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Abstract—Random dense deployment of heterogeneous net-
works (HetNets), consisting of macro base stations (BS) and
small cells (SC), can provide higher quality of service (QoS)
while increasing the energy efficiency of the cellular network.
In addition, it is possible to achieve lower deployment cost and,
therefore, maximize the benefits for the network providers. In this
paper, we propose a novel method to determine the minimum de-
ployment cost of a two-tier heterogeneous cellular network using
random deployment. After deriving the coverage probability of
the two-tier deployment by using stochastic geometry tools, we
identify the tier intensities that provide the minimum deployment
cost for a given coverage probability. Extensive simulations verify
the existence of a unique set of intensities for different coverage
constraints.

Index Terms—Heterogeneous networks, Random deployment,
Coverage probability, Stochastic geometry, Cost minimization

I. INTRODUCTION

Nowadays that there is an explosion of data traffic, spectral

efficiency is a quality of service (QoS) parameter that needs

the attention of network providers. Although increasing the

density of macro base stations (BS) could provide higher

spectral efficiency, it also increases the inter-cell interference

that vastly limits the network coverage [1][2]. An alternative

approach is the utilization of heterogeneous networks (Het-

Nets) [3], a new paradigm shift in cellular networks technol-

ogy, which suggest the coexistence, in an area, of multiple

network tiers which are different in terms of transmission

power, coverage range and data rates [4]. By employing,

for example, a combination of macro BSs and small cells

(SC), network providers can achieve higher spectral efficiency,

higher coverage range and, potentially, lower deployment cost.

Network planning is dependent on these three parameters and

efficient cell deployment is one of the most crucial problems

of cellular network planning.

For many years, the Wyner model [5], which is a one-

dimensional downlink model, and other deterministic ap-

proaches were used in the network planning, but they were

not accurate enough for the inter-cell interference modeling

[6]. To overcome these limitations, stochastic geometry [7]

is a mathematical tool that has been recently introduced

to model wireless networks and analyze their performance.

By representing the locations of the wireless nodes with a

homogeneous Poisson Point Process (PPP), we can achieve

a more realistic interference model [8], in contrast to the

classical grid placement of the cells, which is an ideal scheme,

not feasible in real life.
Moreover, a deterministic BS topology that requires careful

placement of the cells implies big expenses for the network

providers. Several works in the literature focus on efficient

cell deployment and provide solutions that promise lower an-

nual capital expenditure (CAPEX) and operational expenditure

(OPEX). In [9], a hierarchical optimization planning method is

utilized for the cost minimization, subject to network coverage

and traffic load. The authors suggest a planned network with

a fixed placement of cells. In [10], the cost of a self-deployed

network with a throughput requirement subject to a coverage

constraint is examined and the results are compared to the cost

of a traditionally planned network. Both approaches provide

efficient solutions, but they do not take under consideration the

randomness of the cell deployment to create a more realistic

scenario.
During the last years, many papers have studied the cov-

erage probability of randomly deployed cellular networks

with the aid of stochastic geometry [8], [11] for single-

tier networks. In [8], the authors examine the coverage and

mean data rate in cellular networks, but their analysis is

based on macro BSs and the model can not be applied for

low power tiers with higher intensities. Multiple-tier network

scenarios have been also studied in [12], where the authors

focus on making the model more realistic regarding the load

and network traffic. Considering that the QoS and, more

specifically, the network coverage is a crucial factor for the

network performance, it should be jointly considered along

with the low cost deployment.
In this paper, we provide a theoretical framework for finding

the minimum deployment cost in a two-tier network for a

given QoS. With the suggested method, we can indeed reach

a minimum cost for all the different deployment combinations

that satisfy a given constraint in the probability of coverage.

In particular, our contribution is threefold:

1) First, we derive the coverage probability of a two-tier

network consisting of both macro BSs and SCs. For

the single-tier probability of coverage we use stochastic

geometry by following the mathematical approach of

[8].

2) Second, to overcome the limitations that occur by em-

ploying the approach adopted in [8] (i.e., the closed



Fig. 1: Voronoi tessellation of the macro BSs PPP, shown in

red triangles, and the SCs PPP denoted by the blue dots. The

UE under study is located in the center of the network denoted

by the green square.

form solution ends up in false values under certain

conditions), we evaluate the single integral expressions

by using the Gauss quadrature method of [13].

3) Finally, we propose an iterative scheme that extensively

searches for a set of minimum intensities, according to

a cost model and for a specified level of coverage.

The remaining part of the paper is organized as follows. In

section II, we describe the system model. The coverage prob-

ability of the two-tier network is analyzed in section III. The

cost model and the description of the proposed algorithm for

the minimum cost are provided in section IV. The numerical

results are presented in section V. Finally, section VI concludes

the paper.

II. SYSTEM MODEL

We consider a two-tier network deployed in a general flat

square territory as the one shown in Fig. 1, consisting of n
macro BSs, m SCs and l user equipments (UE).

Both network tiers are assumed to be on the same euclidean

plane, represented by two independent homogeneous PPPs. In

this way, the cells can be modeled as a set of independently

and randomly located points on the plane. The macro BSs are

described by the homogeneous PPP ΦBS = {x1, x2, . . . , xn}
where xi describes the location of the ith macro BS. ΦBS has

an intensity λBS which corresponds to the average number of

points per area unit. Accordingly, the SC tier is represented

by a homogeneous PPP ΦSC = {y1, y2, . . . , ym}, where yj
describes the location of the jth SC. The intensity of this point

process is denoted by λSC . Finally, the downlink coverage is

evaluated at a reference UE that is represented as a single

point in the flat square area. Without loss of generality, the

location of the UE point will be the origin (i.e., the center of

the area), since conditioning on a point at the origin does not

affect the statistical properties of the coexisting PPP [14].

In Fig. 1, the topology of the two-tier downlink network is

illustrated with a superposition of two Voronoi tessellations1.

The areas defined by the blue dotted lines correspond to

the Voronoi cells of the SCs, while the areas defined by

the red solid lines correspond to the macro BS cells. The

UE will be associated to either the macro BS or SC of the

respective Voronoi cell in which it falls in. However, in our

case, we propose a model which is independent of the tier

that the UE will eventually associate, since we need to know

merely if the desired signal is able to satisfy the UE rate

requirements. Furthermore, the two tiers operate in different

frequency bands, so that there is no interference from the

macro BSs to the SCs and vice versa. It should also be

mentioned that network operates under saturation conditions

(i.e., all nodes in the network always have a packet to be

transmitted).

The average received power at the UE located in a distance

RBS from the ith BS is denoted by PBSi

UE = PBShR
−α
BS , where

α is the path loss exponent, PBS is the transmit power of

the macro BS and h is the power fast fading coefficient. We

assume that PBSi
= PBS ∀ i. Also,

√
h is Rayleigh distributed

and, as a result, h is modeled as an exponentially distributed

random variable with mean value μ. The Rayleigh fading

environment is considered suitable for modeling fast fading

in urban environments [15]. Similarly, the received power at

the UE located in a distance RSC from the jth SC is given

by P
SCj

UE = PSChR
−α
SC , where PSC is the transmit power of

the SC. Again, we assume that PSCi = PSC ∀ i. Finally, an

additive and constant thermal noise power (N ) is assumed that

is generated in the receiver.

III. TWO-TIER COVERAGE PROBABILITY

In this section, we derive the probability that a user is

in the coverage of any of the two tiers that exist in the

area. This is a necessary step towards fulfilling the goal

of minimizing the deployment cost, since the cost model is

directly connected with the tier intensities and, consequently,

the coverage probability.

A UE can successfully decode the received signal when the

signal to interference plus noise ratio (SINR) is higher than a

target SINR denoted by γ, which depends on the application

requirements of the UE. The interference is the sum of the

power received by the UE due to the transmissions of other

cells of the same tier, since the tiers operate in different bands.

According to the system model described in section II, the

SINR of a UE located at the origin and associated with the

macro BS is given by:

SINRBS =
PBShx

−α
0∑

xi∈Φ/x0
PBSh‖xi‖−α +N

(1)

1The Voronoi tessellation is a decomposition of the space into cells that
are obtained from the intersection of half-spaces.



whereas the respective expression for the SC associated UE

is:

SINRSC =
PSChy

−α
0∑

yj∈Φ/y0
PSCh‖yj‖−α +N

(2)

where x0, y0 denote the respective locations of the BS or

SC cells which the user is associated with, and ‖.‖ denotes

the euclidean norm. The summations in the denominators of

Eq.(1) and Eq.(2) correspond to the interference caused by all

cells except for the associated one.

In a two-tier network, there are four different possibilities

to determine whether the UE can successfully decode the

received signal or not. In particular, there is: i) the possibility

that both SINRs measured by the UE from the two tiers are

over the threshold, ii) the possibility that only the measured

SINR of the macro BS tier is over the threshold, iii) the

possibility that only the measured SINR of the SC tier is

over the threshold, and iv) the possibility that none of the

two tiers is able to provide connectivity to the UE. The first

three possibilities correspond to the coverage probability of a

two-tier network, which can be written as:

Prcov = Pr(max(SINRBS , SINRSC) > γ)

= 1− Pr(max(SINRBS , SINRSC) < γ)

= 1− Pr(SINRBS < γ, SINRSC < γ)

(3)

Since the events of the probability in Eq.(3) are independent

and not mutually exclusive, we can write the coverage prob-

ability as:

Prcov = 1− Pr(SINRBS < γ)Pr(SINRSC < γ). (4)

Eq.(4) suggests that the coverage probability of a two-tier

network depends exclusively on the coverage probability of

each individual tier.

Following the approach of [8], the probability of coverage

for a single-tier network is given by:

Pr(SINR < γ) = 1− Pr(SINR > γ)

= 1− πλ

∫ ∞

0

e−πλυ(1+ρ(γ,α))−μγNυα/2

P dυ
(5)

where ρ(γ, α) = γ2/α
∫∞
γ−2/α

1
1+υα/2 dυ, γ is the threshold,

N denotes the thermal noise power, α corresponds to the path

loss exponent, λ represents the intensity of the PPP, P denotes

the transmit power of the cell, μ is the mean value of the

power fast fading coefficient h and υ denotes the square of

the distance from the associated cell.

Setting α = 4, which is a frequently used value for

the considered dense urban environment, Eq.(5) becomes an

integral of the form: ∫ ∞

0

e−ax2

e−bx dx. (6)

In spite of the fact that there is a closed form solution for the

integral in Eq.(6), which is:∫ ∞

0

e−ax2

e−bx dx =

√
π

b
exp

(
a2

4b

)
Q

(
a√
2b

)
, (7)

we have noticed that it does not behave properly for high λ
values, which are essential in HetNets for the low power tiers.

In this situation, the Q-function2 takes very high values while

the exponential term takes very low values, leading to a zero

coverage3, which is not correct. Hence, address this issue we

propose an alternative way to handle Eq.(5).

By using a modified Gauss-Hermite quadrature [13], we

can accurately approximate the value of the integral, which is

given by: ∫ ∞

0

e−x2

f(x) dx =
n∑

i=1

wif(xi) (8)

where wi and xi are the weights and the roots, respectively,

given in [13, Table II], while n denotes the degree of the

Gauss-Hermite polynomial. To reach the form of Eq.(6) we

first need to apply the substitution −μγN
P υ2 → x2 in Eq.(5)

which results in the following equation for the probability of

coverage:

Pr(SINR < γ) =1− q

∫ ∞

0

e−qx(1+ρ(γ,4))e−x2

dx

= 1−q
n∑

i=1

wie
−qxi(1+ρ(γ,4))

(9)

where

q = πλ

√
P

μγN
(10)

and

ρ(γ, 4) =
√
γ(

π

2
− arctan(

1√
γ
)). (11)

By replacing Eq.(9) to Eq.(4) appropriately for each tier, we

can find the probability of coverage in a two-tier network.

Hence, in the following section, we introduce the cost model,

which enables us to estimate the minimum deployment cost.

IV. COST MODEL

The total cost Ctot,x, including CAPEX and OPEX, of the

x tier in area A is:

Ctot, x = λxCxA (12)

where λxA is the intensity measure of tier x in a total area

A, while Cx denotes the total cost of one cell. In the two-tier

case, we have a total cost for a specific area A that consists

of the CAPEX and OPEX of two sets of cells with different

intensities. This can be modeled as:

Ctotal = λBSCBSA+ λSCCSCA. (13)

Dividing Eq.(13) by A, we get on the left-hand side of

the equation the term Ctotal/A = Cnorm which denotes the

normalized cost per square unit.

Having derived the cost model and the two-tier probability

of coverage, we can proceed to the formulation of the cost

2The Q-function is the tail probability of the standard normal distribution,

defined as Q(x) = 1√
2π

∫∞
x exp(−u2

2
)du.

3MATLAB and Mathematica software packages were used for this purpose.



minimization problem which will provide us with the optimal

tier intensities.

min
λBS ,λSC

λBSCBS + λSCCSC

s.t. Prcov = ε, where 0 ≤ ε ≤ 1.

Two different approaches can be followed for the solution of

this problem. First, using Eq.(4) and Eq.(13) we can formulate

the following equation system:{
Cnorm = λBSCBS + λSCCSC

1− Pr(SINRBS < γ)Pr(SINRSC < γ) = ε
(14)

where ε is the coverage probability threshold that is selected

according to the preferences of the network provider. In the

equation system, there are only two unknown parameters

which are the tier intensities. Since the probability of coverage

depends on the cost, through the tier intensities λBS and λSC ,

the minimum cost results from the minimum intensities that

satisfy the coverage constraint. Therefore, by substituting the

tier intensities of Eq.(13) to Eq.(4), we end up in Eq.(15).

Differentiating this equation with respect to Cnorm and setting

it equal to zero, we can find the set of intensities that provide

the minimum total cost per square unit. However, providing a

closed form solution for this problem using the aforementioned

approach is a difficult procedure because of the multiple-

solutions of the derived system.

As an alternative, we propose a scheme that exhaustively

searches for the set of intensities that provide the minimum

cost while satisfying at the same time a given QoS. The

proposed algorithm is presented in Algorithm 1. First, using

the equation of the coverage probability, we extensively search

the intensities of the two tiers that satisfy the coverage prob-

ability constrains. Once we find the satisfying intensity sets,

we replace them to the cost model to estimate the minimum

total cost out of a set of possible solutions.

V. NUMERICAL RESULTS

In order to validate our analysis and present the results of the

proposed method, we have developed a MATLAB simulator

that creates PPPs on the plane and measures the coverage

probability after a set of iterations. Using the cost model and

the proposed Algorithm 1, the simulator provides the minimum

tier intensities. In the following subsections we present the

simulation setup along with the results of our experiments.

A. Simulation setup

The network under simulation consists of two coexisting

realizations of homogeneous and independent PPPs which

represent the macro BS and SC tiers with intensity λBS and

λSC , respectively, as it is depicted in Fig. 1. A point in the

center of the area under examination represents the reference

UE.

The network is assumed to be under saturated conditions

and, therefore, all the cells of the same tier contribute to the

interference measured at the UE. To measure the coverage

probability, we run a set of 104 iterations of the proposed

Algorithm 1
Extensive search method for finding optimum tier intensities

Input: sets of intensity values

S1 = {λBSmin
, . . . , λBSmax

} and

S2 = {λSCmin , . . . , λSCmax},

coverage probability constraint ε
and vectors IntBS = 0M , IntSC = 0M , Cost = 0M ,

where 0M denotes an M × 1 vector with zeros.

for all λBS ∈ S1 do
for all λSC ∈ S2 do

Calculate coverage probability Prcov by Eq.(4)

if Prcov satisfies the constraint ε then
Calculate the cost with current intensities

using Eq.(13);

Store Cost[i] = λBSiCBS + λSCiCSC

and the intensities of the current loop

IntBS[i] = λBSi and IntSC[i] = λSCi ;

else
Continue;

end if
end for

end for
Sort vector Cost[i] such that:

Cost[j1] ≥ Cost[j2] ≥ · · · ≥ Cost[jN ];
Output: Intensities IntBS[j1] and IntSC[j1]

that provide the minimum cost

TABLE I:

SIMULATION PARAMETERS

Simulation Parameter Symbol Value

BS transmission power PBS 48 dBm

SC transmission power PSC 12 dBm

Path loss exponent α 4

Threshold ratio γ −3 dB

Power fading coef. mean μ 0.5

Thermal noise power N −100 dBm

Simulation area A 1 km2

Gauss-Hermite coefficients n 15

network and check whether the SINR of the UE exceeds the

given threshold for the given set of intensities. The intensity

of the tiers is the parameter that is varying in every set of

iterations.

For all the numerical results, we use a path loss exponent

α = 4 which is a reasonable value for dense urban environ-

ments. Furthermore, the threshold ratio is fixed at γ = −3 dB
and the thermal noise power at N = −100 dBm. Also, the

mean value of the power fading coefficient h is set to μ = 0.5.

The transmission power is 48 dBm for the macro BSs and

12 dBm for the SCs . For our analysis, the degree of the

Gauss-Hermite polynomial is n = 15, in order to achieve

a highly accurate approximation.The system parameters are

summarized in Table I.



Prcov = 1− (1− πλBS

√
PBS

μγN

n∑
i=1

wie
−πλBS

√
PBS
μγN xi(1+

√
γ(π

2 −arctan( 1√
γ )))

)×

(1− π(
Cnorm

CSC
− λBS

CBS

CSC
)

√
PSC

μγN

n∑
i=1

wie
−π(Cnorm

CSC
−λBS

CBS
CSC

)
√

PSC
μγN xi(1+

√
γ(π

2 −arctan( 1√
γ )))

)

(15)
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Fig. 2: (a) Single-tier macro BS simulation and theoretical

model comparison. (b) Single-tier small cell simulation and

theoretical model comparison.

B. Results

First, we provide simulation results for a single-tier network

to prove that the model in Eq.(5) is behaving as expected.

In Fig. 2a, it is illustrated that the simulations for the cov-

erage probability in a single-tier macro BS network match

the theoretical model. Intuitively, we could assume that by

introducing more cells into the network, the coverage would

increase. However, as the number of macro BSs increases, the

coverage probability tends to saturate to a maximum value.

This is due to the fact that increasing the number of cells

increases at the same time the interference at the UE.

In Fig. 2b, the coverage probability for a single-tier SC net-

work is presented. In this case, we use both Eq.(7) and Eq.(9)

for the theoretical model. As we have already mentioned, for

high λ values, the theoretical model using the Eq.(7) cannot

provide analytical results. However, using the Gauss-Hermite

quadrature approach, we can achieve accurate results for a

larger range of intensities.

In Fig. 3, we plot the probability of coverage versus the SC

intensity in a two-tier network for different values of macro BS

(i.e., one to four). As we can see, the probability of coverage is
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0.9

Pr
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v
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3 macro BSs
4 macro BSs

Fig. 3: Two-tier simulation for coverage probability using fixed

number of macro BSs and variable number of SCs.

showing similar performance as in Fig. 2, while it is increasing

by adding more macro BSs into the HetNet. Again, increasing

the number of macro BSs results in gradually decreasing the

slope of the coverage probability due to the interference raise.

By applying Algorithm 1 in the two-tier coverage proba-

bility model, we can reach a unique set of intensities that

satisfies the coverage probability constraint and provide the

lowest cost under this constraint. Since the cost of the cells

is normalized, it is sufficient to define a cost relation between

the two tiers in the cost model, i.e., CBS = zCSC , where z
is the cost ratio. According to current market values [16] and

considering that the technology evolves (e.g., part of future

macro BSs could be implemented in the cloud, thus reducing

drastically the OPEX), we have adopted two different values

for the cost ratio z, i.e., z = 1000 and z = 100.

For the first case (z = 1000), the results of the minimization

method are shown in Fig. 4. In the double y-axis figure, the

total number of cells of each tier (left blue for BS and right

green for SC) that could be placed randomly in an area of

1 km2 are shown, in order to achieve a certain coverage

probability. For example, deploying randomly 1 BS and around

190 SCs in an area of 1km2, we can achieve a coverage of

at least 70% with the minimum deployment cost. Also, it is

interesting to notice that while the probability of coverage

increases, the number of needed SCs does not follow an

upward trend. Instead, the addition of macro BSs results in

a decrease of SCs, which is reasonable because by adding

a macro BS into the network we can meet the coverage
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Fig. 4: Number of cells needed to satisfy the coverage con-

straint in a 1 km2 area. The cost relation between the macro

BSs and the SCs is z = 1000.
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Fig. 5: Number of cells needed to satisfy the coverage con-

straint in a 1 km2 area. The cost relation between the macro

BSs and the SCs is z = 100.

constraint with less SCs.

In the second case, presented in Fig. 5, we use a cost relation

between the tiers of z = 100. We can notice that for low values

of coverage, z does not affect vastly the result of the algorithm.

However, for higher values of Pcov and as z decreases, the

number of macro BSs increases. This is due to the impact that

the deployment of 100 more SCs (i.e., the cost of one macro

BS in this case) causes to the interference, which is greater to

the one caused by a single low-cost macro BS. Thus, we can

achieve a higher coverage with the same cost.

Finally, in case that the coverage probability constraint is

not hard, the algorithm could provide different solutions for

a similar coverage probability, almost at the same cost. For

instance, the network operator could have to decide between

the minimum cost sets {2 BSs, 200 SCs} and {3 BSs, 100

SCs}. In this situation, the decision should be made according

to the environment that the network operates. In a dense

urban environment, a solution with more SCs would be more

beneficial, because it can provide higher spectral efficiency

and serve more users with higher QoS. On the contrary, in a

rural area the solution with more BSs and less SCs is more

appropriate.
VI. CONCLUSION

In this paper, we propose a theoretical framework for finding

the minimum deployment cost in a two-tier heterogeneous

cellular network when using a random location deployment

of both BSs and SCs. Employing stochastic geometry, we

have derived the probability of coverage of a two-tier network.

By using a cost model and an extensive search minimization

method, we were able to find a set of PPP intensities that

provide the minimum deployment cost, while fulfilling a given

coverage probability constraint.
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