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Abstract—This paper considers ad hoc networks that use
the combination of coded continuous-phase frequency-shift key-
ing (CPFSK) and frequency-hopping multiple access. Although
CPFSK has a compact spectrum, some of the signal power
inevitably splatters into adjacent frequency channels, thereby
causing adjacent-channel interference (ACI). The amount of ACI
is controlled by setting the fractional in-band power; i.e., the
fraction of the signal power that lies within the band of eachfre-
quency channel. While this quantity is often selected arbitrarily,
a tradeoff is involved in the choice. This paper presents a new
analysis of frequency-hopping ad hoc networks that carefully
incorporates the effect of ACI. The analysis accounts for the
shadowing, Nakagami fading, CPFSK modulation index, code
rate, number of frequency channels, fractional in-band power,
and spatial distribution of the interfering mobiles. Expressions
are presented for both outage probability and transmission
capacity. With the objective of maximizing the transmission
capacity, the optimal fractional in-band power that should be
contained in each frequency channel is identified.

I. I NTRODUCTION

The combination of coded continuous-phase frequency-shift
keying (CPFSK) and frequency-hopping (FH) spread spectrum
is an attractive choice for ad hoc networks. Compared with
direct-sequence spread spectrum, FH can be implemented over
a much larger frequency band and does not require power
control to prevent the near-far problem. The performance of
FH systems depends upon the number of available frequency
channels. Increasing the number of frequency channels de-
creases the probability of collision, though this comes at
the expense of requiring narrower signal bandwidths, which
generally reduce the transmission rate.

For FH systems, continuous-phase frequency-shift keying
(CPFSK) is the preferred modulation. Frequency hopping with
CPFSK offers a constant-envelope signal, a compact signal
spectrum, a robustness against both partial-band and multiple-
access interference, and is suitable for noncoherent reception
[1]. CPFSK (assumed here to be binary) is characterized by
its modulation indexh, which is the normalized tone spac-
ing. Because the bandwidth is proportional toh, a decrease
in h increases the number of available frequency channels
and improves the resistance to multiple-access interference.
However, the energy-efficiency of CPFSK generally improves
with increasingh. When the ad hoc network uses channel-
coded CPFSK, the performance is also a function of the rate of
the error-control code. In [2], the tradeoff among modulation
index, code rate, and number of frequency channels was
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explored, and the values were optimized with the objective
of maximizing the (modulation-constrained)transmission ca-
pacity[3], which is a measure of the spatial spectral efficiency.

The spectral efficiency of CPFSK is quantified by itsX-
percent-power bandwidth, which is the bandwidth containing
X percent of the power. In [2], the frequency channels were
assumed to be separated by the 99-percent power bandwidth;
equivalently, the bandwidths of the frequency channels were
matched to the 99-percent power bandwidth of the modulation.
This implies that one percent of the signal power splatters into
adjacent bands, but in [2] the adjacent-channel interference
(ACI) due to spectral splatter was neglected. However, the
ACI can cause a non-negligible performance degradation,
which needs to be taken into account by the analysis and
optimization.

Matching the bandwidth of the frequency channels to the
99-percent power bandwidth of the modulation is a typical,
but arbitrary, choice and is motivated by the desire to neglect
the ACI. It is possible to increase the bit rate while fixing the
channel bandwidth, thereby decreasing the fractional in-band
power and increasing the fraction of the signal power that
splatters into adjacent channels. While the resulting increased
ACI will negatively affect performance, the increased bit rate
can be used to support a lower-rate error-correction code,
thereby improving performance. Thus, there is a fundamental
tradeoff involved in determining the fractional in-band power
that should be contained within each frequency channel.
Quantifying this tradeoff requires analysis of the effectsof
spectral splatter.

The contributions of this paper are as follows. The paper
presents an analysis of FH systems that accurately accounts
for the effects of ACI in the presence of shadowing and
Nakagami fading. Expressions are given for the conditional
outage probability, where the conditioning is with respectto
the location of the mobiles and the realization of the shadow-
ing, as well as for the spatially averaged outage probability and
transmission capacity. Having carefully modeled the effects of
ACI, the paper refines the optimization of [2] by identifying
the appropriate amount of spectral splatter, or equivalently the
optimal fractional in-band power that should be contained in
each frequency channel.

II. N ETWORK MODEL

The network comprisesM + 2 mobiles that include a
reference receiver located at the origin, a source or reference
transmitterX0, andM interfering mobilesX1, ..., XM . The
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variableXi represents both theith mobile and its location,
so that |Xi| is the distance fromXi to the receiver. It is
assumed that the interfering mobiles are constrained to liein
an annulus with inner radiusrex, outer radiusrnet, and area
A = π(r2net − r2ex). A nonzerorex may be used to model an
exclusion zone [4], which represents a minimum distance to
a potential interferer that is imposed by the multiple-access
protocol or constraints on the placement of the mobiles.

At the reference receiver,Xi’s power is

ρi = Pigid
α
0 10

ξi/10|Xi|−α (1)

whered0 is a reference distance,Pi is Xi’s transmitted power
measured at the reference distanced0, gi is the power gain
due to fading,ξi is a shadowing coefficient, andα > 2 is the
attenuation power-law exponent. Eachgi = a2i , whereai has
a Nakagami distribution with parametermi, andE[gi] = 1.
For Rayleigh fading,mi = 1.

Channel access is through a slow frequency-hopping proto-
col. It is assumed that the{gi} remain fixed for the duration
of a hop, but vary independently from hop to hop (block
fading). While the{gi} are independent, the channel from
each transmitting mobile to the reference receiver can have
a distinct Nakagami parametermi. An overall spectral band
of B Hz is divided intoL contiguous frequency channels,
each of bandwidthB/L Hz. The mobiles independently select
their transmit frequencies with equal probability. The source
X0 selects a frequency channel at the edge of the band with
probability2/L and a frequency channel not at the edge with
probability (L − 2)/L. Let Di ≤ 1 be the duty factor ofXi,
which is the probability that the mobile transmits any signal.

Two types of collisions are possible,co-channelcollisions,
which involve the source and interfering mobile selecting
the same frequency channel, andadjacent-channelcollisions,
which involve the source and interfering mobile selecting
adjacent channels. Letpc and pa denote the probability of
a co-channel collision and an adjacent-channel collision,re-
spectively. Assume thatDi = D is constant for every mobile.
If Xi, i ≥ 0, transmits a signal, then it will select the same
frequency asX0 with probability 1/L. SinceXi transmits
with probabilityD, the probability that it induces a co-channel
collision is pc = D/L. If Xi, i ≥ 0, transmits a signal, it will
select a frequency channel adjacent to the one selected byX0

with probability1/L if X0 selected a frequency channel at the
edge of the band (in which case, there is only one adjacent
channel), otherwise it will select an adjacent channel with
probability2/L (since there will be two adjacent channels). It
follows that, for a randomly chosen channel, the probability
thatXi, i ≥ 0, induces an adjacent-channel collision is

pa = D

[(

2

L

)(

L− 2

L

)

+

(

1

L

)(

2

L

)]

=
2D(L− 1)

L2
.

(2)

Only a certain percentage of a mobile’s transmitted power
lies within its selected frequency channel. Letψ represent the
fractional in-band power, which is the fraction of power in
the occupied frequency channel. Typically0.95 ≤ ψ ≤ 0.99,

though a goal of this paper is to determine the optimal value
of ψ. We assume that a fractionKs = (1 − ψ)/2, called
the adjacent-channel splatter ratio, spills into each of the
frequency channels that are adjacent to the one selected by
a mobile. For most practical systems, this is a reasonable
assumption, as the fraction of power that spills into frequency
channels beyond the adjacent ones is negligible.

Under the model described above, the instantaneous signal-
to-interference-and-noise ratio (SINR) at the receiver is

γ =
ψρ0

N +
M
∑

i=1

Iiρi

(3)

where N is the noise power andIi is a discrete random
variable that may take on three values with the probabilities

Ii =











ψ with probability pc
Ks with probability pa
0 with probability pn

(4)

wherepn = 1−pc−pa = 1−D(3L−2)/L2 is the probability
of no collision. ACI can be neglected by settingψ = 1 and
Ks = 0, in which case the results specialize to those presented
in [2].

Substituting (1) into (3) and dividing the numerator and
denominator bydα0P0, the SINR is

γ =
ψg0Ω0

Γ−1 +

M
∑

i=1

IigiΩi

(5)

whereΓ = dα0P0/N is the signal-to-noise ratio (SNR) when
the transmitter is at unit distance and the fading and shadowing
are absent, andΩi = (Pi/P0)10

ξi/10|Xi|−α is the normalized
power ofXi.

III. O UTAGE PROBABILITY

A. Conditional Outage Probability

Let β denote the minimum SINR required for reliable re-
ception andΩ = {Ω0, ...,ΩM} represent the set of normalized
received powers. Anoutageoccurs when the SINR falls below
β. When conditioned onΩ, the outage probability is

ǫ(Ω) = P
[

γ ≤ β
∣

∣Ω
]

. (6)

By defining a variable

Z = β−1g0Ω0 −
M
∑

i=1

IigiΩi (7)

the conditional outage probability may be expressed as

ǫ(Ω) = P
[

Z ≤ Γ−1
∣

∣Ω
]

= FZ

(

Γ−1
∣

∣Ω
)

(8)

which is the cumulative distribution function (cdf) ofZ con-
ditioned onΩ and evaluated atΓ−1.



Let F̄Z

(

z
∣

∣Ω
)

= 1 − FZ

(

z
∣

∣Ω
)

denote the complementary
cdf ofZ conditioned onΩ. Assuming thatm0 is integer-valued
and that signals fade independently, [5] shows that

F̄Z

(

z
∣

∣Ω
)

= e−β0z
m0−1
∑

j=0

(β0z)
j

j
∑

k=0

z−k

(j − k)!
Hk(Ω) (9)

whereβ0 = βm0/(ψΩ0),

Hk(Ω) =
∑

ℓi≥0
∑
M
i=0

ℓi=k

M
∏

i=1

Gℓi(Ωi) (10)

the summation in (10) is over all sets of indices that sum to
k, and

Gℓi(Ωi) =

∫ ∞

0

yℓi

ℓi!
e−β0yfYi(y)dy (11)

wherefYi(y) is the pdf ofYi = IigiΩi. Taking into account
the Nakagami fading and the statistics ofIi, the pdf ofYi is

fYi(y) = pnδ(y) +
ymi−1

Γ(mi)

[

pc

(

mi

ψΩi

)mi

e
−
ymi
ψΩi

+ pa

(

mi

KsΩi

)mi

e
−

ymi
KsΩi

]

u(y) (12)

where u(y) is the unit-step function andδ(y) is the Dirac
delta function. By substituting (12) into (11) and evaluating
the integral, we obtain

Gℓi(Ωi)=pnδℓi+
Γ(ℓi +mi)

ℓi!Γ(mi)
[pcφi(ψ) + paφi(Ks)] (13)

whereδℓ is the Kronecker delta function, and

φi(x) =

(

xΩi

mi

)ℓi (xβ0Ωi

mi
+ 1

)−(mi+ℓi)

. (14)

B. Spatially Averaged Outage Probability

Assume that a fixed numberM of interfering mobiles are
independently and uniformly distributed over the region of
areaA; i.e., that the interfering mobiles are drawn from a
binomial point process(BPP) of intensityλ = M/A [6].
Let ǫ(λ) denote the corresponding spatially averaged outage
probability, which is found by taking the expectation of
FZ(Γ

−1|Ω) with respect toΩ:

ǫ(λ) = EΩ

{

FZ

(

Γ−1
∣

∣Ω
)}

= FZ

(

Γ−1
)

. (15)

First, consider a system that has no shadowing (ξi = 0, for
all i) and a fixed locationX0 so thatΩ0 andβ0 are constants.

By assuming that the{Ωi}, i > 0, are independent, taking the
expectation with respect toΩ allows the complementary cdf
of Z to be expressed as

F̄Z (z)= e
−β0z

m0−1
∑

j=0

(β0z)
j

j
∑

k=0

z−k

(j − k)!
EΩ {Hk(Ω)} (16)

where

EΩ {Hk(Ω)} =
∑

ℓi≥0
∑
M
i=0

ℓi=k

M
∏

i=1

EΩi {Gℓi(Ωi)} . (17)

Since the{Ωi}, i = 1, ...,M , are uniformly distributed on the
annulus, they each have pdf

fΩi(ω) =
2π

A
c
2/α
i ω−( 2+α

α ) for ci
rαnet

≤ ω ≤ ci
rαex

(18)

and zero elsewhere, whereci = (Pi/P0). Using (18), the
expectation in (17) evaluates to (19) at the bottom of the page,
where

I(x) =
2F1

(

[

mi + ℓi, mi +
2

α

]

;mi +
2

α
+ 1;− mi

xβ0

)

xmi+
2
α

(

mi +
2

α

)
(20)

and2F1([a, b], c, z) is the Gauss hypergeometric function.

C. Log-Normal Shadowing

In the presence of log-normal shadowing, the{ξi} are inde-
pendent and identically distributed zero-mean Gaussian with
standard deviationσs dB. WhenX0 is fixed but shadowing is
present,Ω0 becomes a log-normal random variable with pdf

fΩ0
(ω) =

10
(

2πσ2
s

)− 1
2

ln(10)ω
exp

{

−102 log210 (||X0||αω)
2σ2

s

}

(21)

for 0 ≤ ω ≤ ∞, and zero elsewhere, whileΩi, i = 1, ...,M ,
has pdf [2]

fΩi(ω)=
πc

2/α
i

Aα
[ζ (ciωr

α
net)− ζ (ciωr

α
ex)]ω

−( 2+α
α ) (22)

for 0 ≤ ω ≤ ∞, and zero elsewhere, where

ζ(z) = erf

(

σ2
s ln

2(10)− 50α ln (z)

5
√
2ασs ln(10)

)

exp

{

σ2
s ln

2(10)

50α2

}

.

(23)

Using the definition ofβ0 and the pdfs of the{Ωi}, taking
the expectation ofF̄Z(z|Ω) with respect toΩ allows the

EΩi {Gℓi(Ωi)} = pnδℓi +
2mmi

i πc
2
α

i Γ(ℓi +mi)

α(ℓi!)Γ(mi)β
(mi+ℓi)
0 A

{

pc

[

I

(

ψci
rαnet

)

− I

(

ψci
rαex

)]

+pa

[

I

(

Ksci
rαnet

)

− I

(

Ksci
rαex

)]}

.(19)

F̄Z(z) =

m0−1
∑

s=0

s
∑

t=0

z−t

(s− t)!

∑

ℓi≥0
∑
M
i=0

ℓi=t

∫ ∞

0

exp

{

−βm0z

ψy

}(

βm0z

ψy

)s M
∏

i=1

[pnδℓi + pcΦi(y, ψ) + paΦi(y,Ks)] fΩ0
(y)dy. (24)



complementary cdf ofZ to be expressed as (24) at the bottom
of the previous page, where

Φi(y, χ) =

Γ(ℓi +mi)

ℓi!Γ(mi)

∫ ∞

0

fΩi(ω)

(

χω

mi

)ℓi (χβm0ω

ψmiy
+ 1

)−(mi+ℓi)

dω.

(25)

The integral in (25) can be evaluated numerically by Simpson’s
method, which provides a good tradeoff between accuracy and
speed, and then the integral in (24) can be evaluated through
Monte Carlo simulation.

IV. M ODULATION-CONSTRAINED TRANSMISSION

CAPACITY

The spatially averaged outage probabilityǫ(λ) is often
constrained to not exceed a maximum valueζ ∈ [0, 1]; i.e.,
ǫ(λ) ≤ ζ. Under such a constraint, the maximum density
of transmissions is of interest, which is quantified by the
transmission capacity(TC) [3]. The TC represents the spatial
spectral efficiency; i.e., the rate of successful data transmission
per unit area. Alternatively, the spatially averaged TC canbe
found by fixingλ and allowingǫ to vary, in which case it is
expressed as

τ (λ) = λ(1 − ǫ(λ))b. (26)

As originally defined in [3], the transmission capacity is
a function of the SINR thresholdβ and is found without
making any assumptions about the type of modulation or
channel code. In practice,β is a function of the modulation and
coding that is used. LetC(γ) denote the maximum achievable
rate, in bps, that can be supported by the chosen modulation
at an instantaneous SINRγ assuming equally likely input
symbols; i.e., it is the modulation-constrained capacity or
symmetric-information rate. If a capacity-achieving rate-R
code is used, then an outage will occur whenC(γ) ≤ R.
SinceC(γ) is monotonic, it follows thatβ is the value for
which C(β) = R, and therefore we can writeβ = C−1(R).
In a block-fading channel, the outage probability with SINR
thresholdβ = C−1(R) provides an accurate prediction of
the codeword error rate [1]. The symmetric-information rate
of noncoherent CPFSK is given in [7] for varioush, and is
found by computing the average mutual information between
the input and the output of the noncoherent AWGN channel.
As an example, whenR = 1/2 and h = 1, the required
β = 3.7 dB.

The maximum data transmission rate is determined by the
bandwidthB/L of a frequency channel, the fractional in-band
power ψ, the spectral efficiency of the modulation, and the
code rate. Letη be the spectral efficiency of the modulation,
given in symbols per second per Hz, and defined by the
symbol rate divided by the100ψ%-power bandwidth of the
modulation. Since we assume many symbols per hop, the
spectral efficiency of CPFSK can be found by numerically
integrating (3.4-61) of [8] and then inverting the result. To
emphasize the dependence ofη on h andψ, we denote the

spectral efficiency of CPFSK asη(h, ψ) in the sequel. When
combined with a rate-R code, the spectral efficiency becomes
Rη(h, ψ) bps per Hertz (bps/Hz), whereR is the ratio of
information bits to code symbols. Since the signal occupies
a frequency channel with100ψ%-power bandwidthB/L Hz,
the maximum data rate supported by a single link operating
with a duty factorD is

b =
RDη(h, ψ)B

L
(27)

bps. Substituting (27) into (26) and dividing by the system
bandwidthB gives the normalized and spatially averaged
modulation-constrainedtransmission capacity (MCTC),

τ ′(λ) =
λRDη(h, ψ)(1 − ǫ(λ))

L
(28)

which assumes units of bps/Hz per unit area. In contrast
with (26), this form of transmission capacity explicitly takes
into account the code rateR, the spectral efficiency of the
modulationη(h, ψ), and the number of frequency channels.

V. NETWORK OPTIMIZATION

Let θ = (L,R, h, ψ) andC(θ) represent a cost function.
The goal of the network optimization is to determine theθ

that minimizes an appropriate cost function. Fix the value of
λ, and letτ ′(θ) represent the normalized MCTC at thatλ as a
function ofθ. We chose as our cost functionC(θ) = −τ ′(θ)
so that the optimization maximizes the normalized MCTC.

A. Exhaustive Evaluation

As an example, consider a network with radiusrnet = 2,
an exclusion zone of radiusrex = 0.25, and M = 50
potentially interfering mobiles drawn from a BPP with density
λ = 50/(π(22 − 0.252)) ≈ 4. The duty factor isD = 1, the
source is located at distance|X0| = 1, the path-loss exponent
isα = 3, the SNR isΓ = 10 dB, and the shadowing variance is
σs = 8 dB. A mixed-fadingmodel is considered, withm0 = 4
andmi = 1 for i ≥ 1. Mixed fading characterizes a typical
situation where the source transmitter is in the line-of-sight to
the receiver, but the interfering mobiles are not in the line-
of-sight. Three degrees of spectral splatter are considered:
No spectral splatter, minimal spectral splatter (ψ = 0.99),
and moderate spectral splatter (ψ = 0.96). When spectral
splatter is neglected,η is computed using the99-percent power
bandwidth of CPFSK, butpa is set to zero. When spectral
splatter is considered,η is computed using the100ψ-percent
power bandwidth, andpa is set according to (2). For each
spectral-splatter case, the MCTC was computed for a wide
range of discretizedθ that include all integerL ∈ [1, 200],
all R ∈ (0, 1) in increments of0.01, and all h ∈ (0, 1] in
increments of0.01.

Becauseτ ′(θ) has a four-dimensional argument, it is not
easily visualized. Fig. 1 represents the function by fixingψ,
varying L, and maximizing the value ofτ ′(θ) over R and
h. To emphasize the dependence on only one parameter and
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Fig. 1. The MCTCτ ′opt(L|ψ) as a function of the number of frequency
channelsL. For each value ofL, the modulation-indexh and code rateR
are varied to maximize the TC. Top curve:ψ = 0.96. Middle curve: ACI due
to spectral splatter is neglected. Bottom curve:ψ = 0.99.

optimization over the other parameters, the function is written
as a function of only that variable

τ ′opt(L|ψ) = max
R,h

τ ′(θ). (29)

Similar figures found by fixing each ofR and h while
optimizing over the other parameters suggest thatC(θ) has
global minima over all feasibleθ, which is further confirmed
by an inspection of the complete multidimensional surface.
It follows that the optimal values of each parameter can be
found by locating the peaks in the corresponding figure. Fig.1
shows that, forψ = 0.99, performance degrades when spectral
splatter is taken into account. However, when the amount of
spectral splatter is increased (by decreasingψ to 0.96), the
performance improves. This illustrates the potential gainthat
can be achieved by jointly optimizing overψ and the other
parameters.

B. Downhill Simplex Optimization

The exhaustive evaluation ofτ ′(θ) over a large set of
discretizedθ is computationally intensive, especially when the
Nakagami factorm0 is large. This motivates the use of a more
efficient search technique. Becauseτ ′(θ) is a complicated
nonlinear function ofθ, it is difficult to obtain analytical
or numerical derivatives. For this reason, a direct search is
preferred over a gradient search. The Nelder-Mead method
of downhill simplex optimization [9] is an appropriate and
efficient solution for this optimization problem.

In four dimensions, the Nelder-Mead method works by
evaluating the cost functionC(θ) at the five corners of a
pentachoron; i.e., a 4-dimensional convex regular polytope or
hyperpyramid. After each iteration, one corner of the penta-
choron is moved until it contains the minimum, at which point
the pentachoron is made smaller. In our implementation, the
first corner is initially at(Le, R, h, ψ) = (20, 0.5, 0.5, 0.975)
and the other corners are at distances1, 0.025, 0.025, and
0.005 from the first corner along each of the four dimensions.

AlthoughL needs to be an integer, during the optimization we
allow it to be real valued to ensure a continuous optimization
surface.

Let θ1, ..., θ5 represent the corners of the pentachoron
sorted in ascending cost; i.e.,C(θ1) ≤ C(θ2) ≤ ... ≤ C(θ5).
An iteration proceeds by firstreflectingθ5 across the opposing
face of the pentachoron to produce a candidate cornerθr

whose cost is computed. IfC(θ1) ≤ C(θr) < C(θ4), then
cornerθ5 is replaced byθr. The points are re-sorted and the
algorithm moves on to the next iteration. IfC(θr) < C(θ1),
then anexpandedpentachoron is considered by doubling the
distance fromθr to the face defined by the other four corners,
thereby producing another candidate cornerθs whose cost is
computed. IfC(θs) < C(θr), then the expanded pentachoron
is accepted (by replacingθ5 with θs), otherwise the reflected
(but unexpanded) pentachoron is accepted by replacingθ5

with θr. If C(θr) ≥ C(θ4) then acontraction is performed
by halving the distance between the better ofθ5 andθr and
the face defined by the other four corners. The contracted
pentachoron is accepted if this new corner has a lower cost
than the one it displaced. Otherwise, if none of the above
conditions is satisfied then the minimum must lie inside the
pentachoron, so it isshrunkby halving the length of each edge
while maintaining the same centroid.

C. Optimization Results

By using the Nelder-Mead method, optimization results
were obtained for a range of densitiesλ with interfering
mobiles drawn from a BPP. As with the example used to
generate Fig. 1, the number of interfering mobiles isM = 50,
the duty factor isD = 1, the source is located at distance
|X0| = 1, the path-loss exponent isα = 3, the SNR is
Γ = 10 dB, and the exclusion zone has radiusrex = 0.25.
Three fading models are considered: Rayleigh fading (mi = 1
for all i), Nakagami fading (mi = 4 for all i), and mixed
fading (m0 = 4 andmi = 1 for i ≥ 1). Both unshadowed
(σs = 0 dB) and shadowed (σs = 8 dB) environments are
considered. Two values ofrnet are considered:rnet = 2, and
rnet = 4, corresponding to a moderately dense (λ ≈ 4) and
sparse (λ ≈ 1) network, respectively.

The influence ofψ on the optimal transmission capacity is
shown in Fig. 2 for the three fading models in the presence of
shadowing (σs = 8) with rnet = 2. The curves were drawn by
fixing ψ and optimizing over(L,R, h). From these curves, the
optimal value ofψ is identified to be about 0.96 for all three
fading models. As seen in the figures, by choosingψ = 0.96,
there is an increase in TC relative to the typical, but arbitrary
choice ofψ = 0.99. The resulting optimal parameters when
ψ = 0.96 are found to be{L,R, h} = {38, 0.64, 0.81} in
the mixed-fading environment. When the ACI due to spectral
splatter is neglected and the99-percent power bandwidth used
during the optimization, the resulting parameter values are
{L,R, h} = {24, 0.68, 0.59} in the mixed-fading environment
[2]. Thus, when ACI is taken into account during the optimiza-
tion, more frequency channelsL are optimal, and the optimal
value of modulation indexh is larger.
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of the fractional in-band power. For each value ofψ, the modulation-indexh,
the number of frequency channelsL, and code rateR are varied to maximize
the TC. Top curve: Mixed fading. Middle curve: Nakagami Fading. Bottom
curve: Rayleigh Fading.

TABLE I
OPTIMAL PARAMETER VALUES AND TRANSMISSION CAPACITY.

rnet σs m0 mi L R h ψ τ ′opt
2 0 1 1 36 0.64 0.81 0.96 17.74

4 4 45 0.64 0.81 0.96 19.88
4 1 40 0.64 0.81 0.96 22.59

8 1 1 34 0.64 0.81 0.96 18.29
4 4 44 0.66 0.81 0.96 19.36
4 1 38 0.64 0.81 0.96 22.09

4 0 1 1 13 0.57 0.85 0.95 11.92
4 4 16 0.54 0.85 0.95 13.23
4 1 15 0.56 0.85 0.95 14.64

8 1 1 12 0.58 0.85 0.95 12.22
4 4 15 0.54 0.85 0.95 13.13
4 1 14 0.57 0.85 0.95 14.55

Table I shows the optimal values ofL,R, h andψ for the
two network radii, three fading models, and two shadowing
variances, along with with the correspondingτ ′opt. The optimal
fractional in-band powers areψ = 0.96 for the rnet = 2
network andψ = 0.95 for the rnet = 4 network. For the
Rayleigh channel, shadowing slightly improves performance,
but for the Nakagami and mixed-fading channels, shadowing
slightly degrades the performance. Increasing the networkden-
sity (by decreasingrnet) increases the transmission capacity,
and requires an increasedL, R, andψ and a decreasedh.

D. Effect of Normalized Distance

For a fixed |X0| and M , the performance and optimal
value of ψ depends onrnet. More generally, the optimal
value ofψ can be identified for a givenM for any arbitrary
normalized distancer = |X0|/rnet. At eachr, an optimization
is performed to determine the optimalθ and the corresponding
TC. The dependence of the optimalψ on r is shown in Fig. 3
for three values of path-loss coefficient,α = {3, 3.5, 4}, using
the mixed-fading model and shadowing (σs = 8 dB). From
the results, it is observed that the optimalψ increases with
increasing separationr and increasing path-loss coefficientα.
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Fig. 3. Optimal fractional in-band powerψ(r) as a function of normalized
transmitter distancer = |X0|/rnet. Results are shown for three different
path-loss coefficients.

VI. CONCLUSION

When used with coded CPFSK, the performance of
frequency-hopping ad hoc networks depends on the modu-
lation index, the code rate, the number of frequency channels,
and the fractional in-band powerψ. The procedure outlined
in this paper enables the optimization of the parameters in the
presence of shadowing and Nakagami fading with interfering
mobiles drawn from an arbitrary point process. The proper
choice ofψ involves a tradeoff between the transmission rate
and the amount of adjacent-channel interference. For a given
symbol rate,ψ can be increased by increasing the frequency
separation between adjacent frequency channels. The result
will be decreased adjacent-channel interference, but thiscomes
at the cost of reducing the total number of frequency channels,
which results in more frequent co-channel collisions.
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