Abstract:
Application Layer Distributed Denial of Service (ALDDoS) attacks have been increasing rapidly with the growth of Botnets and Ubiquitous computing. Differentiate to the fo...Show MoreMetadata
Abstract:
Application Layer Distributed Denial of Service (ALDDoS) attacks have been increasing rapidly with the growth of Botnets and Ubiquitous computing. Differentiate to the former DDoS attacks, ALDDoS attacks cannot be efficiently detected, as attackers always adopt legitimate requests with real IP address, and the traffic has high similarity to legitimate traffic. In spite of that, we think, the attackers' browsing behavior will have great disparity from that of the legitimate users'. In this paper, we put forward a novel user behavior-based method to detect the application layer asymmetric DDoS attack. We introduce an extended random walk model to describe user browsing behavior and establish the legitimate pattern of browsing sequences. For each incoming browser, we observe his page request sequence and predict subsequent page request sequence based on random walk model. The similarity between the predicted and the observed page request sequence is used as a criterion to measure the legality of the user, and then attacker would be detected based on it. Evaluation results based on real collected data set has demonstrated that our method is very effective in detecting asymmetric ALDDoS attacks.
Date of Conference: 10-14 June 2014
Date Added to IEEE Xplore: 28 August 2014
Electronic ISBN:978-1-4799-2003-7