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Abstract—The uplink of a wireless network with base sta-
tions distributed according to a Poisson Point Process (PPP)
is analyzed. The base stations are assumed to have a large
number of antennas and use linear minimum-mean-square-error
(MMSE) spatial processing for multiple access. The number of
active mobiles per cell is limited to permit channel estimation
using pilot sequences that are orthogonal in each cell. The
cumulative distribution function (CDF) of a randomly locat ed
link in a typical cell of such a system is derived when accurate
channel estimation is available. A simple bound is providedfor
the spectral efficiency when channel estimates suffer from pilot
contamination. The results provide insight into the performance
of so-called massive Multiple-Input-Multiple-Output (MI MO)
systems in spatially distributed cellular networks.

Index Terms—Massive MIMO, MMSE.

I. I NTRODUCTION

Cellular systems with large numbers of base station anten-
nas servicing a relatively small number of mobiles per cell has
been proposed as a method to meet the increasing demand
for wireless data communications. In such systems, mobiles
transmit simultaneously in the same frequency band and the
base-station separates the signals from the mobiles spatially
[1], [2]. As the number of antennas at each base station
grows large, the matched-filter (MF) receiver (and its transmit-
side analog) are optimal [1]. However there is a significant
range of parameters where the performance of the MMSE
receiver greatly exceeds the performance of the simpler MF
receiver [3] which makes analysis of the MMSE receiver in
such networks interesting. The uplink performance of massive
MIMO systems with MMSE processing has been analyzed
before in [3] and [4], but in both those works, the spatial
distribution of the network was not explicitly analyzed. Most
works which analyze such systems have not explicitly modeled
the spatial distribution of base stations and mobiles. Such
analyses have the potential to provide valuable insight into
the large-scale performance of cellular networks as noted in
[5] which considered the downlink of single-antenna systems
in Poisson-cell networks.

In this work, we analyze the performance of the uplink of a
spatially distributed cellular system with multi-antenna, linear
MMSE receivers at the base-stations in the interference-limited
regime. The base stations are spatially distributed according to
a homogenous PPP on the plane. The mobile nodes are also
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assumed to be spatially distributed, but unlike in [6] where
we assumed that the transmitting nodes are at independent
spatial locations, in this work, we limit the number ofactive
mobiles per cell toK, which results in correlation between the
locations of the active mobiles in the network. Limiting the
number of active mobiles per cell enables the use of orthogonal
pilot sequences for channel estimation in each cell. This is
the standard approach for channel estimation assumed in the
literature [1]. Placing a limitation on the number of active
mobiles per cell has other practical benefits as well, such as
to meet quality of service requirements. However, limitingthe
number of active mobiles per cell causes the spatial positions
of active mobiles in the network to become correlated which
significantly complicates analysis. One approach to analyzing
networks with spatially correlated users is by making the
density of active users small, e.g., through the use of a
medium-access-control protocol [7], [8]. This approach is
not well suited to massive MIMO systems where a central
assumption is that multiple mobiles transmit simultaneously
in every cell. A second approach, which we proposed in [9],
is to consider linear MMSE receivers with large numbers of
antennas. In this work, we follow a similar approach, making
use of the framework we introduced in [9] to derive asymptotic
expressions for the spectral efficiency (assuming Gaussian
codebooks) of a representative link with a large number of
receiver antennas as a function of the number of antennas
N , link length, mobile and base station density, path-loss
exponent and maximum number of active mobiles per-cell,
K. We also provide the CDF of the spectral efficiency when
the representative link is randomly distributed in a typical cell
of the network. In addition, we provide bounds to the spectral
efficiency for systems where the channel estimate suffers from
pilot contamination [10].

II. SYSTEM MODEL

Consider a cellular network with base stations distributed
according to a PPP with densityρc base stations per unit
area and suppose that the co-ordinates of the system are
shifted such that the base-station closest to the origin is shifted
to the origin. Assume that cells are formed by a Voronoi
tessellation of the plane with the base stations as generator
points. Such a tessellation is referred to as a Poisson-Voronoi
Tessellation (PVT). Let the locations of the base stations be
B0, B1, B2, · · · , with B0 denoting the base station at the origin
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Fig. 1. Illustration of a Poisson-cell network with maximumnumber of active
mobiles per cell,K = 10. Mobiles are represented by the dots and circles
are used to highlight the active mobiles. Observe that smaller cells tend to
have a higher density of active mobiles.

which we call the representative base station. Suppose that
there is a mobile atX0 which we call the representative
transmitter which is transmitting to the representative base
station. In the remainder of this work, we shall analyze the link
between the representative transmitter and the representative
base station which we shall also refer to as the representative
link. We shall denote a realization of the base station point
process byΠ. Overlaid on the network of base stations is a
circular network of radiusR centered at the origin as shown
in Figure 1, withn additional mobiles independent and identi-
cally distributed (i.i.d.) in the circular network. These mobiles,
if active will be co-channel interferers to the representative
link. Let the mobiles be located atX1, X2, · · · , Xn, and
ri = |Xi| be the distance of thei-th mobile from the origin.
The area density of mobilesρm satisfies

n = π ρmR2. (1)

The average power (averaged over the fast-fading random
variables) received at each antenna of the representative base
station from a mobile at a distanceri, transmitting with power
Pi is Pir

−α
i , with α > 2. The transmit power of thei-

th mobile,Pi equals one or zero, depending on whether or
not the mobile is active. Hence, we do not consider power
control in this work. Up toK ≥ 1 mobiles are active in
each cell. If a cell hasK or less mobiles they are all active,
and if a cell has greater thanK mobiles,K of the mobiles
are selected randomly and with uniform probability to be
active. The representative transmitter is always active and thus
P0 = 1. y ∈ CN×1 contains the sampled signals at a given
sampling time at theN antennas of the representative base

station and is given by

y = r
−α

2

0 g0x0 +
n
∑

i=1

r
−α

2

i gi

√

Pixi , (2)

wherexi, is the transmitted symbol of thei-th mobile and
gi ∈ CN×1 contains i.i.d., zero-mean, unit variance, circularly
symmetric, complex Gaussian random variables denoted by
CN (0, 1), which represent fast fading between thei-th mobile
and theN antennas of the representative base station. Since
we focus on the interference-limited regime where the noise
power→ 0, (2) does not include noise. Thus, our results are
applicable to networks with a high density of mobiles.

We shall consider the limit asN , n andR → ∞, such that
n/N = c andρm are constants, and (1) holds. Note that while
our analysis provides insight into the scaling behavior of such
systems, we use it primarily as a tool to analyze large networks
of a fixed size. We additionally requirec > 1/ρc which ensures
that asR → ∞, with high probability, there would be a larger
number of active mobiles in theentire network than antennas
at the representative base station. This ensures that the matrix
R defined below is invertible with probability 1 ifN,n,R is
sufficiently large.

For the rest of this paper, whenevern,N or R → ∞, it is
assumed that the other two quantities go to infinity as well.
The main results are given in terms of limiting values of a
normalized version of the SIR,βN = N−α/2rαT SIR, at the
output of a linear receiver which estimatesx0 using a weight
vectorw. The estimate,̂x0 = w†y, and the weight vector,

w† = ĥ†





n
∑

j=1

r−α
j Pjgjg

†
j





−1

, (3)

where ĥ is an estimate of the channel vectorg0. Note that
the weight vector above is the minimum-mean-square-error
weight vector if ĥ = g0 which is the assumption we use
for the first part of this work. We also consider a pilot-
contaminated estimate ofg0 in Section III-C. We assume that
the interference covariance matrix

R =

n
∑

j=1

r−α
j Pjgjg

†
j (4)

is known perfectly at the representative base station. The SIR
at the output of the receiver is given by

SIR=
r−α
0

∣

∣w†g0

∣

∣

2

∑n
i=1 r

−α
i Pi |w†gi|2

(5)

III. M AIN RESULTS

A. Density of Active Transmissions

The density of active mobiles in our system is the product
of the density of all mobiles and the probability that a mobile
is active in the limit asR → ∞. This quantity is used in
characterizing the spectral efficiency in the subsequent sections
and is interesting in its own right as it determines the fraction
of mobiles that can be active at any one time as a function



of K, ρc and ρm. The probability that a mobile is active is
dependent the distribution of cell sizes, and is given in the
following lemma.

Lemma 1:

lim
n→∞

Pr(Pj = 1) = ρc E
[

|CT |h(|CT |)
]

. (6)

where the expectation is with respect to the PDF of the area
of the typical cell of a PVT with densityρc, and

h(a) ,
K −Ke−ρma

∑K
k=0

(ρma)k

k!

ρma
+

K−1
∑

m=0

(ρma)
m

m!
e−ρma.

(7)

Proof: Please see in Appendix B.
The typical cell (see e.g. [11] for its precise definition)

is statistically equivalent to the cell containing the origin if
the origin is added to the set of generator points of a PPP
that underlies a PVT (see e.g. [11]). The exact PDF of|CT |
is given in [12], but it is expressed as an infinite series
involving multiple integrals, which is challenging to compute
numerically (e.g. the authors use monte-carlo integrationto
evaluate it in [12]). We do not include the explicit expressions
here for the sake of brevity. Instead, we use an approximation
to the PDF of a = |CT |, which is given in terms of a
generalized gamma PDF as follows [13]. Fora > 0,

fA(a) ≈ 15.225 ρc (ρc a)
2.311e−3.032 (ρc a)1.080 (8)

B. Spectral Efficiency with Perfect Channel Estimation

Assume that the representative base station has a perfect
estimate of the channel vector, i.e.ĥ = g0. The normalized
SIR at the output of the MMSE receiver is then

βN = N−α/2ĥ†R−1ĥ . (9)

Conditioned on a specific realization of the base-station
point processΠ and the length of the representative linkr0,
which is assumed to be active, we have the following theorem.

Theorem 1:If the system model from the previous section
holds, asn,N,R → ∞ such thatn/N = c > 0, and (1) hold,
βN → β in probability whereβ is the real, positive solution
to

2π2ρβ
2

α

α
csc

(

2π

α

)

= 1 +
2(πρ)2−

2

α β

(α− 2)(c+ πρβ)1−
2

α

×

2F1

(

1− 2

α
, 1− 2

α
; 2− 2

α
;

πρβ

πρβ + c

)

, (10)

whereρ = ρm limn→∞ Pr(Pj = 1), and 2F1(., .; .; .) is the
Gauss hypergeometric function.
Proof: Given in Appendix A.
Note thatρ is the density of mobiles in the limit. Additionally,
when the number of users in theentire network is much
larger than the number of antennas at the representative base
station, i.e.n ≫ N , the second term on the RHS of (10) is
small [9]. Approximating that term by zero, we can find an
approximation forβ which when combined with the Shannon

equation, yields the following expression for the spectral
efficiency and its mean when Gaussian codebooks are used
by each mobile [9].

γ ≈ E[γ] ≈ log2

(

1 +

[

N α

2π2ρr20
sin

(

2π

α

)]
α
2

)

. (11)

If the representative transmitter is distributed with uniform
probability in the cell at the origin, we can derive the CDF
of the spectral efficiency from (11) using the nearest-neighbor
distribution of a PPP (e.g. see [11]). This yields the following
approximation to the CDF of the spectral efficiency of the
representative link assuming a large number of base station
antennasN and the number of users in the network greatly
exceeding the number of antennas at the base stationn ≫ N .

Pr(γ ≤ τ) ≈ e−
ρc
ρ
N α

2π
sin( 2π

α )( 1

2τ−1 )
2

α

. (12)

C. Pilot Contaminated Channel Estimation

We assume that the pilot signals used for channel estimation
by the mobiles in a given cell are orthogonal, but that the same
set of pilot signals is repeated in different cells. The estimated
channel vector of the representative transmitter suffers from pi-
lot contamination [10] from mobiles in other cells who shared
the same pilot sequence. If we assume that the power used
during the training sequence is high compared to the noise,
we can neglect the effect of noise in the channel estimate.
Thus the estimated channel between the representative base
station and the representative transmitterĥ is given by,

ĥ =
∑

i∈T

r
−α

2

i

√

Pigi (13)

where T is the set of indices of the mobiles (including
the representative transmitter) which shared the same pilot
sequence with the representative transmitter during channel
estimation. For the purposes of this section, we assume that
α > 4 which enables us to simplify the effect of the pilot
contamination.

We assume that the receiver uses the weight vector in (3)
with the pilot-contaminated channel estimateĥ from (13).
Note that we continue to assume that the interference covari-
ance matrix is known at the receiver. We refer to this receiver
as the PC-MMSE receiver. As in the proof of Theorem 1, we
characterize the normalized SIR for the PC-MMSE receiver
for a fixedr0. The normalized SIR for the PC-MMSE receiver
is denoted byβ̄N = N−α/2rα0 SIR. We can now state the
following theorem.

Theorem 2:ConditionedΠ andr0, β̄N → β̄ in probability,
with β̄ is bounded from below by the following random
variable

β̄N → β̄ ≥ r−2α
0

r−α
0 +

∑

j∈T
j 6=0

r−α
j Pj

β (14)

Proof: Given in Appendix D.
We can further bound̄β by assuming that there is exactly

one mobile in every cell that shares the pilot sequence with
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the representative transmitter during channel estimation. Fur-
thermore, forj > 0, observe that the closest point to the origin
in the cell associated with the base station atBj is bounded
from above by|Bj |/2. Thus, all mobiles located in the cell
associated with the base-station atBj are at a distanceBj/2
or greater from the base station at the origin. This leads to the
following bound.

β̄ ≥ r−2α
0

r−α
0 +

∑∞
j=1

∣

∣

∣

Bj

2

∣

∣

∣

−αβ (15)

Note here that while the bound given above is loose, to the best
of our knowledge it is the only such bound which considers
the effect of spatially distributed pilot contaminators.

IV. N UMERICAL SIMULATIONS AND RESULTS

We conducted Monte Carlo simulations to verify the accu-
racy of our asymptotic results. Figure 2 shows the CDFs of
the spectral efficiency from simulations with and without pilot
contamination as well as the asymptotic expression for the
CDF from (12) for 45 and 100 antennas at the base station.
The representative link was randomly distributed in the cell
containing the origin. The remaining parameters are given in
the figure caption. Observe that with 100 antennas and at an
outage probability of 0.1, the theoretical prediction is within
0.25 b/s/Hz of the simulated values which validates (12). For
45 antennas, the asymptotic CDF is within 0.3 b/s/Hz of the
simulated values. Additionally, note that the simulated pilot
contaminated spectral efficiency for 100 antennas is within
0.5 b/s/Hz of the non-pilot contaminated spectral efficiency.

In Figure 3, we plotted the CDFs from (12) for 25 and 50
antennas per base station andK = 1, 10 and20. This figure
illustrates how the results in this paper can be used to analyze
the tradeoff between increasing the density of transmissions by
increasingK and the resulting reduction in per-link data rates
due to increased interference. For a system with 50 antennas, at
an outage probability of 0.1, there is approximately a five-fold
increase in the spectral efficiency going fromK = 10, toK =
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Fig. 3. Simulated CDF of spectral efficiency for 25 and 50 antennas.
The parameters used areρc = 2 × 10

−5, ρm = 0.001, α = 5 and the
representative transmitter was randomly placed in the cellat the origin. The
maximum number of active mobiles per cell isK = 1, 10 and20.

1. The density of active mobiles withK = 10 is approximately
3.8 × 10−4 and the density of active mobiles withK = 1
is approximately4 × 10−5. Thus an approximately 10 fold
increase in mobile density results in a reduction in the spectral
efficiency of the representative link by approximately a factor
of five, at an outage probability of 0.1. On the other hand,
going fromK = 20 to K = 10 results in nearly a doubling
of the spectral efficiency of a representative link but with the
density of active transmissions reduced by approximately a
factor of less than two. Combined with models for channel
coherence and training times (which depend onK), such an
analysis could be used to optimizeK.

Figure 4 illustrates the lower bound for the spectral effi-
ciency for a fixed link length ofrT = 100 and K = 5,
and the remaining parameters as given in the caption. The
simulated markers represent the pilot contaminated mean spec-
tral efficiency and the dashed line represents the lower bound
from (15). For reference, the simulated asymptotic spectral
efficiency with perfect channel estimation plotted using the
solid line, and simulated spectral efficiencies for a system
with non-zero noise such that the Signal-to-Noise-Ratio (SNR)
is 20dB is plotted using the asterisk markers. Note that the
lower bound is loose. However, it provides a guarantee on the
worst case mean spectral efficiency under pilot contamination.
Additionally, the simulations with 20dB SNR indicate that the
interference-limited approximation is accurate even whenthe
number of antennas is large.

V. SUMMARY AND CONCLUSIONS

In this paper, the spectral efficiency of the uplink in a
spatially distributed, Poisson-cell network is analyzed.The
base station is assumed to use a linear MMSE estimator and
the number of active mobiles per cell is limited toK in
order to permit channel estimation using intra-cell orthogonal
pilots. The CDF of the spectral efficiency in the interference-
limited regime is derived for a randomly distributed mobile
in a typical cell of the network. The results can be used to
statistically characterize achievable data rates in such networks
as a function of tangible system parameters such as user and
base-station density and number of antennas, and can help
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system designers optimize parameters such as the maximum
number of active mobiles per cell.

APPENDIX

A. Proof of Main Result

The main result is proved using Theorem 1 of [9] in which
the normalized SIR of a representative link withN antennas
and a linear MMSE receiver in a network with interferers at
correlated spatial positions is shown to converge in probability
to a limit of the same form as in Theorem 1 in this paper.
Theorem 1 in this paper follows directly from that result if
the following two conditions hold.

lim
n→∞

Pr(Pir
−α
i N

α
2 ≤ x, Pjr

−α
j N

α
2 ≤ x)

= lim
n→∞

Pr(Pir
−α
i N

α
2 ≤ x) Pr(Pjr

−α
j N

α
2 ≤ x) . (16)

and

lim
n→∞

Pr(r−α
i N

α
2 ≤ x|Pi = 1) = lim

n→∞
Pr(r−α

i N
α
2 ≤ x) .

(17)

Equation (16) is shown in Appendix C, and (17) follows
directly from the following lemma

Lemma 2:For anyx > 0,

lim
N→∞

Pr
(

Pi = 0|ri ≤ x−1/α
√
N
)

= lim
N→∞

Pr (Pi = 0)

Proof: The proof follows similar steps to that used to prove
Lemma 1 and is omitted for brevity.

B. Proof of Lemma 1

Let Ci denote the cell occupied byXi. Let Ai =
|Ci ∩B(0, R)| be the area of intersection betweenCi and
B(0, R). Additionally let #Ci denote the number of mobiles
in Ci excludingXi, andA be the event thatXi andXj are in
diferrent cells, i.e.Ci 6= Cj . Since the cells of a PVT are finite
with probability 1 (e.g. see [11]), asR → ∞, Pr(A) → 1.
Recall that all mobiles in a given cell are active if there are

K or fewer mobiles in the cell. If there are greater thanK
mobiles,K are selected randomly to be active. Thus,

Pr(Pj = 1|#C(Xj) = ℓ,A) =

{

1, if ℓ < K
K
ℓ+1 , otherwise.

(18)

For n− 2 ≥ m, we have

Pr(#C(Xj) = m|Ai = ai, Aj = aj ,A)

= Pr(#C(Xj) = m|Aj = aj ,A)

=

(

n− 2

m

)

( aj
πR2

)m
(

πR2 − aj
πR2

)n−m−2

. (19)

Let C1, C2 · · · denote the cells in the network. Define the
following set which consists of the portions of the cells wholly
contained inB(0, d).

Cd := {Ci ∩B(0, d) : i = 1, 2, · · · } . (20)

The j-th element ofCd is denoted byCdj . Thus,Aj takes
values in the setCR, wherePr(Ai = CRk) = |CRk|/(πR2).
Combining (1), (18) and (19), weighting byPr(Ai = CRk)
and summing over all possible values ofAj yields,

Pr(Pj = 1|A) =

|CR|
∑

k=1

|CRk|
πR2

[

n−2
∑

ℓ=0

min

(

1,
K

ℓ+ 1

)

×

(

n− 2

ℓ

)(

ρm |CRk|
n

)ℓ(

1− ρm |CRk|
n

)n−ℓ−2
]

(21)

The next step is to take the limit of (21) asn,R → ∞. Since
the term in the brackets is bounded for alln, we can its limit
before taking the outer limit in (21) (see e.g. [14]). Writing
a = |CRk|, the limit of the term in the brackets in (21) is

lim
n→∞

[

n−2
∑

ℓ=K

K

ℓ+ 1

(

n− 2

ℓ

)

(ρm a

n

)ℓ (

1− ρm a

n

)n−ℓ−2

a

+

K−1
∑

m=0

(

n− 2

m

)

(ρm a

n

)m(

1− ρm a

n

)n−m−2
]

=
K −Ke−ρma

∑K
k=0

(ρma)k

k!

ρma
+

K−1
∑

m=0

1

m!
(ρma)

m
e−ρma

= h(a) . (22)

Thus, we can write the limit of (21) as

lim
R→∞

Pr(Pj = 1|A) = lim
R→∞

|CR|
πR2

|CR|
∑

k=1

|CRk|
|CR|

h (|CRk|) . (23)

We next state a result from stochastic geometry (Equation
5.2 of [11]), which relates the spatial average of a function
over the cells of a single realization of a PVT to the ensemble
average. For any bounded functionf which maps convex sets
in R2 to R, the following holds with probability 1,

lim
R→∞

1

|CR|

|CR|
∑

k=1

f(CRk) =
1

E
[

1
|C0|

]E

[

f(C0)

|C0|

]

, (24)



where C0 is the zero-cell of a PVT, which is statistically
equivalent to the cell that contains any given point in the plane.
Additionally, we note that with probability 1, asR → ∞, the
number of cells per unit area inB(0, R) approaches the den-
sity of the base stations with probability 1, i.e.limR→∞

|CR|
πR2 =

ρc. Let f(CRk) = |CRk|h(|CRk|), which is only dependent on
the area ofCRk. Thus, we can apply (24) cellular model we
assume here, where the coordinates are shifted such that there
is a base station at the origin. Combining (24), the fact that
Pr(A) → 1 andE

[

1
|C0 |
]

= ρc with (23) we have,

lim
n→∞

Pr(Pj = 1) = E
[

h(|C0|)
]

. (25)

Next we express the equation above in terms of thetypical
cell of a PVT which we denote byCT . The relationship
between the mean of functions of the zero-cell and the typical
cell is given by Equation 2.1 of [15]. Applying this result to
the previous equation yields

lim
n→∞

Pr(Pj = 1) =
1

E[|CT |]E
[

|CT |h(|CT |)
]

. (26)

Substituting the fact thatE[|CT |] = 1
ρc

with the above
expression proves the lemma.

C. Proof of Equation(16)

Recalling the definitions used in the proof of Lemma 1, and
following steps similar to that used to prove it, we can write

Pr (Pi = 1, Pj = 1|Ai = |CRs|, Aj = |CRt|,A) =
n−2
∑

ℓ=0

min

(

1,
K

ℓ+ 1

)(

n− 2

ℓ

)(

ρm|CRt|
n

)ℓ

×
(

1− ρm|CRt|
n

)n−ℓ−2

×
n−ℓ−2
∑

m=0

min

(

1,
K

m+ 1

)(

n− ℓ− 2

m

)(

ρm|CRs|
n− ρm|CRt|

)m

×
(

1− ρm|CRt|
n− ρm|CRt|

)n−m−ℓ−2

(27)

Applying steps similar to those used to prove Lemma 1 to
(27), i.e. by weighting (27) by the probabilities thatAi =
|CRs|, Aj = |CRt|, summing over allCRs andCRt, taking the
limit as n,N,R → ∞, and applying (24), we can show that

lim
R→∞

Pr (Pi = 1, Pj = 1|A) =

= ρc E
[

|CT |h(|CT |)
]

ρc E
[

|CT |h(|CT |)
]

.

= lim
R→∞

Pr (Pi = 1) lim
R→∞

Pr (Pj = 1) (28)

Sincex > 0 andPr(A) → 1, we have

lim
R→∞

Pr
(

PiN
α/2r−α

i > x, PjN
α/2r−α

j > x
)

= lim
R→∞

Pr
(

Nα/2r−α
i > x,Nα/2r−α

j > x|
Pi = 1, Pj = 1,A) Pr (Pi = 1, Pj = 1|A)

Combining this with the fact thatri andrj are asymptotically
independent when conditioned onA andPr(Pi = 1, Pj = 1),

lim
R→∞

Pr
(

PiN
α/2r−α

i > x, PjN
α/2r−α

j > x
)

= lim
R→∞

Pr (Pi = 1) lim
R→∞

Pr(Nα/2r−α
i > x)

× lim
R→∞

Pr (Pj = 1) lim
R→∞

Pr
(

Nα/2r−α
j > x

)

(29)

Equation (16) follows from Lemma 2 and the fact that for
x > 0, Pr

(

PjN
α/2r−α

j > x|Pj = 0
)

= 0.

D. Proof of Theorem 2

Note that R, n, and N are related such that the CDF
of Nα/2r

−α/2
i does not vary withN,n,R and moreover,

pi = Nα/2r−α
i are bounded for alln,N,R. The signal power

normalized byN−α at the output of the PC-MMSE filter is

N−αS = r−α
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Consider the expectation of the first term in the absolute
value in (30).
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where the inequality follows from applying the Sherman-
Morrison-Woodbury matrix inversion lemma and the non-
negative definiteness of the matrix
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 . (31)

From Lemma 3 of [9] if (16) and (17) hold,∃n0, such that for
alll n > n0, with probability 1, the minimum eigenvalue of the
matrix above is bounded from below byλℓb > 0. Forn > n0,



taking an eigen-decomposition of this matrix and simplifying:
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whereui andvi are i.i.d.CN (0, 1) random variables. Note that
the expectation in (32) factors due to the isotropic nature of
Gaussian random vectors. Note that one of the standard meth-
ods to prove the weak law of large numbers is to show that the
sample mean of zero-mean i.i.d. random variables converges
in the mean-square sense to zero. Since convergence in mean
square implies convergence in mean, the first expectation on
the RHS of (32) converges to zero. Since the mobiles which
contribute towards the pilot contamination are located outside
the cell at the origin, fori 6= 0, i ∈ T , ri > Dmin, whereDmin

is the radius of the largest circle which is wholly containedin
the cell at the origin. Sinceα > 4, from Section III.A of [16]
, E
[∣

∣

∣

∑

i∈T ,i6=1 r
−α/2
i

∣

∣

∣

]

is bounded. Thus, we have (32)→ 0,
which implies that the first term in the absolute value in (30)
converges in probability to zero. From Theorem 1, the second
term in the absolute value in (30) converges in probability to
r−α
0 β. Thus, the following holds in probability

N−αS → r−2α
0 β2. (33)

Next, consider the interference power normalized byN−α/2
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The first term on the RHS of (35), has a similar form to the
first term in the absolute value in (30), which was shown to
converge in probability to zero. Following a similar sequence
of steps, we can show that the first term on the RHS of (35)

goes to zero asn,N,R → ∞ which yields

lim
N→∞
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1 + p̄jβ
,= β̄ in probability.

(36)

≤ r−α
0 β +

∑

j∈T ,j 6=0

r−α
j Pjβ , (37)

where second equality is from applying the Sherman-
Morrison-Woodbury matrix inversion lemma. The theorem is
proved by dividing (33) by (37).
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