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Abstract—We study the effect of stochastic wireless channel
models on the connectivity of ad hoc networks. Unlike in the
deterministic geometric disk model where nodes connect if they
are within a certain distance from each other, stochastic models
attempt to capture small-scale fading effects due to shadowing
and multipath received signals. Through analysis of local and
global network observables, we present conclusive evidence sug-
gesting that network behaviour is highly dependent upon whether
a stochastic or deterministic connection model is employed.
Specifically we show that the network mean degree is lower
(higher) for stochastic wireless channels than for deterministic
ones, if the path loss exponent is greater (lesser) than the spatial
dimension. Similarly, the probability of forming isolated pairs
of nodes in an otherwise dense random network is much less
for stochastic wireless channels than for deterministic ones. The
latter realisation explains why the upper bound of k-connectivity
is tighter for stochastic wireless channels. We obtain closed form
analytic results and compare to extensive numerical simulations.

Index Terms—Connectivity, outage, channel randomness,
stochastic geometry.

I. INTRODUCTION

Recent advancements in micro and nano-scale electronics
along with the development of efficient routing protocols have
rendered current wireless technologies ideal for ad hoc and
sensing applications [1]. Making use of low complexity multi-
hop relaying techniques and signal processing capabilities,
sensor networks can often achieve very good coverage and
connectivity over large areas, “on the fly” in a decentralized
and distributed manner by self-organising into a mesh network,
assigned with some data collection and dissemination task [2].

The spontaneous self-organization trait of large scale sensor
networks has attracted much research attention in recent years,
with particular interest in enhancing the connectivity properties
of the underlying communication graph [3]. Of practical
interest for example is the ability to predict the optimal number
of nodes necessary to maintain good connectivity [4], or
conversely, to predict the optimal average transmission range
for a given number of nodes. These predictions are essential
network design recommendations which can in turn act as
inputs for cognitive scheduling and routing protocol selection.
Furthermore, improvement in the connectivity properties of
the network can have a significant impact on the operational
lifetime of ad hoc sensor networks by conserving energy, and

Fig. 1. Random realizations of ad hoc networks in a square domain of side
L = 10, using β = 1 and η = 2, 4, 6,∞, as defined in the pair connectedness
function H(r). Different connected components are shown in different colors.

can also improve the overall functionality, reliability and fault-
tolerance of the network.

The analysis and resolution of network connectivity is
typically addressed from a physical layer’s point of view
through the theory of stochastic geometry [5], random geo-
metric graphs [6] and complex networks [7], equipped with a
plethora of methods and metrics e.g. clustering and modularity
statistics, node importance, correlations between degrees of
neighbouring nodes, etcetera. From a communications per-
spective, a popular and well studied observable of random
networks is that of full connectivity [8]. This characterizes the
probability Pfc with which a random realization of an ad hoc
network will consist of a single connected component (cluster).
Consequently, every node in the network can communicate
with any other node in a multi-hop fashion.

In the theory of random geometric networks, two nodes
are said to connect and form a pair if they are within a
certain distance r0 from each other. This is referred to as the
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geometric disk model and is only sufficient when modelling
deterministic, distance-dependent wireless channels. One ex-
tension of this connectivity model, is to account for the channel
randomness due to shadow fading and multipath effects in
the spatial domain by ‘softening’ the position dependence of
the pair connectedness function such that links are established
in probability space [9]. In static wireless networks, this
softening can be understood as modelling the randomness in
the received signal power [10]. Thus, in the absence of inter-
node interference, two nodes connect with a probability H(r)
which decays as a function of the distance r between the pair.
What this effectively means is that nodes which are closer than
a distance r0 from each other may no longer be connected,
and nodes that are more than r0 apart may be connected.

The overall effect of channel randomness is typically en-
coded into the path loss exponent η (defined later) [11] and has
been argued to have a negative effect on local connectivity, but
a positive effect on overall connectivity [12]. The latter con-
clusion has been reached through a combination of theoretical
and numerical results, the former mainly relying on the bound
Pfc ≤ Pmd, where Pmd characterizes the probability with
which a random realization of an ad hoc network has minimum
network degree equal to one i.e. each node is connected to at
least one other node. The bound was proven to be tight by
Penrose in 1999 for the deterministic geometric disk model
in the limit of number of nodes N → ∞ [13]. Since then, a
number of papers have followed suit extending these results
in many directions to include for, inter alia, boundary effects,
channel randomness, and anisotropic radiation patterns.

In this paper, we challenge the negative effect of channel
randomness on local connectivity and also investigate the
tightness of the bound Pfc ≤ Pmd for finite yet sufficiently
large N and examine the role of channel randomness to this
respect. We show analytically that Rayleigh fading improves
local connectivity when η is less than the effective spatial
dimension d of the network. We also show that the pair
isolation probability Π is what distinguishes Pmd from Pfc at
high node densities, and calculate closed form expressions for
it assuming a Rayleigh fading channel. Both of our results are
validated through extensive numerical simulations, the latter
suggesting that two nodes are more likely to form an isolated
pair when η is large i.e. in heavily cluttered environments.
Finally, we discuss the engineering insight provided by our
analysis towards facilitating the design of wireless ad hoc
sensor and mesh networks [14].

The paper is structured as follows: Sec. II describes the
system model and relevant assumptions. Secs. III and IV
discuss local and global network observables respectively and
their sensitivity to stochastic/deterministic wireless channels.
Sec. V investigates analytically the pair isolation probability,
and Sec. VI numerically confirms our theoretical predictions
which are then summarised and discussed in Sec. VII.

II. SYSTEM MODEL

We consider a network of N nodes distributed randomly
and uniformly in a d = 2, 3, dimensional convex domain

V ⊂ Rd with volume V . The node position coordinates
are given by ri ∈ V for i = 1 . . . N . We say that a
communication link between a pair of nodes i and j exists
with probability H(rij), where rij = |ri − rj | is the relative
distance between the pair. One physical interpretation of
a communication link is given by the complement of the
information outage probability between two nodes for a given
rate x in bits per complex dimension, which can be written as
Pr
(
log2(1 + SNR× |h|2) > x

)
[11], where h is the channel

transfer coefficient, and SNR ∝ r−ηij is the average received
signal to noise ratio and η is the path loss exponent. Typically
η = 2 corresponds to propagation in free space but for
cluttered environments it is observed to be η ≥ 2.

We consider the case where the individual channel fading
distributions follow a Rayleigh fading model, and all channels
are statistically independent. It follows that |h|2 has a standard
exponential distribution for a single-input single-output (SISO)
antenna system. Hence, the connection probability H(r) be-
tween two nodes a distance r apart can be expressed as

H(r) = e−βr
η

, (1)

where β sets the characteristic connection length r0 = β−1/η .
Therefore, our system model has two sources of randomness:
random node positions, and random link formation according
to the ‘softness’ of the channel fading model controlled here
by η. It is important to note that in the limit of η → ∞, the
connection between nodes is no longer probabilistic and con-
verges to the geometric disk model, with an on/off connection
range at the limiting r0. We will later make use of this limit in
order to compare the connectivity of random networks using
deterministic or stochastic point-to-point link models.

Fig. 1 shows how N = 150 nodes scattered randomly in
a square domain of side L = 10, connect to form different
networks for different values of η = 2, 4, 6, and∞, using β =
1. The corresponding H(r) functions are also plotted below
each panel in order to give the reader a feeling of how probable
shorter and longer than r0 links are in the presence of Rayleigh
fading. We stress that in practice, an efficient medium access
control (MAC) layer protocol is typically required e.g. using
a Time Division Multiple Access (TDMA) scheme in order to
render inter-node interference negligible. Alternatively, a low
traffic network may be assumed so that the communication
network can be modelled as seen in Fig. 1.

III. LOCAL CONNECTIVITY AND MEAN DEGREE

The network mean degree µ is a local observable of
network connectivity characterising the average number of
one-hop neighbours of a typical node. For random geometric
networks as described in Sec. II, this can be expressed as
µ = N−1

V 2

∫
V2 H(rij)dridrj which follows from multiplying

N−1 by the probability of two randomly selected nodes (i and
j) connecting to form a pair. Assuming that V is large and the
typical length scale of the domain is greater than the effective
connection range r0, a typical node is most likely to be found
away from the borders of the domain. Moreover, since H(r)
is decaying exponentially, it is reasonable to expect that the
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Fig. 2. Plot of the mean degree µ as a function of η, obtained from numerical
simulations of ad hoc networks in a square of side L = 10 (blue), and a cube
of side L = 7 (purple). In both cases β = ρ = 1. The analytical predictions
of (2) are shown as solid curves and the limit µ∞ as dashed lines.

degree of a typical node is very much insensitive to boundary
effects, thus justifying the following approximation

µη ≈ ρ
∫
Rd
H(r)dr = ρΩ

∫ ∞
0

rd−1e−βr
η

dr = ρ
ΩΓ( dη )

ηβ
d
η

(2)

where ρ ≈ N−1
V and Ω = 2π

d
2

Γ( d2 )
is the solid angle in d dimen-

sions. In (2) we have effectively assumed that the network is
homogeneous i.e. it is translation and rotation invariant, such
that we can set ri = 0 and extend the radial integral of rj
to infinity taking on exponentially small errors. Substituting
β = r−η0 and taking the limit η →∞ we obtain an expression
for the mean degree for the deterministic geometric disk
model µ∞ = ρΩ

rd0
d . Comparing this to the result of (2), we

conclude that µ∞ = µη when η = d and that µη < µ∞
for η > d. In other words, the stochastic and deterministic
connectivity models are equivalent at η = d when viewed
locally. More importantly however, Rayleigh fading reduces
the local network connectivity when η > d, but improves it
when η < d. The latter condition describes a very special case
when the network resides in an effectively 2D plane, but may
well be significant in 3D networks deployed in multi-storey
buildings for example where the path loss exponent may be
in the range 2 ≤ η < 3. Consequently, one may significantly
over or under specify network design features and deployment
methods if the network is not correctly modelled.

Numerical verification of the above result is presented in
Fig. 2 showing computer Monte Carlo simulations of ad
hoc networks in two and three dimensions. The analytical
predication of (2) and the limit case of µ∞ are also shown for
comparison. An almost perfect agreement is observed between
theory and simulations with the theoretical result typically
being smaller than the numerical one. This is because µη
was approximated assuming no boundary effects, which hinder
connectivity for nodes near the borders of V . The minimum
value of µη is obtained numerically at η ≈ 4.33 and η ≈ 6.50
in two and three dimensional networks respectively. We now
turn to investigate global network observables.

IV. k-CONNECTIVITY AND MINIMUM DEGREE

In the absence of a fixed infrastructure (e.g. cellular, or
WLANs), where it is sufficient that each network node has

a wireless link to at least one access point, in decentralized
ad hoc networks, efficient routing protocols can utilize mu-
tually independent paths to communicate information through
the network e.g. for sensing, monitoring, alerting or storage
purposes [1]. Therefore, if a multihop path exists between all
pairs of nodes, then the network is fully connected and in a
sense is both delay and disruption tolerant [15].

A generalization of the concept of full connectivity is
that of k−connectivity [16]. A fully connected network is
said to be k-connected if the removal of any k − 1 nodes
leaves the remaining network fully connected. The removal of
nodes may model technical failures (e.g. a hardware/software
malfunction) or attacks which can disrupt the functionality and
operation of the network, in some cases leading to cascades
of catastrophic failures [17]. Equivalently, k-connectivity also
guarantees that for each pair of nodes there exist at least k
mutually independent paths connecting them [6]. Therefore,
k-connectivity is an important measure of network robustness,
resilience but also of routing diversity.

It is clear that a k-connected network has minimum degree
k, i.e. each node has at least k neighbouring nodes. The
opposite statement is not true however and hence the former
set is a subset of the latter and so Pfc(k) ≤ Pmd(k), where
Pfc(k) denotes the probability that a random realization of
an ad hoc network is k-connected, and Pmd(k) denotes the
probability that it has minimum degree k. These two ob-
servables are however strongly related through a fundamental
concept originally proven in [13] (Theorem 1.1) which states
that “if N is big enough, then with high probability, if one
starts with isolated points and then adds edges connecting
the points in order of increasing separation length, then the
resulting graph becomes k-connected at the instant when it
achieves a minimum degree of k”. Ever since this realization,
Pfc(k) has been approximated by Pmd(k) [18] as it is easier to
express mathematically, and evaluate numerically. Specifically,
we have that [16]

Pmd(k) = 〈
N∏
i=1

P (degree(ri) ≥ k)〉

≈

[
1−

k−1∑
m=0

ρm

m!

1

V

∫
V
Mm
H (ri)e−ρMH(ri)dri

]N
,

(3)

where MH(ri)=
∫
V H(rij)drj and V is assumed to be much

larger than πrd0 . The angled brackets in (3) represent a spatial
average of a network observable O over all possible node
configurations and is defined as

〈O〉 =
1

V N

∫
VN

O(r1, r2, . . . , rN )dr1dr2 . . . drN . (4)

We will use this notation in order to calculate expectation
values of different random network observables.

Fig. 3 shows Monte Carlo computer simulations for η = 2
(left panels) and η =∞ (right panels). 105 random networks
were simulated in a square domain of side L = 10 for a range
of node density values ρ ∈ (1, 8) using β = 1, in order to
obtain curves for Pfc(k) and Pmd(k) for k = 1, 2, 3, and 4.
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Fig. 3. Computer simulation of Pmd(k) (filled markers) and Pfc(k) (hollow
markers) for k ∈ [1, 4] using β = 1 and η = 2 (left) and η = ∞ (right) in
a square-shaped domain of side length L = 10. Bottom: 1 − Pmd(k) and
1− Pfc(k) on a log-linear scale.

Indeed, it can be seen from Fig. 3 that the two observables
are in good agreement with each other, with Pfc(k) following
Pmd(k) closely from below. What is also evident however,
is that the gap between the two ∆(k) = Pmd(k) − Pfc(k)
is significantly larger and persistent even at high densities
for deterministic (η = ∞) rather than probabilistic (η < ∞)
wireless channels. The visible difference can be seen to persist
even when plotted on a log-linear scale (bottom panels).
This observation has been investigated numerically in several
articles [9], [10], [12], [18] but has not been fully understood.
What is the impact of channel randomness? Is fading good or
bad? These are but a few related questions we aim to revisit
in the next section by attempting to understand where ∆(k)
stems from and the significance of the path loss exponent η.

V. THEORETICAL ANALYSIS

It was recently shown in [8], that Pfc(1) at high node
densities is given by the complement of the probability of
an isolated node

Pfc(1) = 1− ρ
∫
V
e−ρ

∫
V H(rij)drjdri + . . . , (5)

where the (. . .) indicate higher order terms, possibly ex-
ponentially smaller than the leading order term. Physically,
(5) makes sense since a dense network which is not fully
connected will most probably involve a single isolated node.
It is thus reasonable to extend this argument and expect
that at high node densities a network which has minimum
degree 1 but is not fully connected will most likely consist
of a large N − 2 cluster and an isolated pair of nodes. We
therefore define Π(1) as the probability that two randomly
selected nodes are connected to each other, but are isolated
from the remaining nodes of the network, and argue that
∆(1) = Pmd(1) − Pfc(1) ≈ Π(1) at high node densities.
In order to confirm our hypothesis, we will analytically
calculate the dominant contribution to Π(1) and then compare
against numerical simulations of ∆(1) for different values of
η obtained.

Using the spatial average defined in (4), and letting Hij =
H(rij) in order to save space, we write

Π(1) = 〈
∑
i<j

Hij

∏
k 6=j 6=i

(1−Hik)(1−Hjk)〉

=
N(N − 1)

2
〈Hij

∏
k 6=j 6=i

(1−Hik)(1−Hjk)〉

≈ ρ2

2

∫
V2

Hij

[
1

V

∫
V

(1−Hik)(1−Hjk)drk

]N−2

dridrj

≈ ρ2

2

∫
V2

Hije
−ρ

∫
V Hik+Hjk−HikHjkdrkdridrj ,

(6)

where we have assumed that N � 1 such that (N − 1)/V ≈
(N−2)/V ≈ ρ, and (1−x)N ≈ e−Nx. In the third line of (6),
we used the fact that N−2 of the N integrals defined in (4) are
separable since the possible connections of the pair (i, j) to
the remaining N−2 nodes are statistically independent events.
Whilst equation (6) appears to be very complicated, there
are several important observations to be highlighted which
can simplify it. Firstly, in the high density limit we expect
equation (6) to be dominated by contributions where the inner
integral in the exponent is small. The integral in the exponent
represents the probability that a randomly selected node k
connects with node i or node j or both, an event least probable
if both i and j are near the boundary of the domain which
physically corresponds to the most hard to connect to region
of V . Secondly, the dominant contribution of (6) also requires
Hij ≈ 1, and thus nodes i and j must be close to each other
in order to form the isolated pair. Both these conditions are
met at a corner of V .

We therefore consider each of the four right angled corners
of a square1 domain V = [0, L]2 independently and attempt
to calculate Π(1) from (6). We assume that nodes i and j are
both near this corner and hence Taylor expand Hik and Hjk

in the integrand of in the exponential using polar coordinates
up to linear order in ri and rj respectively to obtain

K̂(ri, rj) =

∫
V
Hik +Hjk −HikHjkdrk

≈ 2−
η+2
η β−

2
η

[π
2

(2
η+2
η − 1)Γ

(
η + 2

η

)
+ (2β)

1
η (2

η+1
η − 1)Γ

(
η + 1

η

)
× (ri(cos θi + sin θi) + rj(cos θj + sin θj))

]
,

(7)

where we have ignored correction terms of order O(rirj).
The integration limits in (7) were taken to be rk ∈ [0,∞)
and θk ∈ [0, π/2]. The semi-infinite integration is allowed
here since H(r) decays exponentially fast with r and so if
βL� 1 any added errors in (7) will be exponentially small.

Substituting back into (6) and assuming that the two nodes
are sufficiently close such that Hij ≈ 1, we may now perform

1Note that the current analysis is not restricted to the simple case of a
square domain, nor the SISO point-to-point Rayleigh fading model (1).
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Fig. 4. Computer simulations (filled markers) in a square domain showing
∆(1) = Pmd(1)−Pfc(1) as a function of the density ρ for different values
of η = 2, 4, 6,∞ and β = 1. The analytical approximation of Π(1) is also
plotted (solid curves).

the remaining integrals to arrive at our main result

Π(1) ≈ 32
2

4
η β

4
η exp

[
−ρπ2 (1− 2−

η+2
η )β−

2
η Γ
(
η+2
η

)]
ρ2
(

(2−
η+1
η − 1)Γ

(
η+1
η

))4 , (8)

where we have also multiplied the result by 4 due to the four
identical right angle corners of V . The resulting approximation
of Π(1) is a monotonically decreasing (increasing) function
with respect to the density ρ (path loss exponent η), which
diverges like ρ−2 near the origin (see Fig. 4). Therefore, in
order for (8) to be interpreted as a probability, one needs to
carefully investigate regions of convergence and bound any
approximating errors. We will refrain from doing so for the
sake of brevity and instead aim at obtaining useful engineering
insight on the impact of stochastic wireless channel models.
We therefore substitute β = r−η0 into (8) and expand for η � 1

Π(1) ≈ 32
exp

[
−ρπr

2
0

4 + f(η)
]

r4
0ρ

2
+O(1/η), (9)

where f(η) is always negative and decays monotonically to
zero like |f(η)| ∼ η−1. Note that the πr2

0/4 term appearing in
the exponential indicates the available connection region for
the pair to establish a link with the rest of the network. We
can thus conclude that the probability that two nearby nodes
form an isolated pair is much less for stochastic H(r) than for
deterministic ones. Moreover, comparing (9) to the probability
of an isolated node in a square domain given by [8]

4
exp

[
−ρπr

2
0

4

]
r2
0ρ

, (10)

in the high density limit, we observe that for a stochastic
connectivity function (i.e. η < ∞), Π(1) is exponentially
smaller than (10) whilst for a deterministic connectivity model
(i.e. η =∞) it differs only by an algebraic function of ρ.

We have shown that the probability that two nearby nodes
form an isolated pair is much less for stochastic H(r) than
for deterministic ones in the dense regime. Furthermore,
there is good reason to expect that this observation is not
only restricted to Rayleigh fading channels but also to other
small-scale fading models such as for example the two-wave

with diffuse power (TWDP) model [19]. We postpone further
discussion on the physical interpretation of this observation to
Sec. VII and turn to numerical simulations in order to verify
that ∆(1) ≈ Π(1) at high node densities.

VI. NUMERICAL SIMULATIONS

In this section we will numerically investigate ∆(1) =
Pmd(1) − Pfc(1) obtained from computer Monte Carlo sim-
ulations of ad hoc networks (as in Fig. 3) for different values
of η = 2, 4, 6,∞, in a square domain of side L = 10. Our
results are plotted in Fig. 4 and are contrasted against the
theoretical prediction of equations (8) and (9). We observe
that ∆(1) is a unimodal function of ρ, which peaks around
ρ ∈ (2, 3) with a value of approximately 0.1. Therefore, at
such densities, approximately 1 out of 10 random realisations
of ad hoc networks have minimum degree one, but are not
fully connected. At lower densities ρ < 2, the difference ∆(1)
is small because the set space of possible graphs is small,
essentially enforcing a large overlap between full connectivity
and minimum degree. At higher node densities, where the
set space grows exponentially, the difference between the two
observables grows to a maximum, only to decay exponentially
as the two distributions converge to 1. Fig. 4 confirms with
a surprisingly good accuracy that ∆(1) ≈ Π(1) at high node
densities, and therefore a network which has minimum degree
1 but is not fully connected will most likely consist of a large
N − 2 cluster and an isolated pair of nodes. Moreover, the
probability that two nearby nodes form an isolated pair is much
less for stochastic H(r) than for deterministic ones.

Given the numerical verification of our hypothesis, we may
speculate for the more general case k ≥ 1, and conjecture
that the dominant contribution to ∆(k) can be derived by
considering the most likely scenario involving a (k − 1)-
connected network of minimum degree k in the high density
limit. For example, for k = 2 this would correspond to a pair
of nodes which connect to the main cluster via a single node.
Similarly, for k = 3 this would correspond to a pair of nodes
which connect to the main cluster via 2 nodes. See Fig. 5 for
more illustrative examples for k = 2, 3, 4, 5. We may therefore
attempt to write down a general expression for Π(k) ≈ ∆(k)

Π(k) = 〈
∑
i<j

Hij

k−1∏
n=1
tn 6=i,j

HitnHjtn

∏
m6=i,j,tn

(1−Him)(1−Hjm)〉,

(11)

where the nodes tn with n < k act as relays or “bridging”
nodes, which if removed, would cut off the pair (i, j).

We will not however investigate (11) any further as it is
beyond the scope of this paper. Instead, we discuss briefly the
concept of k-edge-connectivity related to the removal/failure
of k − 1 edges (rather than nodes). Clearly, a k-connected
network is k-edge-connected and so P

(n)
fc (k) ≤ P

(e)
fc (k),

where we have used superscript (n) and (e) to denote node-
connectivity and edge-connectivity respectively. This is be-
cause when you remove a node from a connected network,
you always remove at least one edge. Further, it is also clear
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Fig. 5. Example illustrations of networks involving a k − 1 connected
network of minimum degree k for k = 2, 3, 4, 5. The clouds in each case are
assumed to be k-connected networks of N − k − 1 nodes, linked to a pair
of nodes (which most probably is situated near a corner of V) through k− 1
“bridging” nodes. Note that for k = 1, there is no bridging node.

that P (e)
fc (k) ≤ P

(n)
md (k) since the former implies the latter

and so we have that P (e)
fc (k) is sandwiched between the two.

We can squeeze this bound further by noting that k-edge-
connectivity implies the examples illustrated in Fig. 5 so
that P (n)

fc (k) ≤ P
(e)
fc (k) ≤ P

(n)
fc (k) + Π(k) ≤ P

(n)
md (k) as

ρ → ∞. Such bounds are of interest to wireless network
system designers, researchers as well as to the extended
random graph community.

VII. CONCLUSION AND DISCUSSION

In this paper we have modelled ad hoc and sensor networks
as random geometric graphs, and investigated the effects of
stochastic wireless channel models onto local and global
network observables such as the mean degree, full connec-
tivity and the minimum network degree. Through analysis we
have argued that compared to deterministic wireless channels,
Rayleigh fading typically improves the network mean degree
when η < d, and deteriorates it when η > d. We have
also argued that at high node densities a network which has
minimum degree 1 but is not fully connected will most likely
consist of a large N − 2 cluster and an isolated pair of
nodes. To this end, we have shown analytically and confirmed
numerically that the probability Π of isolated pairs forming in
ad hoc networks is much less for stochastic wireless channels
than for deterministic ones.

The question then arises as to how to interpret such a result
in physical systems where the path loss exponent η encodes
the shadow fading and multipath effects to average received
SNR. In our view, a high path loss exponent suggests a higher
level of correlations between neighbouring nodes. That is, in
heavily cluttered or lossy environments, two nearby nodes will
be more correlated with regards to their network topology i.e.
they will typically connect to the same nodes, rather than in
less cluttered environments. While hardware behaviour may
be affected by other unconsidered factors, our model and

subsequent theoretical analysis successfully captures the main
physical picture and therefore has significant implications on
real-world network emulation and deployment. Namely, the
fact that network behaviour is highly dependent upon whether
a stochastic or deterministic connection model is employed
must be taken into account by network design engineers,
for one can envisage the potential for significantly over or
under specifying network parameters if the incorrect model
is chosen. Such an error could lead to costly deployments,
or worse yet, networks that frequently experience faults or
failures.
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