and specific re-
transmission strategy for the second time slot, either one or
k relays will retransmit source message under the total power
constraint ofPs for the cooperative phase. Whenk relays are
scheduled for retransmission, equal power allocation between
relays is considered, such that each relay retransmits with
power Pk = Ps/k. Moreover, since the case of multiple
retransmitting relays will requirek channel uses, each relay
transmission must run at the rate ofRk = kR. Therefore, the
threshold for correct decoding at the destination for the case
of statistical CSI at relays is

θk =
k
(
2(1+k)R − 1

)

Ps/σ2
l

, (5)

with the power(k+1) is due to one channel use by the source
andk channel uses by the relays.

C. CSI availability at relays

We assume that all receiving nodes in the network can
perfectly estimate the CSI for incoming signals, which are
subject to small-scale Rayleigh fading and propagation path
loss. The source node is assumed to have no information about
any ofL source-relay links, whereas relays have access to CSI
of either of the following two types:

1) Exact instantaneous CSI for the relay-destination chan-
nel for each relay, i.e.|hsl|

2/
(
1 + r2sl

)
is perfectly

known at each qualified relayxj ∈ Φj ;
2) Statistics for CSI is available for relay-destination chan-

nel for each relay, i.e.E
{
|hsl|2/

(
1 + r2sl

)}
is known at

each qualified relayxj ∈ Φj .



In the following we will study the performance of the sec-
ond phase of relaying, where selected relay(s) will retransmit
the source message to the destination based on available CSI.

III. D ISTRIBUTED RELAY SELECTION STRATEGIES

WhenΦj(W ) 6= ∅, additional available information can be
used to design relay selection strategy for the second time slot.
The main focus of this section is on the case of statistical CSI,
however we will first study the reference case with full CSI.

A. Exact CSI based selection

This reference scenario represents the case when perfect
instantaneous CSI for individual relay-destination channels is
made available to each relay. Clearly, communication outage in
this case is only possible when there are no relays with reliable
links both to the source and to the destination (this includes
the case when there are no qualified relays, i.e.Φj(W ) = ∅).
Therefore, it does not matter which of the relays with guaran-
teed connection to select from outage performance perspective
(although one could find an energy-optimal solution).

Such relay qualification can be effectively modeled using
thinning of point processes, as discussed in [8], [9]. Specifi-
cally, if a relayxj is located at distancerj from the source and
at rjd from the destination respectively, then the probabilities
of successful connection to the source and destination under
the effects of small-scale Rayleigh fading and propagationpath
loss can be expressed respectively as

ps = E
{
e−θk

(
1 + rαj

)}
, pd = E

{
e−θk

(
1 + rαjd

)}
,

where the expectations are taken over random distancesrj
andrjd, and decoding thresholds at the relay and destination
are same. Joint consideration of above criteria allows to
approximate the mean numberΛq of relays that satisfy both
connectivity conditions for cell radiiR → ∞ as

Λq ≈
πλl

2θk
e−θ(2+r2d/2), (6)

whereλl is the intensity function of the process of candidate
relays; θk is the correct decoding threshold, assumed to be
identical for the relay and the destination for the case ofk = 1;
andrd is the distance from source to destination. The details
of this derivation are omitted due to space limitation.

The number of pointsQ in the processΦq(W ) of relays
connected both to the source and destination follows Poisson
distribution. Therefore it is easy to see that the outage event
for the case with full CSI at relays corresponds to the case
whenQ = 0 and has probability given as

Pinst = Pr(Φq(W ) = ∅) = e−Λq(W ), (7)

where an approximation toΛq(W ) is given in (6).

B. Statistical CSI based selection

This scenario corresponds to the case when the relays
have access to local statistics of channels to the desti-
nation node, however no instantaneous CSI is available.
Specifically, we consider the case where each relay knows

E
{
|hsl|

2/
(
1 + r2sl

)}
, and that based on these channel statis-

tics, all relays are able to estimate the distance from the
destination node with thesame level of precision. Note that no
exact distance estimation is required, any technique sufficiently
effective to correctly order relays with respect to the channel
quality to the destination is acceptable (eg. [7]). The result of
such distance-based ranking is an ordered sequence of relays
{x(1), . . . , x(j), . . . , x(J)}, where the relayx(1) has the largest
distance to the destination, and relayx(J) – the shortest. Such
distributed ordering formation can be realized via timer-based
algorithm, eg. [7].

Similarly to [2], in the second time slot a set ofk relays
with lowest distance estimates are selected fromΦj(W ) in a
distributed fashion to forward the message to the destination.
A number of assumptions will be made in the derivation of
the outage probabilityPstat for this scenario:

1) Outcome of source transmission: We assume that there
are always enough qualified relays to meet the demand ofk
relays, i.e.|Φj(W )| ≥ k. In practice the number of qualified
relaysJ = |Φj(W )| may be less that the requested number
of retransmittersk, or even be0. However for high SNR
and smallk, probability of such event can be shown to be
small, while a precise account forΦj(W ) < k would involve
conditioning on a specific outcome of the PPPΦj(W ), which
in turn would require using analytically more complicated
Binomial point processes for the parts of derivation [8], [10].
As will be verified by in Section IV, ignoring such technicality
will lead to a minor mismatch between theory and simulations.

2) Extension of W : Edge effects is a long-standing problem
in spatial statistics [8, p.132], associated with finite dimensions
of the space where realizations of a point process take place.
Consider our homogeneous PPP of candidate relays: strictly
speaking, the points outsideW do not belong toΦl(W ),
which is why observations from the origin ofW will be
different from those from the edge ofW . While formally
this is a contradiction to one of fundamental properties of a
PPP, compensation for these effects increases analytical com-
plexity. Fortunately for our scenario, impact of this formality
is expected to be small because the number of points inΦj

drops rapidly closer to cell edges (see (4)). Therefore, we will
assume that the processΦj exists in the space beyondW ,
which will be shown to incur only a small mismatch between
theory and simulation in Section IV.

Therefore, with the assumption of|Φj(W )| ≥ k, outage
eventA for this scenario can be expressed as

A =

k⋂

j=1

(j-th nearest relayx(j) fails). (8)

Note that thek components of the set intersection above are
mutually independent events, since both fading and placement
of one node give no information about fading and placement of
another (recall thatΦj is a Poisson point process). Therefore,
overall outage probability can be found as

P2 = Pr(A) =

k∏

j=1

Pj , (9)



wherePj is the probability thatj-th nearest to the destination
node relay will fail:

Pj = Pr

(

|hjd|2

1 + rαjd
< θk

)

= 1− Erjd

{

e−θk(1+rαjd)
}

= 1−

R+rx∫

0

e−θk(1+rαjd)fk (rjd)drjd,

(10)

wherehjd is the complex baseband Rayleigh channel coef-
ficient, rjd is the distance from the BS to the nearest relay
xj ∈ Φj , andfk (rjd) is the probability density function (PDF)
for the distance to thek-th nearest to the destination relay.
Using properties of Poisson point processes , the PDFfk (rjd)
can be given as [8]

fk (rjd) = e−Λ
′

j(B) ·
2
(

Λ
′

j (B)
)k

rjdΓ(k)
. (11)

HereΛ
′

j (B) denotes the mean number of points of the PPP
Φj of relays that can decode the source message inside a
region B ⊆ W with radius rjd ∈ [0, R + rd], centered at
the destination location. Our second assumption is used here,
as formallyB cannot have circular shape, asΦj(W ) does not
span beyondW .

Both Λ
′

j (·) and Λj (·) are mean measures of the same
Poisson point processΦj with location-dependent intensity
function λj(w), with the key difference in the position of
observation points. Specifically, forΛj (·), the observation
point is located at the BS, so that while the resulting PPP
Φj is inhomogeneous, it is still isotropic with respect to
the BS. On the other hand,Λ

′

j (·) measures the number of
points of the same process but from the destination point of
view, which makes PPPΦj anisotropic from such perspective.
Indeed, when observed from the destination, it is more likely
to find relays with reliable connections to the BS at anglesϕjd

pointing towards the BS, rather than in the opposite direction.
The mean numberΛ

′

j (B) of relays connected to the BS
falling within a circular regionB with radiusrjd can be ex-
pressed in terms of location-dependent, but universal intensity
functionλj(w) as

Λ
′

j (rjd) =

∫

B

λj(w)dw =

2π∫

0

rjd∫

0

λj(rj)rdrdϕ, (12)

where rj is the distance from the BS to a relayxj . The
intensity functionλj(w) of the process of relays connected
to the BS can be expressed as [8]

λj(w) = λlpj(w) = λle
−θ(1+rαj ). (13)

Using standard trigonometry, we can rewriteλj(rj) in terms
of integration variablesλj(r, ϕ)

λj(r, ϕ) = λle
−θ(1+r2d+r2−2rdr cos(ϕ)), (14)

which after substitution into (12) gives

Λ
′

j (rjd) = λle
−θ(1+r2d)

2π∫

0

rjd∫

0

re−θ(r2−2rdr cos(ϕ))dr

︸ ︷︷ ︸

I

dϕ.

(15)
Unlike estimation of outage probability in Section III-A,
approximation for largerjd is inapplicable, because we are
interested in the behavior ofΛ

′

j (B), including for small
rjd values. For this reason, we first take the inner integral
to allow for subsequent numerical evaluation of (15) with
respect to rotation angleϕ around the destination node. After
straightforward, but lengthy integration,I can be written as

I =
1

2θk

(

1− e−θk(r2jd−arjd)
)

+

√
π

θk

a

4
e

a2

4
θk
(

erf
(a

2

√

θk

)

− erf
(a

2

√

θk −
√

θkrjd

))

,

(16)
where a = 2rd cos(ϕ) and erf(·) denotes error function.
It is interesting to note that when the displacement of the
observation pointrd = 0, i.e. when the locations of the
remote observation point and the BS coincide, (16) reduces to
I =

(

1− e−θr2jd

)

/2θk. However for generalrjd ∈ [0, R+rd],
closed form solution of (15) can be overly complicated, and
numerical solution will be used to obtain outage performance.

IV. RESULTS AND DISCUSSION

First, we highlight the difference in spatial distributionof
the relays connected to the BS, when observed from the BS
itself and from the destination at distancerd. The aims of such
comparison are to (a) illustrate the impact of inhomogeneous
structure of the processΦj(W ) on the number of relays
that can participate in cooperative transmission from different
viewpoints and (b) verify the result in (12). Specifically, we are
interested in the mean number of relays in the processΦj(W )
that fall inside a circular region with radiusr centered either
at the BS, or at the destination location.

Fig. 2 illustrates the quantity of interest as a function of
radius r for transmit SNR of 15 dB and destination node
located at rd = 5. Note that the destination can find a
smaller number of qualified relays within the same proximity
compared to the BS, which is due to exponential decay in the
received power as the source-relay distance increases, eg.the
destination can expect support from1 qualified relay within
r = 2 on average. Asr grows, the circular region around the
destination will eventually include all qualified relays, which
can be seen from convergence of the curves for largerr.

Finally, we study the impact of the level of available CSI on
outage performance of opportunistic relaying. Fig. 3 illustrates
outage probability for the communication between the BS
and the destination through either one best relay ork nearest
to the destination qualified relays fromΦj . As can be seen
from the graph, outage probability drops as transmit SNR
grows for the case of full CSI, which follows the intuition
that with larger transmit power it becomes less likely that
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Fig. 2. Mean number of relays connected to the BS as a functionof radius
r, observed from the BS (red circles) and the destination atrd (blue squares).

none of the relays will be connected both to the source
and the destination. Correspondingly, the rate of such decay
increases with growth in the expected number of qualified
relaysΛq. However, when the relays cannot decide whether
their transmission will succeed or not due to the absence of
instantaneous CSI, outage performance degrades significantly.
In particular, when a single closest qualified relay retransmits
the source message, the diversity order of the studied system
becomes one irrespective of available power, as can be seen
from Fig. 3. Such increased power requirement to meet certain
QoS level can be viewed as penalty for lack of information.

In order to improve performance the BS may askk > 1
nearest qualified relays to retransmit the message. Performance
of such scenarios is illustrated by dashed lines in Fig. 3.
Clearly, for sufficiently high SNR levels multiple retransmit-
ting relays outperform single transmitting relay; on the other
hand, for lower SNRs splitting power between relays leads to
performance degradation. Indeed, largerk values mean that
each relay can be allocated less power from the budget. In ad-
dition, since relay retransmissions takek additional time slots
instead of1, outage performance is further degraded byk-fold
increase in the required data rate for each relay transmission.
Interestingly, the gain from increased diversity overweights the
effect of resource splitting betweenk relays relatively quickly
for k = 3, delivering better outage performance for lower
power consumption as compared tok = 2.

In summary, when instantaneous CSI is unavailable, increas-
ing the number of active relays can lead to identical outage
behavior as for the case of perfect CSI at the cost of higher
consumed power. Therefore, it may be beneficial to employ
more relays when power budget is sufficiently high, rather
than to invest all power into one nearest relay transmission
when instantaneous CSI is unavailable.

V. CONCLUSION

In this paper we have studied the impact of available CSI
at relays on outage performance of distributed opportunistic
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Fig. 3. Outage probability for opportunistic relaying fromthe BS to the
destination for the cases of exact and statistical CSI at relays.

relaying. For the cases when either exact instantaneous or
statistical CSI is available, outage probability performance has
been compared with an explicit account for spatial placement
of all participating nodes. Provided analytical and matching
simulation results show that although identical diversityorder
can be achieved in both cases, delivering the same level of
QoS in terms of outage probability for the case of statistical
CSI at relays requires significantly larger power. Moreover,
when only statistical CSI is available, increasing the number
of retransmitting relays creates a trade-off between sacrificing
performance at low SNR due to splitting resources amongk
relays, and larger diversity order for high SNR.
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