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Abstract—The uplink of a wireless network with base sta- assumed to be spatially distributed, but unlike [ih [6] where
tions distributed according to a Poisson Point Process (PAP e assumed that the transmitting nodes are at independent
is analyzed. The base stations are assumed to have a largegpatia| |ocations, in this work, we limit the number aétive
number of antennas and use linear minimum-mean-square-eor - . . .

(MMSE) spatial processing for multiple access. The number fo mobl_les per cell td{’_ which r_esult_s in correlation be_tvygen the
active mobiles per cell is limited to permit channel estimapn locations of the active mobiles in the network. Limiting the
using pilot sequences that are orthogonal in each cell. The number of active mobiles per cell enables the use of orthaigon
cumulative distribution function (CDF) of a randomly located pilot sequences for channel estimation in each cell. This is
link in a typical cell of such a system is derived when accurd o gtandard approach for channel estimation assumed in the

channel estimation is available. A simple bound is providedor literat 1. Placi limitati th b f acti
the spectral efficiency when channel estimates suffer fromilot iterature [1]. Placing a limitation on the number of active

contamination. The results provide insight into the performance Mobiles per cell has other practical benefits as well, such as
of so-called massive Multiple-Input-Multiple-Output (MI MO)  to meet quality of service requirements. However, limitthg

systems in spatially distributed cellular networks. number of active mobiles per cell causes the spatial positio
Index Terms—Massive MIMO, MMSE. of active mobiles in the network to become correlated which
significantly complicates analysis. One approach to atradyz

) ) networks with spatially correlated users is by making the
Cellular systems with large numbers of base station ant(ﬂb‘nsity of active users small, e.g., through the use of a

nas servicing a relatively small number of mobiles per cad h ,o4ium-access-control protocdl] [7].][8]. This approach is

been proposed as a method to meet the increasing demagf el suited to massive MIMO systems where a central
for wireless data communications. In such systems, mobilgss,;mption is that multiple mobiles transmit simultangpus
transmit simultaneously in the same frequency band and ‘iheevery cell. A second approach, which we proposedin [9],
base-station separates the signals from the mobiles Bpatig 15 consider linear MMSE receivers with large numbers of
[1], [2]. As the number of antennas at each base statighiennas. In this work, we follow a similar approach, making
grows large, the matched-filter (MF) receiver (and its taits ;s¢ of the framework we introduced i [9] to derive asymptoti
side analog) are optimall[1]. However there is a significa@yressions for the spectral efficiency (assuming Gaussian
range of parameters where the performance of the MMQBgepooks) of a representative link with a large number of

receiver greatly exceeds the performance of the simpler MEqiver antennas as a function of the number of antennas
receiver [[8] which makes analysis of the MMSE receiver IR, link length, mobile and base station density, path-loss

such networks interesting. The uplink performance of M¥aSSleynonent and maximum number of active mobiles per-cell,

MIMO systems with MMSE processing has been analyzed '\ve also provide the CDF of the spectral efficiency when
before in [3] and[[4], but in both those works, the spatighe representative link is randomly distributed in a typizell

distribution of the network was not explicitly analyzed. 810 t the network. In addition, we provide bounds to the spéctra
works which analyze such systems have not explicitly mallelgsiciency for systems where the channel estimate suffera fr
the spatial distribution of base stations and mobiles. Suﬁnot contamination[[10].

analyses have the potential to provide valuable insighd int
the large-scale performance of cellular networks as nated i Il. SYSTEM MODEL

[5] which considered the downlink of single-antenna system cqnsider a cellular network with base stations distributed
in Poisson-cell networks. . according to a PPP with densify, base stations per unit
In this work, we analyze the performance of the uplink of g5 and suppose that the co-ordinates of the system are

spatially distributed cellular system with multi-antephaear gpitted such that the base-station closest to the origihifees
MMSE receivers at the base-stations in the interferemoédd 1, he origin. Assume that cells are formed by a Voronoi

regime. The base stations are spatially distributed 200910  egsejation of the plane with the base stations as gemerato

a homogenous PPP on the plane. The mobile nodes are §pyts. Such a tessellation is referred to as a PoissonAdbro
Sponsored in part by the National Science Foundation undert CCF- Tessellation (PVT)' Let the |pcat'0ns of the _base StatIOﬂ.S_ b

111721. By, B1, Bs, - - -, with By denoting the base station at the origin
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+<— Base station station and is given by
L | Inactive — . no

< ., mobile y =7y 28oZo + Z T, g \/Fiiﬂi , 2

i=1

where z;, is the transmitted symbol of theth mobile and
g; € CV>1 contains i.i.d., zero-mean, unit variance, circularly
symmetric, complex Gaussian random variables denoted by
CN(0,1), which represent fast fading between thién mobile
and the N antennas of the representative base station. Since
we focus on the interference-limited regime where the noise
power— 0, (2) does not include noise. Thus, our results are
applicable to networks with a high density of mobiles.

We shall consider the limit ad’, n and R — oo, such that
n/N = c andp,, are constants, anl(1) holds. Note that while
our analysis provides insight into the scaling behavioruafts
systems, we use it primarily as a tool to analyze large netsvor

) _ , _ _ ~of afixed size. We additionally require> 1/p. which ensures
Fig. 1. lllustration of a Poisson-cell network with maximumamber of active

mobiles per cell, X = 10. Mobiles are represented by the dots and circleghat ask — OO_’ with hlgh p_rObablll_ty’ there would be a larger
are used to highlight the active mobiles. Observe that smaklls tend to Number of active mobiles in thentire network than antennas

have a higher density of active mobiles. at the representative base station. This ensures that tliexma
R defined below is invertible with probability 1 iV, n, R is
sufficiently large.

which we call the representative base station. Suppose thaltor the rest of this paper, wheneverN or R — oo, it is
there is a mobile atX, which we call the representativedssumed that the other two quantities go to infinity as well.
transmitter which is transmitting to the representativeebalhe main results are given in terms of limiting values of a
station. In the remainder of this work, we shall analyze thie | Normalized version of the SIRjy = N~*/?7¢SIR, at the
between the representative transmitter and the repreisentsoutput of a linear receiver which estimates using a weight
base station which we shall also refer to as the represeataiiectorw. The estimatei, = w'y, and the weight vector,

link. We shall denote a realization of the base station point . -1

process byll. Overlaid on the network of base stations is a 7 —a i

circular network of radius? centered at the origin as shown w'=h er Figig; ’ 3)
in Figure[1, withn additional mobiles independent and identi-
cally distributed (i.i.d.) in the circular network. Thes®hiles, whereh is an estimate of the channel vectgs. Note that

if active will be co-channel interferers to the represewéat the weight vector above is the minimum-mean-square-error

| ) i
/ N
K
Active mobile ~
/ |

*

j=1

link. Let the mobiles be located ak;, X5, .-, Xy, and weight vector ifh = go which is the assumption we use
ri = |Xi| be the distance of theth mobile from the origin. for the first part of this work. We also consider a pilot-
The area density of mobiles,, satisfies contaminated estimate gf, in Sectior IlI=C. We assume that

the interference covariance matrix
n
n:wmeQ. 1) R:ZT;angjg; 4)
j=1

is known perfectly at the representative base station. TRe S
The average power (averaged over the fast-fading randamthe output of the receiver is given by

variables) received at each antenna of the representase b et |2
station from a mobile at a distaneg transmitting with power SIR = o [wigol (5)
P is Pir;, with o« > 2. The transmit power of the- Z?:l r; *P; |ngZ—|2
th mobile, P; equals one or zero, depending on whether or
not the mobile is active. Hence, we do not consider power ) ) o
control in this work. Up tokX > 1 mobiles are active in A- Density of Active Transmissions
each cell. If a cell had(< or less mobiles they are all active, The density of active mobiles in our system is the product
and if a cell has greater tha mobiles, K of the mobiles of the density of all mobiles and the probability that a mebil
are selected randomly and with uniform probability to be active in the limit asR — oo. This quantity is used in
active. The representative transmitter is always activethns characterizing the spectral efficiency in the subsequetitoses
Py = 1.y € CV*! contains the sampled signals at a giveand is interesting in its own right as it determines the foarct
sampling time at theV antennas of the representative basef mobiles that can be active at any one time as a function

IIl. M AIN RESULTS



of K, p. and p,,. The probability that a mobile is active isequation, yields the following expression for the spectral
dependent the distribution of cell sizes, and is given in thedfficiency and its mean when Gaussian codebooks are used

following lemma. by each mobile[[9].
Lemma 1: N 5 a
o s
lim Pr(P; = 1) = pc E[|CT[h(ICT])] - (6) 7~ Bl log <1 + [27r2prg S <E>} ) - (1)
where the expectation is with respect to the PDF of the areaf the representative transmitter is distributed with onif
of the typical cellof a PVT with densityp., and probability in the cell at the origin, we can derive the CDF

K- Keome Zka (pma)*  K—1 (pma)” of th_e spectral efficiency fronh:q.l) using th_e nearest-rngdgh
h(a) & =0 Kk Z m_'efpma_ distribution of a PPP (e.g. see [11]). This yields the follogy
Pma m—o approximation to the CDF of the spectral efficiency of the
(7) representative link assuming a large number of base station
antennasV and the number of users in the network greatly
?xceeding the number of antennas at the base statipnV.

Proof: Please see in AppendiX B.

The typical cell (see e.gl [11] for its precise definition
is statistically equivalent to the cell containing the amigf
the origin is added to the set of generator points of a PPP
that underlies a PVT (see e.g. [11]). The exact PDRC3f| C. Pilot Contaminated Channel Estimation
is given in [12], but it is expressed as an infinite series
involving multiple integrals, which is challenging to conotp b

numerlca_lly (9-9- the authors_use monte-carl_o_ mtegratu?n set of pilot signals is repeated in different cells. Thersated
evaluate it in|[12]). We do not include the explicit expres channel vector of the representative transmitter suffers pi-
here for the sake of brevity. Instead, we use an approximati N o
to the PDE ofa — |CT|yWhiCh is given in terms of a Rt contammaﬂon [10] from mobiles in other cells who stdre
generalized gamma PDF ’as follois [13]. For 0 the.same p||0_t sequence. If we assume that the power qsed
' ' during the training sequence is high compared to the noise,
fala) ~ 15.225 p. (pe a)2-311e=3-032 (pc @) (8) we can neglect the effect of noise in the channel estimate.
Thus the estimated channel between the representative base

I1N)

Pr(y <)~ e $NER(E)N ()T 12)

We assume that the pilot signals used for channel estimation
y the mobiles in a given cell are orthogonal, but that theesam

Assume that the representative base station has a perfect . —a
estimate of the channel vector, ilk.= go. The normalized h = Zri \/Egi (13)
SIR at the output of the MMSE receiver is then T
Cme where 7 is the set of indices of the mobiles (including
By = N"*?nfR™'h. (9)

the representative transmitter) which shared the same pilo
Conditioned on a specific realization of the base-statiGi¢quence with the representative transmitter during alann
point procesdI and the length of the representative link €Stimation. For the purposes of this section, we assume that

which is assumed to be active, we have the following theorefi,> 4 Which enables us to simplify the effect of the pilot
contamination.

Theorem 1:f the system model from the previous section Ve assume that the receiver uses the weight vectdrin (3)

holds, asn, N, R — oo such thati/N = ¢ > 0, and [1) hold, With the pilot-contaminated channel estimaiefrom (I3).
Bx — B in probability wheres is the real, positive solution Note that we continue to assume that the interference covari

to ance matrix is known at the receiver. We refer to this regeive
5 2 g 2 as the PC-MMSE receiver. As in the proof of Theorem 1, we
2n°pB= o (2_”) =14+ 2mp)=p % characterize the normalized SIR for the PC-MMSE receiver

o o —2)(e+ Wpﬂ)l_g for a fixedry. The normalized SIR for the PC-MMSE receiver

(a—2)
2 2 2 mpB is denoted by3y = N~%/2/¢ SIR. We can now state the
211 <1 —olT 2o B+ c> , (10 following theorem.

Theorem 2:ConditionedII andrg, By —  in probability,
with 5 is bounded from below by the following random

«

wherep = ppy, lim, o Pr(P; = 1), and 2 Fi(.,.;.;.) is the
Gauss hypergeometric function.

Proof: Given in Appendi{A. variable o

Note thatp is the density of mobiles in the limit. Additionally, By — B> To 8 (14)
when the number of users in thentire network is much Tt et b

larger than the number of antennas at the representatiee bas 370

station, i.e.n > N, the second term on the RHS ¢f [10) isProof: Given in Appendix{D.
small [9]. Approximating that term by zero, we can find an We can further boun@ by assuming that there is exactly
approximation for8 which when combined with the Shannorone mobile in every cell that shares the pilot sequence with
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Fig. 3. Simulated CDF of spectral efficiency for 25 and 50 an&s.

Fig. 2. Simulated CDF of the spectral efficiency for 45 and #@Gennas |N€ parameters used afe = 2 x 107%, pm = 0.001,a = 5 and the
and with and without pilot contamination. The parameteduarep, = 2 x representative transmitter was ra}ndomly placed in theatethe origin. The
1075, pm = 0.001, e = 5 and the representative transmitter was randoml§@ximum number of active mobiles per cellf = 1,10 and 20.

placed in the cell at the origin. The maximum number of activebiles per

cell is K = 10.

1. The density of active mobiles with® = 10 is approximately

. ) i ) 3.8 x 10~* and the density of active mobiles with = 1
the representative transmitter during channel estimaftom- ;o approximately4 x 10~5. Thus an approximately 10 fold

thermore, forj > 0, observe that the closest point to the origifjycrease in mobile density results in a reduction in the spec
in the cell associated with the base stationBatis pounded efficiency of the representative link by approximately adac
from above by|B;|/2. Thus, all mobiles located in the cellof fie at an outage probability of 0.1. On the other hand,
associated with the base-stationait are at a distancés; /2 going from K = 20 to K = 10 results in nearly a doubling

or greater from the base station at the origin. This leadbéo ty ihe spectral efficiency of a representative link but whi t

following bound. density of active transmissions reduced by approximately a
P20 factor of less than two. Combined with models for channel
0 — 5 (15) coherence and training times (which depend) such an

‘ analysis could be used to optimiZé.

) ) ) Figure[4 illustrates the lower bound for the spectral effi-
Note here that while the bound given above is loose, to the bﬁ%ncy for a fixed link length ofrp — 100 and K = 5

Or: ou;f knov¥ledge_ Iltl |sdfthe_l§)nlydsu_c|:h bound which considerg,y the remaining parameters as given in the caption. The
the etiect of spatially distributed pilot contaminators. simulated markers represent the pilot contaminated mesa: sp
tral efficiency and the dashed line represents the lower dhoun

) ) ) from (13). For reference, the simulated asymptotic spkctra
We conducted Monte Carlo simulations to verify the acclsfficiency with perfect channel estimation plotted using th

racy of our asymptotic results. Figuré 2 shows the CDFs gjid line, and simulated spectral efficiencies for a system
the spectral efficiency from simulations with and withoudpi \ith non-zero noise such that the Signal-to-Noise-RathR
contamination as well as the asymptotic expression for the 20dB is plotted using the asterisk markers. Note that the
CDF from [12) for 45 and 100 antennas at the base statigfyer bound is loose. However, it provides a guarantee on the
The representative link was randomly distributed in the celiorst case mean spectral efficiency under pilot contangnati
containing the origin. The remaining parameters are given Additionally, the simulations with 20dB SNR indicate thaet

the figure caption. Observe that with 100 antennas and atiaferference-limited approximation is accurate even wthen
outage probability of 0.1, the theoretical prediction ighin  nymper of antennas is large.

0.25 b/s/Hz of the simulated values which validafes (12). Fo

45 antennas, the asymptotic CDF is within 0.3 b/s/Hz of the V. SUMMARY AND CONCLUSIONS

simulated values. Additionally, note that the simulatetbtpi  In this paper, the spectral efficiency of the uplink in a

contaminated spectral efficiency for 100 antennas is withapatially distributed, Poisson-cell network is analyz&tie

0.5 b/s/Hz of the non-pilot contaminated spectral efficjenc base station is assumed to use a linear MMSE estimator and
In Figure[3, we plotted the CDFs frofi {|12) for 25 and 56he number of active mobiles per cell is limited f§ in

antennas per base station aiid= 1,10 and 20. This figure order to permit channel estimation using intra-cell oribrog)

illustrates how the results in this paper can be used to aealyilots. The CDF of the spectral efficiency in the interferenc

the tradeoff between increasing the density of transmissiy limited regime is derived for a randomly distributed mobile

increasingK and the resulting reduction in per-link data rates a typical cell of the network. The results can be used to

due to increased interference. For a system with 50 anteanhastatistically characterize achievable data rates in setlorks

an outage probability of 0.1, there is approximately a fwletf as a function of tangible system parameters such as user and

increase in the spectral efficiency going frdth= 10, to K = base-station density and number of antennas, and can help

IV. NUMERICAL SIMULATIONS AND RESULTS



K or fewer mobiles in the cell. If there are greater th@n

10 T T T
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_ - Asmptotc Lower Bound mobiles, K are selected randomly to be active. Thus,
g 8 —Non-pilot Contaminated (Asym. Theory) |
g * Non-pilot Contaminated, 20dB SNR (Sim.) 1 |f g < K
g Pr(P; = 1|#C(X;) =L A) = g , (18)
g o 771+ Otherwise.
g
w
g4 Forn —2 > m, we have
Q
o
0
§ J PI‘(#C(XJ) = m|AZ = ai,Aj = CLj,.A)
=
= Pr(#C(X;) = m|4; = a;, A)
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Fig. 4. M tral effi ber of b tatide ith . .
o ean spectral efficiency vs. number of base statidanmas wi Let C1,Cy--- denote the cells in the network. Define the

pilot contamination for a system with. = 0.00002, p,, = 0.001, K = 10,
a = 5, and a fixed link lengthr = 100. The dashed lines represent a lowefollowing set whlch consists of the portions of the cells o
bound for the mean spectral efficiency. contained II’lB(O, d).

Cq=1{CiNB(0,d):i=1,2-}. (20)
system designers optimize parameters such as the maximpym j-th element ofC, is denoted byC4. Thus, A, takes

number of active mobiles per cell. values in the seCr, wherePr(A; — Cry) = [Crxl/ (T R2).

Combining [1), [AB) and[{19), weighting byr(A; = Cgy)

APPENDIX . . ;
and summing over all possible values 4f yields,

A. Proof of Main Result
[Cr|

n—2
The main result is proved using Theorem 1[df [9] in which  Pr(P; = 1]A4) = Z |CR’;| Z min (17 i) ~
the normalized SIR of a representative link with antennas k=1 mk £=0 t+1

and a linear MMSE receiver in a network with interferers at (n _ 2) (pm |CR;€|)€ (1 _ Pm |CRk|)n_é_T (21)

correlated spatial positions is shown to converge in pridibab
to a limit of the same form as in Theorem 1 in this paper.
Theorem 1 in this paper follows directly from that result iffhe next step is to take the limit df(21) asR — co. Since

n n

the following two conditions hold. the term in the brackets is bounded for ajlwe can its limit
N . before taking the outer limit i (21) (see e.0.][14]). Wriin
Jim Pr(Pyr; N% <, Piry®N% <) a = |Crk|, the limit of the term in the brackets il (21) is

= lim Pr(Pr;*N?% < z) Pr(Pr; “N% <z). (16)

o i [Z (+1 <n;2) (pnﬁ ) (1 - p,;;a)n—f—Qa

and
lim Pr(r;*N% <[P = lim Pr(r;®N% N (n—2) (PmayT(, _ pmayn?
—« 2 < =1)= 2 < . - m _ bFm
i PN SR ) = PN S0 S (7 ) () )]
a7 0
— —Pma K (pma)k K-1
Equation [[IB) is shown in Appendix]C, and{17) follows — K—Ke "% o + Z 1 (pma)™ e~ Pme
directly from the following lemma Pma = m!
Lemma 2:For anyz > 0, = h(a). (22)
lim Pr( =0|r; < ;fl/a\/ﬁ) = lim Pr(P,=0) Thus, we can write the limit of (21) as
N— N—o0
ICr]
C C
Proof: The proof follows similar steps to that used to prove j;;, Pr(P; = 1|A) = | R2| Z | Rk| h(ICrel). (23)
Lemmall and is omitted for brevity. R—o0 FHoo TR

We next state a result from stochastic geometry (Equation

B. Proof of Lemmal1 5.2 of [11]), which relates the spatial average of a function
Let C; denote the cell occupied by;. Let A; = over the cells of a single realization of a PVT to the ensemble

|C; N B(0, R)| be the area of intersection betwe€h and average. For any bounded functigrwhich maps convex sets

B(0, R). Additionally let#C; denote the number of mobilesin R2 to R, the following holds with probability 1,

in C; excludingX;, andA be the event thak; and X; are in

diferrent cells, i.eC; # C;. Since the cells of a PVT are finite el 1 f(cY

with probability 1 (e.g. see[11]), aB — oo, Pr(A) — 1. RHOO ICRI Zf Crk) = 5 [L} E { CO] } ’ (24)

Recall that all mobiles in a given cell are active if there are 1]




where C° is the zero-cell of a PVT, which is statistically Combining this with the fact that; andr; are asymptotically
equivalent to the cell that contains any given pointin trenpl independent when conditioned chandPr(P, = 1, P; = 1),
Additionally, we note that with probability 1, a8 — oo, the
number of cells per unit area iB(0, R) approaches the den- lim Pr (BNQ/2Tfa >z PjNa/Q,,,;a > x)

R—oo v ’

sity of the base stations with probability 1, ileng_, o, LC;;J =

pe- Let f(Cri) = |Cri|h(|Cri|), Which is only dependent on = lim Pr(P;=1) lim Pr(N/2r;* > 1)
the area ofCrx. Thus, we can apply(24) cellular model we fimreo fimreo )
assume here, where the coordinates are shifted such that the x Hm Pr (P =1) Am Pr (Na/ Ty > CC) (29)
is a base station at the origin. Combinifigl(24), the fact that
Pr(A) = 1andFE Lc%q = p. with 23) we have, Equation [IB) follows from LemmAl2 and the fact that for
x>0, Pr(PN*/?r;% > z|P; = 0) = 0.
lim Pr(P; =1) = E [n(|C°])] . (25)

n—oo

Next we express the equation above in terms oftyipécal D. Proof of Theoreri]2
cell of a PVT which we denote by”. The relationship
between the mean of functions of the zero-cell and the typica NO€ _that t.n, and N are related such that the CDF

a/2,.—/2 i
cell is given by Equation 2.1 of [15]. Applying this result ta®f v / T does not vary withV,n, 2 and moreover,
the previous equation yields p; = N/ r; * are bounded for alk, IV, R. The signal power

) normalized byN —¢ at the output of the PC-MMSE filter is

; 1) & T T
Jim Pr(P;=1) = E[ICTI]E [IcTr(C™])] - (26) e a2
NS =ry*N |w g0|
Substituting the fact tha®2[|C*|] = - with the above -1 2
expression proves the lemma. ' —a _a 1 "1
p p =Ty Z'f‘i 2 1/P1Ngj ZNPJg?gI 2o
C. Proof of Equation(I8) €T 7=1
Recalling the definitions used in the proof of Lemnha 1, and 1 " -t
following steps similar to that used to prove it, we can write = Z 72 /piﬁgj Z Npigjg; g0
= =1
Pr(P;=1,P; =1]4; = |Crs|, Aj = [Cre|, A) = R j 2
n—2 4 -1
min{1,—— —a/2 - ot pegiol 30
; < (+1)\ ¢ n 7o ' 580 ; ~rigiel | e - (30)
pm|CRt| n—~—2 :
< (1 - 7) x
n Consider the expectation of the first term in the absolute
"ifmm <1 K > <n—£—2) ( pm|Chs| >m value in [30).
m=0 ’m+1 m n_pmlth| _ .
x (1 punlCr] >an ey E|| Y /P Zn: ~ree | )| <
- 5 i [ i 1555, >~
n— Pm|CRt| i€T,i#0 N Jj=1 N
Applying steps similar to those used to prove Lemma 1 to .

(232), i.e. by weighting[{27) by the probabilities thadt =
ICrs|, Aj = |Crt|, summing over alCrs; andCg;, taking the E Z

VP

I | ;
~e | D wrieig | el

limit as n, N, R — oo, and applying[(24), we can show that  [*€7-70 J=1g#
Jim Pr(P=1,F; =1[A) = where the inequality follows from applying the Sherman-
= pe E[ICTIR(CT])] pe E [|CT(ICT])] - Morr|§on—qu§jbury matrix  inversion lemma and the non-
i ) negative definiteness of the matrix
= lim Pr(P,=1) lim Pr(P; =1) (28)
R—oo R—o0
Sincez > 0 andPr(A) — 1, we have |
) Z _pigjg; (31)
lim Pr (PN > 0, PN > ) J=Liti
R—o0 J
— lim Pr (Noz/%_—a > Na/%j—a > 7| From Lemma 3 off[9] if (I6) and(17) holding, such that for
R—o0 v ’

alll n > ng, with probability 1, the minimum eigenvalue of the

P=1,P =1, A)Pr(P=107P =1JA) matrix above is bounded from below By, > 0. Forn > ny,



taking an eigen-decomposition of this matrix and simptifyi

goes to zero as, N, R — oo which yields

-1

-1 1 7% = — T ;
e Jm N = i 23 (S el 6
E Z Ty PV Pi=g; Z ~Pigi8; | 8o
e N 4~ N - -1
1€T,i#0 J=1,j#i 1 T n 1 i
_ . ~NT; L8 (Zi:l,i;ﬁj Npigigi) g;
= l1im
_a N -1
<e|l Y %P Z T jeT a0 1+ £pigl (ZLL#J» %pigigi) g;
L €T ,i#0 Jj= 1,_]751 1 n 1 -1
r — t t
N-1 o + =15 “Pigy Z ~Digi8; o
_ E Z Ujvj E Z T',:E /Pi ’ (32) N i1 N
j=1 1€T,i#0 . _ . .
- =1, "B+ Z 1 n jg B in probability.
J
whereu; andv; are i.i.d.CN(0, 1) random variables. Note that JET 370 (36)
the expectation in[{32) factors due to the isotropic natifre o
Gaussian random vectors. Note that one of the standard metts 7“8+ Y P}, (37)

ods to prove the weak law of large numbers is to show that the

JET,j#0

sample mean of zero-mean i.i.d. random variables convergésere second equality is from applying the Sherman-
in the mean-square sense to zero. Since convergence in mMgarrison-Woodbury matrix inversion lemma. The theorem is
square implies convergence in mean, the first expectation goved by dividing [(3B) by[(37).

the RHS of [[3R) converges to zero. Since the mobiles which
contribute towards the pilot contamination are locatediolet
the cell at the origin, fot £ 0,7 € T, r; > Dnin, Where Din

is the radius of the largest circle which is wholly contairied
the cell at the origin. Since: > 4, from Section Ill.A of [16]

 E [Lzleﬁ?ﬂ o/ } is bounded. Thus, we haJe({32) 0,
which implies that the first term in the absolute value[in] (30)
converges in probability to zero. From Theorem 1, the secorld!
term in the absolute value ib_(30) converges in probabibity t
ry 8. Thus, the following holds in probability

(1]

(2]

(4]

N72S — ry 2232, (33)

(5]

Next, consider the interference power normalizedNoy*/> -

n
Ni%I:Ni%WTZTi_Q Zgzgjw
i=1
-1
hT Z_ngz h.

1
N

[7]
(34) g

El

—1
~Pi8i8; ) gk -

NN (z

JET keT =1
-1
_a _a 1 "1 [10]
SNANGD WA B o)
JET keT ki i—1
. [11]
+Zr’°‘P ~g (Z ~Digig ) g;- (35) [12]
JET

The first term on the RHS of (85), has a similar form to thg3]
first term in the absolute value il (30), which was shown t?4]
converge in probability to zero. Following a similar seqcen

of steps, we can show that the first term on the RHY of (35)
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