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Abstract—We investigate how connection access control and re-
source allocation in cellular systems can be coordinated to jointly
achieve maximum total utility. We propose a decomposition in
which resource allocation maximizes long-term average utility
for each system state and connection access control maximizes
long-term average utility over all system states. We discuss the
resulting interface and gives examples of algorithms that satisfy
this decomposition and interface. Performance is illustrated by
numerical results.

I. INTRODUCTION

Heretofore, connection access control (CAC) and resource
allocation (RA) have been designed to accomplish different
goals in cellular networks. Resource allocation algorithms typ-
ically attempt to maximize the total utility of all active users,
e.g. the total number of voice users or the total throughput of
data users. In contrast, connection access control algorithms
typically admit a new connection if and only if it is believed
that capacity is available to ensure acceptable performance.
Thus while RA focuses on utility, CAC typically ignores utility
and merely focuses on capacity.

Here, we investigate how CAC and RA can be coordinated
to both focus on utility. There is ample reason to believe that
coordination of CAC and RA could be beneficial. The volume
of data traffic on 4G networks has surpassed that of voice,
and video is quickly becoming the dominant traffic class by
volume, and it is expected that voice, data and video will
all be important revenue generators. Whereas the first three
generations of cellular networks segregated capacity for voice
and data applications, future networks will transmit all applica-
tions over the Internet Protocol (IP) and thereby share capacity
amongst all application classes. Multiplexing of traffic classes
with different Quality-of-Service (QoS) requirements presents
a challenge to CAC and RA. When capacity was segregated,
CAC and RA for voice could both focus on maximizing the
number of voice users, and CAC and RA for data could both
focus on maximizing throughput. In contrast, when capacity
is shared, it no longer is meaningful for CAC to admit a
new connection if and only if it is believed that capacity
is available to ensure acceptable performance, since such an
admit decision for a voice call may result in an unacceptably
high marginal decrease in utility for active data and video
connections. Instead, we suggest that CAC should also focus
on maximizing utility.

There is a great deal of research literature on uncoordinated
resource allocation and connection access control for cellular

networks. Resource allocation algorithms usually attempt to
either maximize total throughput or total utility under QoS
requirements, e.g. minimum SINR or minimum rate, see
e.g. [1][2][3][4][5][6]. Connection access control has typically
depended upon the application type. For voice, CAC usually
admits a new call if and only if there are available resources,
see e.g. [7]. In contrast, data applications are often treated as
not having any QoS requirement, and thus not requiring any
CAC. CAC for video applications has been less addressed and
remains an open problem.

However, there is little research literature on coordinated
resource allocation and connection access control for cellular
networks. A number of papers propose a weak type of coor-
dination in which CAC admits voice users subject to available
capacity and RA attempts to maximize the total utility of
data users subject to performance constraints on voice users,
see e.g.[8]. Other papers propose coordination by treating the
goal as one of maximizing sum throughput of voice and data
subject to QoS requirements, see e.g. [9]. We are not aware
of any literature that proposes CAC to maximize total utility
in cellular networks.

Here, we propose coordinated CAC and RA on the basis of
user utility. First, we suggest a joint optimization of long-
term average user utility over both CAC and RA policies.
Then, we propose a decomposition into separate CAC and RA
problems. Whereas traditional RA in the literature typically
attempts to maximize total utility over a relatively short time
period, we propose that RA should attempt to maximize the
long-term average utility for each system state, where the
state is defined as number of active applications of each type.
Whereas traditional CAC in the literature typically admits new
connections if and only if there are available resources, we
propose that CAC should attempt to maximize the long-term
average utility over all system states. We discuss the resulting
interface between RA and CAC. We also give examples of
RA and CAC algorithms that satisfy this decomposition and
interface.

In section II, we define a user’s channel, rate, and utility.
In section III, we formulate a joint CAC and RA problem and
propose a decomposition into separate CAC and RA problems.
In section IV, we provide an implementation example to
explain how to evaluate the average utility of each state and
how to use dynamic programming to design an connection
access control policy. Finally, in section V the performance of
our framework is illustrated by numerical simulation results.
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II. SYSTEM MODEL

We consider a single cell downlink Orthogonal Frequency-
Division Multiplexing (OFDM) system with N subcarriers.
The bandwidth B of each subcarrier is assumed to be less
than the coherence bandwidth of the channel so that the
channel response can be considered flat. The rate of user k
on subcarrier n at time t is:

rk,n,t(pk,n,t) = B log2

(
1 + pk,n,t

|Hk,n,t|2

σ2 + I

)
where pk,n,t is the power allocated, |Hk,n,t|2 is the composite
channel gain, σ2 is the noise power, and I is the interference
power. The channel gain |Hk,n,t|2 = α2

k,n,tγk,tPLk,t is
composed of fast fading α2

k,n,t which changes significantly
in sequential time periods, slow fading and shadowing γk,t
which changes little in sequential time periods but may change
significantly during a few seconds, and pathloss PLk,t which
depends on user position and changes significantly during tens
of seconds. Fast fading on different subcarriers is assumed to
be independent to each other. The total rate of user k at time
t is the sum of the user’s rate over all subcarriers:

Rk,t =
N∑
n=1

rk,n,t

Assume there are L types of applications. Each application
type is associated with a utility function Ul which measures
user satisfaction with the average rate achieved within a time
window Wl. Denote the application of user k by bk = l, and
user k’s average rate at time t within the most recent window
Wbk by Sk,t =

∫ t
τ=t−Wbk

Rk,τ/Wbkdτ . User utility is thus
a function of average rate Ubk(Sk,t). We wish to consider
elastic applications (e.g. data) modeled by concave utility,
semi-elastic applications (e.g. video) modeled by sigmoid
utility, and inelastic application (e.g. voice) modeled by step
utility. The QoS requirements of inelastic and semi-elastic
applications are modeled by a minimum rate requirement S

′

l

on application type l. Arrivals of applications of type l are
assumed form independent Poisson processes with intensity
βl, and the duration of connections of type l are assumed to
be independent and Exponentially distributed with mean 1/γl.

III. JOINT FRAMEWORK

In this section we first formulate a joint CAC and RA
problem. Then, we propose a decomposition into separate
CAC and RA problems, and discuss the resulting interface
between CAC and RA.

A. Joint CAC and RA Optimization Problem

We begin by consideration of the policy spaces for CAC and
RA. For CAC, we assume that departures are never blocked,
so that the policy space can be written as:

G = {g = (g1, g2, ..., gL) : gl ∈ {0, 1}, l = 1, ..., L}

where gl = 0 (resp. gl = 1) denotes that an arrival of type
l should be blocked (resp. admitted). Denote the time of the

jth event (arrival or departure) by t(j), and the set of active
users at time t by Dt = {k|user k is active at time t}. For
each arrival event j, the CAC policy is given by g(j) =

{g(j)1 , g
(j)
2 , ..., g

(j)
L }. The state of the network is represented

by a vector x = {x1, x2, ..., xL} where xl is the number
of active type l applications; the state just after event j is
denoted by x(j) = {x(j)1 , x

(j)
2 , ..., x

(j)
L }. The CAC policy,

denoted by QCAC = g(j)
(
x(j−1)

)
, thus decides on admis-

sion of a connection on the basis of the state immediately
before the connection’s arrival. The RA policy, denoted by
QRA = {pk,n,t||Hk,n,τ |2, ∀k, n, τ ≤ t and x(j)}, assigns
powers to each user and subcarrier at each time t on the basis
of each user’s historical channels and on the current state.

We now turn to the desired optimization metric. Resource
allocation algorithms typically attempt to maximize the total
utility of all active users during a short time period and
connection access control algorithms typically admit a new
connection if and only if it is believed that capacity is available
to ensure acceptable performance. Such uncoordinated RA
and CAC has several disadvantages. First, if CAC does not
consider utility, then admitting a new arrival if capacity allows
may be sub-optimal, since the expected utility from the new
arrival may well be less than the decrease in utility of current
users resulting from their decrease in average future rate. Thus,
we suggest that CAC should also focus on maximizing utility.
Second, by focusing on utility, when residual capacity is low
and a relatively low-paying application type arrives, CAC can
judge whether it is optimal to block the arrival with the hope
that higher-paying application may arrive soon. Finally, if RA
focuses on short-term performance, then long-term utility is
not necessarily maximized.

We thus propose that both RA and CAC should focus on
long-term user utility. There are several options for this metric.
Whereas traditional RA in the literature typically attempts to
maximize total utility over a relatively short time period, we
propose that RA should attempt to maximize the long-term
average utility for each system state. Define the duration of
state x(j) as ∆t(j) = t(j+1) − t(j). Denote the average utility
per unit time of state x(j) by:

Uavg

(
x(j),∆t(j)

)
=

1

∆t(j)

∫ t(j+1)

t(j)

∑
k∈Dt

Ubk(Sk,t)dt

Note that this metric thus averages utility over different
time periods in which the state is the same, as opposed to
maximizing short-term throughput.

Whereas traditional CAC in the literature typically admits
new connections if and only if there are available resources,
we propose that CAC should attempt to maximize the long-
term average utility over all system states. The joint connection
access control and resource allocation problem is thus:

max
QCAC ,QRA

lim
J↑∞

1

t(J+1)

J∑
j=0

Uavg

(
x(j),∆t(j)

)
∆t(j) (1)

where J denotes the total number of events.
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The same optimization metric is thus used by both CAC
and RA. This formulation, however, requires the joint deter-
mination of the optimal CAC and RA policies. An exhaustive
search amongst all possible CAC and RA policies within the
joint policy space is almost certainly infeasible. In the next two
subsections, we thus attempt to decompose the problem into
separate CAC and RA problems. The challenge is to formulate
decomposed problems that retain the desired coordination and
that require a simple interface between the two.

B. Decomposition and Interface

We start with resource allocation. Traditional resource al-
location focuses on one period of time and optimizes system
performance during this period. We argue that resource al-
location should attempt to maximize the long-term average
utility for each system state, i.e. there should be a RA policy
for each state x. In an infinite length of time period, state x
occurs during times

T (x) =
∪

{j≤J:x(j)=x}

[
t(j), t(j+1)

)
The average utility of state x over an infinite time period is
thus

Uavg(x) = lim
J↑∞

1

|T (x)|

∫
T (x)

∑
k∈Dt

Ubk(Sk,t)dt

where | | denotes cardinality.
For each state x, resource allocation should maximize long-

term average utility and the resource allocation problem can
be written as:

Uavg(x) = max
QRA

Uavg(x) (2)

s.t.
∑
k∈Dt

N∑
n=1

pk,n,t ≤ P, ∀t ∈ T (x)

pk,n,t ≥ 0, ∀k ∈ Dt, n, t ∈ T (x)
Sk,t > S

′

bk
, ∀k ∈ Dt, t ∈ T (x)

We define the feasible region Λ as the set of states for which
there exists a resource allocation that satisfies the constraints
in (2):

Λ =
{

x : ∃QRA which can solve problem (2)
}

We turn next to connection access control. While RA
attempts to maximize the long-term average utility for each
state, CAC should attempt to maximize the long-term average
utility over all states. The major question is: does CAC need
detailed knowledge of the RA algorithm or can it treat RA as a
black box? The literature doesn’t provide a clear answer to this
question. To strengthen the modularity of the decomposition,
we propose that CAC should treat RA as a black box and
exchange a minimal set of information. The questions remains
as to what information will suffice. Does CAC need to know
the power and subcarrier allocation? the resulting QoS? the
utility earned as a function of time? We propose that CAC only
needs to know Λ, the feasible region, and {Uavg(x) ∀x ∈ Λ},

CAC RA
Current x

Λ and ,
" Îx Λ

( )avgU x

Fig. 1. Joint CAC and RA flowchart 1

the set of average utilities earned in each state by the resource
allocation policy. Does RA need to know the history of arrivals
and departures? We propose that RA only needs to know the
current state. The resulting interface is illustrated in Fig 1.

Based on this interface, the decomposed CAC problem
becomes one of choosing an admission policy that maximizes
long-term average utility over the entire state space:

max
QCAC

lim
J↑∞

1

t(J+1)

J∑
j=0

Uavg

(
x(j)
)
∆t(j) (3)

In summary, the RA module determines the feasible region
Λ and estimates the maximum average utility of each state
Uavg(x(j)), either by estimating utility as a function of the
channel distribution or by direct observation of the real system.
With this information, the CAC module can determine the
optimal admission policy. Both of these roles can be done
off-line. Then on-line, when a user arrives, the CAC module
determines whether to admit merely using a lookup based on
state, and the RA module determines power and subcarrier
allocation based on the current state and the current set of
channel gains.

Cooperation is thus instilled between CAC and RA by
sharing the same optimization metric of long-term average
utility. The CAC and RA modules can treat each other as black
boxes, and communicate limited information via a simple
interface. This decomposition provides flexibility to design
CAC and RA policies separately and also reduces complexity.

IV. IMPLEMENTATION

In this section, we give examples of RA and CAC algo-
rithms that satisfy the decomposition and interface proposed
in the previous section. This implementation will provide
methods to estimate Uavg(x) and to use dynamic programming
to determine the optimal CAC policy.

A. Resource Allocation

Whereas the model above assumed continuous time, in real
systems resources are allocated during each time slot [10].
We thus would like to formulate a discrete time version of
the RA problem. Define ∆ts as the duration of a time slot,
tι = ⌈t/∆ts⌉, t(j),ι = ⌈t(j)/∆ts⌉ and [t(j),ι, t(j+1),ι) as
{tι|t(j),ι ≤ tι < t(j+1),ι}. Then the set of time slots in which
the system is in state x is

T ι(x) =
∪

{j≤J:x(j)=x}

[
t(j),ι, t(j+1),ι

)
and the discretized average utility is

U ιavg(x) = lim
J↑∞

1

|T ι(x)|
∑
T ι(x)

∑
k∈Dtι

Ubk(Sk,tι)
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where Sk,tι =
∑tι

τι=tι−Wk+1Rk,τι/Wk.
Denote the total number of active users while in state x by

K(x) =
∑L
l=1 xl. In different epochs j within T ι(x), the total

number of users is the same but the active user set Dtι may
be different. This makes it difficult to calculate U

ι

avg(x). Thus
for each state x, we propose to consider a fixed set of users
over an infinite length of time. For simplicity of notation, for
each state x we renumber the users from 1 to K(x) =

∑L
l=1 xl

and restart time from 1 to T ι1, and we therefore drop the x
from K(x).

Denote the power allocation by p = {pk,n,tι ,∀k, n, tι}.
Each subcarrier can be allocated to at most one user, thus
denote the feasible set of power and subcarrier allocations by
A = {p s.t. ∀tι, n, pk,n,tι > 0 for at most one user k}. The
discretized maximum average utility in state x is then:

U
ι

avg(x) = max
p∈A

1

T ι

T ι∑
tι=1

K∑
k=1

Ubk(Sk,tι) (4)

s.t.
K∑
k=1

N∑
n=1

pk,n,tι ≤ P ∀tι; pk,n,tι ≥ 0 ∀k, n, tι

Sk,tι > S
′

bk
∀k, tι

We solve a dual problem by introducing a set of interme-
diate variables d = {dk,tι ,∀k, tι} as bounds on the achieved
rates i.e. Sk,tι ≥ dk,tι ∀k, tι. The Lagrange is:

F (d,p,λ,µ)=
1

T ι

T ι∑
tι=1

K∑
k=1

Ubk(dk,tι)+

T ι∑
tι=1

K∑
k=1

λk,tι(Sk,tι−dk,tι)

+

T ι∑
tι=1

µtι

(
P −

K∑
k=1

N∑
n=1

pk,n,tι

)
(5)

where dk,tι > S
′

bk
, λ = {λk,tι ,∀k, 1 ≤ tι ≤ T ι} are the

Lagrangian multipliers associated with the rate constraints
which are interpreted as rate prices [6], and µ = {µιt, 1 ≤
tι ≤ T ι} are the Lagrangian multipliers associated with the
power constraints.

However, knowing the channel information for all 1 ≤
t ≤ T ι is impractical and we propose to estimate U

ι

avg(x)
using the channel distribution. Define a random variable α2

k,n

representing fast fading for user k on subcarrier n, whose
distribution is presumed known; denote α2 = {α2

k,n,∀k, n}.
Combine slow fading, shadowing, and pathloss for user k into
a single random variable ψk, whose distribution is presumed
known; denote ψ = {ψk,∀k}. Denote the set of shadowing
and pathlosses for all users except user k by ψ−k = {ψk̂,∀k̂ ̸=
k}. We assume that the distribution of combined slow fading
and shadowing ψk is independent of k. As T ι ↑ ∞,

1

T ι

K∑
k=1

T ι∑
tι=1

Ubk(Sk,tι) →
K∑
k=1

Eα2,ψUbk(Sk)

Partition the domain of ψk into M slices, with the lower
bound of slice m denoted by ψ(m). Denote the probability of

1We also presume that each user has been in the system since time tι =
−(Wbk − 2), so that Sk,tι is defined at tι = 1.

slice m by qm = Pr(ψk = ψ(m)). When in slice m, denote
the power allocated to user k on subcarrier n by p(m)

k,n and the
average rate of user k by S(m)

k . The optimal policy p is then
given by set of Lagrangian multipliers for each user denoted by
{λ(m)

k ,∀k,m}. The optimization problem (4) thus becomes:

U
ι

avg(x) ≈ max
{λ(m)

k ,∀k,m}

K∑
k=1

M∑
m=1

Ubk

(
Eα2,ψ−k

S
(m)
k

)
qm

s.t.
K∑
k=1

M∑
m=1

N∑
n=1

Eα2,ψ−k

(
p
(m)
k,n

)
qm ≤ P

S
(m)
k > S

′

bk
,∀k,m (6)

The detailed proof is in the Appendix. The discretized feasible
region is

Λι =
{

x : ∃{λ(m)
k ,∀k,m} which can solve problem (6)

}
B. Connection Access Control

It remains to formulate and solve a discrete time version
of problem (3). With the discretized feasible region, the CAC
policy space becomes

Gx = {g ∈ G : gl = 0 if x + el ̸∈ Λι}

where el is a vector of zeros, except for a one for the lth
component. The CAC policy QCAC = g(j)

(
x(j−1)

)
remains

to decide on admission of a connection on the basis of the
state immediately before the connection’s arrival.

The state x(j) is a continuous time Markov chain. It can
be converted into a discrete time Markov chain via standard
uniformization techniques [11](p110 and p209) as follows.
The expected time in state x(j) under policy g is

νx(g) =

⌈
1∑L

l=1 βlgl +
∑L
l=1 xlγl

· 1

∆ts

⌉
∆ts

and a bound on these expected times is

ν =

⌈
1∑L

l=1 (βl + xlγl)
· 1

∆ts

⌉
∆ts

where xl is the maximum number of class-l applications in the
network which can be calculated by allocating all the resources
to type l applications. The embedded discrete time Markov
chain transition probabilities are given by:

Pxx′ =

{
xlγlνx(g), l = 1, ..., L , if x′ = x − el
βlglνx(g), l = 1, ..., L , if x′ = x + el

An equivalent discrete time problem is:

max
QCAC

lim
J↑∞

1

J

J∑
j=1

U
ι

avg(x
(j)) (7)

The optimal CAC policy can then be determined using
stochastic dynamic programming. The correspondiong value
iteration algorithm [11](p210) is:

Vi(x) = max
g∈Gx

{
U
ι

avg(x) +
ν

νx(g)

∑
x′∈Λι

Pxx′(g)Vi−1(x′)
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+

(
1− ν

νx(g)

)
Vi−1(x)

}
(8)

where i denotes the iteration number, Vi(x) denotes the
expected return of state x, and x′ is a possible next state.

In summary, the off-line portion of the CAC module uses
stochastic dynamic programming to determine the optimal
connection control policy; this is then used on-line to decide
upon admissions. Upon admitted arrivals or departures, the
CAC module passes the new state x to the RA module.
Off-line, the RA module uses problem (6) to determine a
set of rate prices {λ(m)

k ∀k,m}; actually users in the same
slice m using the same application l will face identical rate
prices, denoted λ(l,m). These rate prices can be used on-line to
allocate power and subcarriers based on the current state and
the current set of channel gains using interpolation: if bk = l
and ψ(m) < ψk,tι < ψ(m−1), then an interpolated rate price
can be set to:

λk,tι ≈ λ(l,m) − (λ(l,m) − λ(l,m−1)) · 1/ψ(m) − ψk,tι

1/ψ(m) − 1/ψ(m−1)

where ψk,tι and ψ(m) are expressed in dB.

V. SIMULATION RESULT

In this section, we examine the performance of the proposed
decomposition via simulation. We adopt the parameters of a
LTE scenario [10]. The system bandwidth is 10MHz and total
number of subcarriers is 1000. The base station transmission
power is 46dBm with an antenna gain of 15 dbi. The inter-site
distance is 750m. We assume 40% of the total resources are
assigned to video users. Thus the total number of subcarriers
for video users is N = 400 and power constraint P = 42dbm.
We set σ2 + I equal to 7.6232 ∗ 10−28mW. All users move
at a constant speed of 10km/h, with direction determined by
a random walk [12]. The pathloss is:

PLk=128.1+37.6 log 10(ζk)+21 log 10(fc/2.0) dB

where ζk is the distance from the user to the base station and
fc = 2000MHz is the central frequency. If users stay in the
cell for a long period of time and/or if users’ speed is high
enough, these users are approximately uniformly distributed
in a donut around the base station from ζ = 0.01km to
ζ = 0.25km. The shadowing follows a lognormal distribution
with mean value 0dB and variance 10dB [10]. The domain
of ψk is partitioned into M = 35 slices. Fast fading follows
an Exponential distribution with mean value 1. The length of
one time slot is 1 ms [13] and fast fading is generated every
3 time slots independent of previous fading.

We consider two kinds of semi-elastic applications and we
set W1 =W2 = 133 slots which is the length of one group of
pictures in MPEG4. The utility function for a type l application
is:

Ul(Sk,tι) =

{
al(Sk,tι)

2, if Sk,tι < Sfl

cl(Sk,t + bl)
1/3, else

where Sk,tι is also expressed in units of 100kbps, a1 = 4/5 ∗
(2/5)1/3/(12/5)2, b1 = −2, c1 = 4/5, Sf1 = 240kbps, a2 =

Admit all arrivals

Block all arrivals

Admit only 

type 1 

arrivals

0 2 4 6 8 10 12 14

0

2

4

6

8

x
2

x
1

Fig. 2. State Space and Admission Policy

TABLE I
AVERAGE UTILITY

Traditional CAC Proposed CAC

Utility 25.89 32.49

TABLE II
MINIMUM AVERAGE RATE (IN UNITS OF KBPS)

Slice number
Traditional CAC Proposed CAC

avg Sm
1 avg Sm

2 avg Sm
1 avg Sm

2

m = 32 494 756 529 753

m = 33 498 696 489 727

m = 34 465 661 476 729

m = 35 429 641 479 635

(5/6)1/3/25, b2 = −25/6, c2 = 1, Sf2 = 500kbps. Both
utility functions are sigmoid [6]; we set the minimum rate
requirements to the rate at the maximum average utility, which
is given by S

′

1 = 300kbps and S
′

2 = 625kbps. The arrival
processes are Poisson processes with intensities β1 = 1/12/s
and β2 = 1/30/s respectively, and the connection durations
are Exponentially distributed with means 1/γ1 = 180s and
1/γ2 = 300s respectively.

The state space and admission policy are shown in Fig 2.
The cell can admit x1 = 11 type 1 applications, x2 = 7 type
2 applications, or a bit less than a linear combination of the
two. In general, type 1 applications are preferred, since they
generate a higher average utility per unit rate at their minimum
rate, i.e. U1(S

′

1)/S
′

1 > U2(S
′

2)/S
′

2. When the state is on or
above the upper boundary of the state space, the optimal CAC
policy is to block all arrivals. When the state is far from the
upper boundary, the optimal policy is to admit all arrivals. In a
zone near the boundary as illustrated, the optimal policy is to
admit only type 1 arrivals, i.e. arrivals of type 1 applications;
as a result, the system will never enter a state with x2 > 5.

We compare our coordinated admission policy with a tradi-
tional admission policy which admits arriving users if and only
if there are enough resources to guarantee QoS constraints,
i.e. one that admits all users in all states under the upper
boundary. The same RA module in section IV is used for both
of these two policies. We simulate 40 minutes of arrivals and
departures; the resulting average utility under each policy is
shown in Table I. In this situation, the coordinated algorithm
achieves a much higher average utility than the traditional
uncoordinated algorithm. This occurs because the coordinated
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CAC policy results in the system spending a substantially
greater portion of time near the highest utility state (11, 0)
than does the traditional policy.

Finally, we examine how well each CAC and RA policy
adheres to their given QoS constraints. To do this, we focus
on the outermost 4 slices, m = 32 to 35, which experience
the lowest average rates. In Table II, we show the minimum
average rate of all users in the given slice within each
application type. We observe that both the coordinated and
uncoordinated CAC and RA policies maintain average rates
above the QoS requirement S

′

l for all users.

VI. CONCLUSION

We have investigated how connection access control and
resource allocation can be coordinated so that both focus on
utility. Whereas previous CAC proposals have typically admit
a new connection if and only if it is believed that capacity
is available to ensure acceptable performance, here we have
proposed that CAC and RA should both focus on maximizing
long-term average utility.

We have found that joint CAC and RA can be decomposed
into separate CAC and RA modules that treat each other
as black boxes, and that the interface simply consists of an
exchange of information about feasible states, current state,
and average utilities in each state. This allows the RA module
to maximize the long-term average utility for each system
state, and the CAC module to maximize the long-term average
utility over all system states. This decomposition provides
flexibility in the design of the CAC and RA policies.

We also gave examples of RA and CAC algorithms that
satisfy this decomposition and interface. The RA module
determines a set of rate prices for each application based
on a user’s combined slow fading, shadowing and pathloss,
and uses these rate prices to allocate power and subcarriers.
The CAC module uses stochastic dynamic programming to
determine the optimal admission policy.

Simulation showed that the optimal CAC policy may block
applications with relatively low average utility per unit rate
even when capacity is available. This preferential treatment
by application can result in much higher average utility while
continuing to satisfy QoS constraints.
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VII. APPENDIX

The first order conditions for (5) result in an optimal power
allocation:

pk,n,tι =

(
Bλk,tι

µtι ln 2
− σ2 + I

|Hk,n,tι |2

)+

(9)

and that subcarrier n should be allocated to the user

argmax
k

Φk,n,tι (10)

where

Φk,n,tι = λk,tιB

[
log2

(
Bλk,tι

µtι ln 2

|Hk,n,tι |2

σ2 + I

)]+
−µtι

(
Bλk,tι

µtι ln 2
− σ2 + I

|Hk,n,tι |2

)+

where λk,tι =
∑tι+W−1
τι=tι λk,τι/Wk. The target rate is

dk,tι=max

{
S

′

bk
, argmax

dk,tι

[Ubk(dk,tι)/T
ι−λk,tιdk,tι ]

}
(11)

We propose basing the average rate price λk,tι on a user’s
combined pathloss and shadowing which is nearly constant
during time window Wbk . The fluctuations in fast fading will
average out during time window Wbk , whereas fluctuations
in slow fading, shadowing, and pathloss will not. Thus the
rate price is principally influenced by combined path loss and
shadowing, i.e. λk,tι should be a function of ψk, denoted
λk(ψk). User k’s achieved rate Sk depends not only on its ψk
but also upon other users’ ψ−k and on all users’ fast fading.
Since fast fading will largely average out within time window
Wbk , the expectation over α2 can be brought inside the utility
function without loss of accuracy. Other users’ shadowing and
pathlosses affect the resource allocation through determination
of the power price µk,tι , but consideration of them in deter-
mination of the resource allocation policy {λk(ψk),∀k} is too
complex; thus we also bring ψ−k inside the utility function.
Then

K∑
k=1

Eα2,ψUbk(Sk) ≈
K∑
k=1

Eψk
Uk(Eα2,ψ−k

Sk)

We partition ψk into M slices. This leads to the quantized
optimization problem (6).
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