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ABSTRACT
This paper presents a quantitative study of Twitter, one of the
most popular micro-blogging services, from the perspective
of user influence. We crawl several datasets from the most
active communities on Twitter and obtain 20.5 million user
profiles, along with 420.2 million directed relations and 105
million tweets among the users. User influence scores are
obtained from influence measurement services, Klout and
PeerIndex. Our analysis reveals interesting findings, includ-
ing non-power-law influence distribution, strong reciprocity
among users in a community, the existence of homophily
and hierarchical relationships in social influences. Most im-
portantly, we observe that whether a user retweets a message
is strongly influenced by the first of his followees who posted
that message. To capture such an effect, we propose the
first influencer (FI) information diffusion model and show
through extensive evaluation that compared to the widely
adopted independent cascade model, the FI model is more
stable and more accurate in predicting influence spreads in
Twitter communities.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and behavioural
sciences

General Terms
Experimentation, Data Analysis

Keywords
Influence, Online social networks, First-influencer model,
Twitter

1. INTRODUCTION
Recently, micro-blogging has emerged as a new medium

of communication. A user can publish short messages
(or statuses) to spread information to his friends. Twit-
ter is among the most popular micro-blogging services,
claiming to have more than 500 million users by 2013 [9].
Basic functionalities of Twitter include disseminating

tweets (short messages with a length limit of 140 char-
acters), updating and socializing among users. A mes-
sage can be retweeted by recipients to further spread it
far beyond the followers of its originator. Unlike other
social network services that require users to grant per-
missions to other users to befriend them, Twitter em-
ploys a “free-to-follow” model, which allows any user to
follow and get update from others without seeking any
permission. User A who follows B is called B’s follower,
while B is called A’s followee or friend 1.

Twitter makes available application programming in-
terfaces (APIs) that allow open access to its data. Much
work has been done towards better understanding of the
Twitter network’s topological characteristics and user
behaviours. Java et al. [8] conducted preliminary anal-
ysis on Twitter using a small dataset of 76,000 users
and 1 million tweets in 2007. The authors found that
users cluster according to interests in topics using clique
percolation methods. Krishnamurthy et al. [14] ana-
lyzed user characteristics by the relationship between
the number of followers and followees. Zhao and Rosson [28]
qualitatively investigated the motivation behind using
Twitter. Haewoon et al. [16] presented the first study
on the entire Twitter sphere. Several interesting obser-
vations have been made regarding the structural prop-
erties of the Twitter network, including non-power-law
follower distribution, short effective diameter, and low
reciprocity, etc. However, since 2011, rate limits on API
calls have been enforced resulting in a drastic reduction
in the amount of research on Twitter.

User influence is defined as the ability to drive actions
and provoke interactions among others. How to rank
Twitter users based on their influence is an active re-
search topic. A simple metric is the number of followers
that one has. However, recent studies [4, 27, 3] pointed
out that it is not a good indicator. Many researchers
have striven to come up with an intuitive and fair rank-
ing system on Twitter. Kwak et al. [16], in an effort to
identify the most influential users on Twitter, applied

1We use the term followee to distinguish other types of social
friendships like that of Facebook.
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several ranking metrics, including the number of follow-
ers, the number of retweets, and PageRank. It has been
found that ranking results from these metrics do not
correlate well, which implies none of them is reliable.
Cha et al. in [4] employed another metric, i.e., the num-
ber of times a user is mentioned. Weng et al. [27] pro-
posed TwitterRank, an extension of the PageRank al-
gorithm to measure user influence. Meanwhile, several
online influence measurement services are now available
including Klout, PeerIndex, Kred, Empire Avenue, and
PROskore. These services scrape social network data,
using it to create profiles of individuals and assigning
each an “influence score”. Twitter users do not have to
register with the measurement services to have their
profile evaluated, since their information can be ob-
tained via Twitter API. However, if the user registers,
the service will have full access to their data and pro-
vide more accurate measurement results. In exchange,
user with high influence score will be eligible for perks
(discounted coupons, promotions, etc.) from many re-
tailers.

In this work, we take a data-driven approach to inves-
tigate user influences in Twitter communities identified
by hashtags. The purpose of this study is three-fold.
First, we aim to understand whether characteristics pre-
viously observed on the entire Twitter sphere (but no-
tably of a much smaller scale than today’s Twitter net-
work), remain valid in Twitter communities. Second,
we study the consistency between the influence scores
from two major ranking services, Klout and PeerIndex,
and unravel connections between influence scores and
user relationships in Twitter communities. Third, we
evaluate the suitability of one widely adopted influence
spread models, namely, the independent cascading (IC).

From the analysis, we make several interesting ob-
servations regarding user relationships in Twitter com-
munities. Furthermore, we find that whether a Twitter
users retweets a message is due to the influence from the
first of his followees who posted that message. We refer
to this as the first influencer (FI) spreading model. We
show through extensive evaluation that the FI model is
more accurate in prediction influence spreads in Twitter
communities compared to the classic IC model.

In summary, we make the following observations on
Twitter communities:

• Strong reciprocity between users: Users that
share similar interests do not randomly follow one
another, but tend to follow those who follow them
forming strongly connected network components.

• Hierarchy: Following relationship encodes hier-
archy on Twitter, where less influential users tend
to follow those with more influence.

• Homophily: Homophily exists in mutual follow-
ing relationships, where users with similar influ-

ences tend to follow one another.

• First-influencer diffusion model: The success
of information spread in Twitter communities pri-
marily depends on the influence of the first infor-
mation source.

The rest of this paper is organized as follows. Sec-
tion 2 describes the methodology for data collection and
the resulting datasets. Key findings from analyzing the
Twitter community datasets are presented in Section 3.
In Section 4, we introduce the FI model and evaluate
it with two sets of experiments. Finally, the paper is
concluded in Section 5.

2. THE TWITTER CRAWLER
Though many Twitter datasets are publicly avail-

able [25, 15, 2], they contain little information regard-
ing the information exchange in the network. In the
present study, we are interested not only in network
structures, but also in the interactions among users.
Most existing social datasets only contain graphs with
nodes representing users on the network and links rep-
resenting follower-followee relations. User identity is
typically discarded from the dataset due to privacy con-
cerns. Information exchanged among users (like tweets
and messages), which is crucial to understand and an-
alyze influences, is considered sensitive and cannot be
published. Therefore, we build a crawler to collect new
datasets using Twitter APIs to address the deficiency
of existing datasets.

2.1 Implementation
Twitter offers APIs to facilitate data crawling. How-

ever, due to the excessive amount of API requests that
Twitter receives, a rate-limit of 350 requests per hour
per IP address is enforced, and the whitelist program [22]
has been terminated (which allows a whitelisted IP to
make up to 20,000 requests per hour). This poses diffi-
culty in acquiring large amount of data since extracting
the complete profile of a user normally takes up to 3 re-
quests. To alleviate the above problem, we implement
a crawler in Java following the client-server model to
extract both user profiles and messages on Twitter as
depicted in Figure 1.

Each crawler client with a different IP (either on dif-
ferent physical machines or virtual machines) makes re-
quests to crawl data from Twitter. The data is ag-
gregated at the crawler server. The server checks for
data integrity and correctness before storing it in the
database server. We control a PC pool with 50 ma-
chines making requests continuously from October to
December 2012.

2.2 Data collection
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Figure 1: The Twitter crawler

The initial goal of the Twitter crawler is to obtain a
complete dataset capturing nodal relations and the in-
teractions among them. Even with 50 machines crawl-
ing continuously, obtaining a dataset on the scale of the
entire Twitter sphere is technically infeasible. Instead,
we focus on crawling specific communities on Twitter
where users share common interests on trending topics.

Trending topics:. Twitter tracks phrases, words, and
hashtags that are often mentioned and classifies them
as “trending topics”. A hashtag is a convention among
Twitter users to create and follow a thread of discus-
sion by prefixing a word with a “#” character. By
hashtagging the word, Twitter users create trends that
may draw the community’s attention. By crawling the
most popular hashtags on Twitter on many different
topics [26], we obtain a diverse set of datasets that rep-
resent the most active communities on Twitter.

User profiles:. Twitter profiles can be crawled from
the list of user ids that participate in each trending
topic. Twitter allows public access to a user’s profile
including name, location, web address, a short bio, and
the number of tweets, unless the user sets his profile to
“private”. Persons who follow the user (followers) and
those that the user follows (followees or friends) are also
listed. Note that for the sake of graph compactness, we
do not consider connections that are outside the tar-
geted communities. More specifically, we discard any
connection and tweet of a twitterer to and from users
not in the datasets.

To this end, we obtained 20.5 million user profiles,
along with 420.2 million directed relations between fol-
lowers and followees. We observe that only 8.58% of
the users set their profile to private, preventing us from
accessing their information and relations. These users
are omitted from the dataset. Incomplete datasets as
a result of the limitation on crawling rate and process-
ing/network resources are discarded as well. The set of
complete datasets and their key parameters are listed
in Table 1. In Table 1, the network density is defined
as the ratio between the total number of edges in the
network and the number of edges in a full-connected
network with the same number of vertices. Thus, a

fully connected network has a density of one; and while
trees have a density of 2/n.

Tweets:. To collect tweets from a user, we first crawl
the tweet history. Twitter keeps the history of most
recent 3,200 tweets from a user. Older tweets are dis-
carded. Since 3,200 tweets are insufficient to capture
active user’s history, we therefore monitor each user for
a one-month period and capture all the tweets in the
time period. We collect the full text, the author, the
time stamp, as well as the receiver if the tweet is a reply.
A total of 105 million tweets have been collected.

2.3 Removing spam tweets
Spam tweets exist our collected datasets, most no-

tably in the #iphone and #android communities. Re-
moving them is therefore desirable to reduce noise and
bias in the analysis. Spam detection in Twitter is by
itself an important and active research problem. In this
work, we follow the same approach as in [16] and em-
ploy the well-known mechanism of the FireFox add-on,
Clean Tweets [1]. Clean Tweets removes tweets from
users who have been on Twitter for less than a day, and
the tweets that contain three or more trending hashtags.
To this end, the average number of tweets per user from
different communities in the respective dataset is given
in Table 1.

2.4 Influence scores
We crawl the influence scores of all the users in our

dataset from two popular influence measurement ser-
vices:

• Klout [12]: User influence scores range from 1
to 100 with 100 being the most influential. For
example, the U.S. President Barack Obama and
pop star Justin Beiber are two persons that are
scored 100. Klout measures influence mostly from
Twitter data including following count, follower
count, retweets, list memberships, the influence of
one’s followers, etc.

• PeerIndex [21]: It also measures one’s influence
on the scale of 1 to 100. PeerIndex distinguishes
itself by emphasizing its contributions at a topic-
by-topic level. The ability of users to drive con-
versations and provoke interactions is reported in
different topics.

3. TWITTER COMMUNITY AND USER IN-
FLUENCE

In this section, we study the characteristics of the
twitter communities from the perspective of user influ-
ences. Only results from the communities #ladygaga,
#sopa, #android, and #marketing are presented. The
rest are omitted since they are quite similar. In the

3



Table 1: Collected datasets from Twitter.

Hashtag Nodes Edges Density Tweets/user Trend description

#android 172,817 1,695,021 1.1e-4 134.84 Android phone, OS and appli-
cations

#at&t 74,200 426,518 1.5e-4 67.97 Discussions on AT&T phone
and service quality

#family guy 170,290 1,577,836 1.1e-4 60.25 American animated TV show
#hiphop 93,440 1,862,110 4.2e-4 142.82 Hip hop music genre
#iphone 94,928 501,295 1.1e-4 145.04 Iphone and its applications
#ladygaga 19,525 65,158 3.4e-4 99.64 American female singer
#marketing 226,606 19,123,496 7.4e-4 215.15 General discussions on market-

ing and business
#nfl 55,200 703,090 4.6e-4 93.87 American national football

league
#sopa 36,993 474,173 6.9e-2 112.35 U.S. bill to combat digital con-

tent piracy
#teaparty 19,772 3,169,181 1.6e-2 330.82 American political party

subsequent analysis, we not only unravel some Twitter-
wide characteristics but also shine lights on the differ-
ences among user communities.

3.1 Reciprocity in following relationship
We begin the analysis by presenting the basic fol-

lower/followee distribution of different Twitter commu-
nities in Figure 2. The number of followers and followees
from each user is plotted in the log-log scale. The main
diagonal line (dotted line) represents the perfect reci-
procity where the number of followers is equal to the
number of followees. The number above the diagonal
line indicates the percentage of users who have more
followees than followers. As expected, more users are
above the diagonal due to the “free-to-follow” mech-
anism of Twitter. However, we find that there are a
significant portion of twitterers with equal numbers of
followers and followees, most notably from the #an-
droid and #ladygaga communities (37.09% and 60.04%,
respectively)2. This indicates a stronger reciprocity in
the two communities.

Another relevant question regarding reciprocity is whether
a user is likely to follow “back” those that follow her.
Let a mutual follower be the follower who is also a fol-
lowee. To capture mutual following, we introduce a
new metric, reciprocal level, defined as the ratio of the
number of mutual follower to the number of followers.
The histogram of reciprocal level on four communities
is shown in Figure 3.

From Figure 3, we observe that a significant portion
of users have reciprocal level 1, which means that they
tend to follow who follow them. Such a strong mutual
relationship was not observed when the same study was
conducted on the scale of Twitter [16]. Our results
show that at a community level, users tend to have

2Note that we only consider relationships between users who
are inside the community.

bidirectional connections to each other. This may be
explained by the fact that users in the same community
are likely to share common interests. We also find in
each community there is a non-negligible percentage of
users (≈ 5 − 10%) with reciprocity level close to zero.
These are likely to be the community leaders who enjoy
a large followings but rarely follow back.

3.2 Distribution of influence scores
The influence score distributions from Klout and PeerIndex

are presented in Figure 4. Note that a score of less than
10 is not an indicator of weak influences, but rather,
Klout and PeerIndex encounter issues in scraping the
user’s data. This problem has been noted on the Klout’s
developer blog [13]. As a result, in the subsequent
study, we only consider users that have both scores no
less than 10 (87.2% of all users).

From Figure 4, we observe that the correlation be-
tween the scores from the two services is only moder-
ate across all Twitter communities. The correlation is
particularly low in the #ladygaga community with the
Pearson’s correlation coefficient being 0.3693. Since nei-
ther of the services publishes its ranking algorithm, we
can only deduce that they use different methods. Lack
of an authoritative mechanism to measure influence, we
resort to a simplistic metric for the influence of a user
by taking the average of the two scores. We call the new
metric the digital influence (DI) score. Note the focus
of the study is not to come up with a new method in
measuring social influences rather to study the correla-
tion between influence scores determined by commercial
ranking services with structural properties in Twitter
communities.

The histogram of the DI score and the maximum
likelihood fitting of a beta distribution are depicted in
Figure 5. We find that the DI score does not follow
a power law distribution, but roughly a beta distribu-
tion with two shape parameters 2 < α < β and the
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(a) #android (b) #ladygaga (c) #marketing (d) #sopa

Figure 2: Distribution of number of followers and followees. The number above/below the diagonal line is the
percentage of users with more/less followees than followers.
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Figure 3: Histogram of reciprocal level.

mean value around 30 to 40. We also observe that
the mean DI score varies from one community to an-
other as summarized in Table 2. The mean DI score
is higher in the “#marketing” community since it in-
cludes many business people and mass media entities,
who tend to have strong influence on others. In con-
trast, the average DI score is lower in the “#android”
community. Our dataset reveals that most tweets that
contain the “#android” tag are from people who play
Android games. They often post tweets containing in-
formation of the game with the “#android” tag to re-
ceive perks or bonuses from game providers. These
tweets would mostly be discarded by other twitterers
resulting in a low average DI score in the “#android”
community.

Table 2: Mean DI score in different communities.

Dataset #android #ladygaga #marketing #sopa
Mean DI 29.15 34.33 45.04 33.25

3.3 Hierarchy
Social hierarchy or stratification among humans is a

well studied concept in sociology. Online social net-
works with their tremendous amount of available data
give rise to new opportunities to study the social hier-
archy for networks of different types and scales.

Although there is no formal definition of stratifica-

tion, recent studies show that hierarchy does exist in
many online social networks, including Twitter. Re-
searchers in [23, 17, 7] hypothesize that people form
connections in a social network based on their perceived
social hierarchy. For instance, A following B is a reflec-
tion that B’s social rank is likely higher than A.

In absence of the ground truth of social hierarchy,
we make the simplified assumption that a person’s in-
fluence score is positively correlated with his rank. In
other words, a person that ranks higher in the social
hierarchy tends to have a higher influence score, and
vice versa. Furthermore, a user of a high social rank
is unlikely to follow those with lower social ranks. To
verify the later hypothesis, we analyze the DI scores of
a user’s followers and followees.

Let Nout(u) and Nin(u) be the set of node u’s fol-
lowers and followees, respectively. We define ∆r(u) and
∆e(u) to be the difference between the DI score of u
and the mean DI score of u’s followers and followees,
respectively.

∆r(u) = DI(u)−
∑

∀v∈Nout(u) DI(v)

|Nout(u)| and

∆e(u) = DI(u)−
∑

∀v∈Nin(u) DI(v)

|Nin(u)| .

We calculate ∆r(u) and ∆e(u) for all users in our
datasets. Those that do not have any follower or fol-
lowee are discarded. Results from Figure 6 show that
the majority of users have ∆r > ∆e, which means the
average score of their followees is higher than that of
their followers. This indicates that the following rela-
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(a) #android, ρ = 0.5417 (b) #ladygaga, ρ = 0.3693 (c) #marketing, ρ = 0.5215 (d) #sopa, ρ = 0.5392

Figure 4: Distribution of Klout and PeerIndex scores.
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Figure 5: Histogram of DI score and fitting using beta distribution.

tionship in Twitter encapsulates hierarchical informa-
tion, and a user’s followees tend to be more influential
than her followers.

Before conducting the study, we expect that most
users should have ∆r > 0 > ∆e. In other words, a
user is at lower social rank than its followees. However,
in our datasets, majority of users have 0 > ∆r > ∆e.
This could be attributed to two factors. First, DI score
follows the beta distribution with shaping parameters
β > α as previously illustrated in Figure 5. Therefore,
more users have DI score less than the mean score of
their communities. Second, removal of users who do not
have any follower or followee can also lead to skews in
the distributions of ∆r and ∆e.

3.4 Homophily
Homophily is the phenomenon where people’s social

networks “are homogeneous with regard to many so-
ciodemographic, behavioural, and interpersonal charac-
teristics” [18]. In the context of Twitter, homophily im-
plies that there are stronger connections between those
who are “socially equal”. Understanding homophily can
help us build better user models for personalization and
recommendation systems. Many previous studies [27]
have verified homophily in Twitter along many dimen-
sions, such as age, location, occupation, topical interest,
and expertise, etc. In this section, we study homophily
from the perspective of user influence.

We test the hypothesis that users with similar influ-
ence are likely to be mutual followers. Let Nre(u) be
the set of reciprocal followers of u (those that are both

u’s follower and followee) and Nnre(u) be the rest of
u’s followers who are not in Nre(u). We have Nre(u) =
{v|v ∈ Nout(u) ∧ u ∈ Nout} and Nnre(u) = {v|v ∈
Nout(u) ∧ v 6∈ Nre(u)}. Define ∆re(u) and ∆nre(u) as
the average score distance of u to users in Nre(u) and
Nnre(u), respectively:

∆re(u) =
∑

∀v∈Nre(u) |DI(u)−DI(v)|
|Nre(u)| and

∆nre(u) =
∑

∀v∈Nnre(u) |DI(u)−DI(v)|
|Nnre(u)| .

We calculate ∆re and ∆nre for all users in dataset
except for those with empty Nre or Nnre. Homophily
exists if most users have ∆re < ∆nre, indicating that
users with similar influence tend to follow each other.
Distributions of ∆re and ∆nre in Figure 7 show that
the hypothesis is generally true on Twitter. We no-
tice that the percentage of users satisfying ∆re < ∆nre

varies from one community to another. Some commu-
nities (#marketing, #sopa) have stronger homophily
than others (#android, #ladygaga). This is proba-
bly because users have more awareness of their influ-
ence in the #market and #sopa communities and tend
to befriend those who have similar influence. There
are many factors that affect the following relationship
among users. Our result shows that influence or its
social perception may attribute to the following rela-
tionship, which may in turn affects a user’s influence
score.

4. FIRST-INFLUENCER INFORMATION DIF-
FUSION MODEL

6



(a) #android (b) #ladygaga (c) #marketing (d) #sopa

Figure 6: Distribution of ∆r and ∆e. x-axis indicates ∆r and y-axis indicates ∆e.

(a) #android (b) #ladygaga (c) #marketing (d) #sopa

Figure 7: Distribution of ∆re and ∆nre. x-axis indicates ∆re and y-axis indicates ∆nre.

To this end, we have investigated the follower-following
relations between users in Twitter communities, and
their connections to influence scores. In this section,
we answer the question of how information spreads in a
Twitter community and propose the FI diffusion model,
which is shown empirically to be more accurate than the
widely adopted IC model.

4.1 Motivation
Diffusion models that explain how information is spread

or how a product is adopted can generally be divided
into two categories: (1) Threshold models [20] where
each node has a random threshold and will be activated
if the cumulative influence from its neighbours is larger
than its threshold. (2) Cascade models [11] where each
node when first becomes active will have a chance to
activate each of its inactive neighbours in the next time
slot with a certain (edge) probability.

Among them, the IC model [5], where the influence
probability from user u to user v, pu,v is a constant, has
been widely adopted in literature. Many work [24, 3,
19] applied the IC model in solving the influence maxi-
mization problem or studying the spread of information
on Twitter. However, we observe that the current Twit-
ter implementation does not support such a spreading
mechanism. When a user u tweets a new message m,
this message will be visible to his followers. In other
words, u attempts to spread m to all of his followers.
We say that m is spread from u to one of his follow-
ers v if v retweets m. The IC model assumes that if

the first spread attempt fails, later attempts can still
succeed with constant probabilities. As an example, u
can spread m to v with probability of success pu,v. As-
suming u fails, but m was later spread to u′ who is a
followee of v, then m will have another chance to be
retweeted by v with probability pu′,v. We notice that
unlike other online social networks such as Facebook,
the current implementation of Twitter (both web and
mobile platforms) suppresses the duplicated message.
In other words, v will not be aware of the fact that u′

retweets m and thus, m has no chance to be retweeted
by v (or u′ cannot influence v) if it fails in the first try.

This observation motivates us to propose a new influ-
ence diffusion model – FI, to capture the effect that only
the first followee who attempts to spread the influence
counts.

4.2 The model
Consider a Twitter community modelled by the net-

work G = {V,E}, with V and E are the sets of nodes
and edges respectively. An active node u at time t will
attempt to spread the information a to one of its inac-
tive neighbours v with probability of success pau,v, given
that v is yet to be activated by any other nodes. If v
is activated, it will in turn, try to spread the informa-
tion and influence its inactive neighbours in time t+ 1.
However, if v fails to be influenced at the first attempt,
it will show strong resistance to similar attempts from
it neighbours in the future and set pau′,v = ε for all
u′ ∈ Nin(v), where ε is a small number. In this work,
we consider the special case where ε = 0.
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Formally, we consider three types of sets: A(t), U(t)
and S(t), respectively, for the set of active nodes, the set
of insusceptible nodes, and the set of susceptible nodes
at time t. Influence propagates in a slot-by-slot manner.
Initially, A(0) = A is the set of seed nodes, U(0) = ∅,
S(0) = V \A(0). Let a(t) be the collection of newly acti-
vated nodes at the beginning of slot t. A node u ∈ a(t)
selects a timer du uniformly distributed in [0, 1]. Upon
the expiration of the timer, u attempts to spread the in-
formation to its inactive neighbours (in S). At the end
of slot t, a node v ∈ S(t) is activated with probabil-
ity pu,v if u ∈ a(t) ∩N(v) and du = minx∈N(v)∩a(t) dx;
otherwise, U(t+ 1) = U(t) ∪ {v}.

Let σ(A) be the expected number of nodes that the
seed set A can influence on the network (also referred
to as the spread function). An important question is
if σ(A) is submodular and monotone under FI as these
properties gives rise to efficient approximation algorithms [10].

Property 1. Under the FI model, σ(A) is non-monotone.

Proof. Consider a network with three nodes u1, u2, u3
with edges between u1 and u3, and u2 and u3. Let the
edge influence probability p1,3 > p2,3. It is easy to

show that σ({u1}) = p1,3, and σ({u1, u2}) =
p1,3+p2,3

2 .
The second equation is because when A = {u1, u2}, u1
and u2 each has 0.5 chance of being the first influencer.
Since p1,3 > p2,3, σ({u1, u2}) < σ({u1}).

Property 2. Under the FI model, σ(A) is non-submodular.

Proof. Consider a network with four nodes u1, u2, u3, u4
with edges from ui to u4 for i = 1, 2, 3. The edge influ-
ence probabilities satisfy, p1,4 >

p2,4+p3,4

2 . It is easy

to show that σ({u1, u3}) − σ({u1}) =
p3,4−p1,4

2 and

σ({u1, u2, u3}) − σ({u1, u2}) =
p3,4−p2,4−p1,4

3 . Due to

the condition that p1,4 >
p2,4+p3,4

2 , we have σ({u1, u3})−
σ({u1}) < σ({u1, u2, u3})−σ({u1, u2}). Thus, submod-
ularity is violated.

From the claims, we can see that the FI model differs
from the decreasing cascade model previously proposed
by Kempe et al. that have been proven to be submodu-
lar and monotone [11]. One key difference is that in the
decreasing cascade model, the activation probability of
a node is independent of the order of nodes that try to
influence it, while in the FI model, the one that first
tries to influence the interested node always dominates
as evident from the Twitter implementation 3. Despite
the above negative results, we show empirically in the
subsequent section that the FI model is more accurate
than the IC model in the prediction of influence spread

3The equivalence between the decreasing cascade model and
the generalized threshold model in [11] holds only when the
later is non-monotone. In other words, though we can rep-
resent the FI model using the generalized threshold model,
there is no corresponding decreasing cascade model.

in Twitter networks. In both IC and FI models, the
influence spread function of any given seed set can be
evaluated via Monte Carlo simulations.

4.3 Evaluation
In this section, we conduct experiments to compare

the proposed FI model with the IC model. Since there
is no ground truth of the actual diffusion model, we
present two sets of evaluation study on Twitter datasets
to demonstrate the advantages of the proposed model.
Experiments are carried out on a variety of communi-
ties #android, #at&t, #family guy, #hiphop, #iphone,
#teaparty to evaluate the effects of different network
structures and densities.

Model stability:. In the first set of experiments, we
assess the stability of each model. If a model is a suit-
able one, it should have similar parameters for similar
datasets (though the reverse is not necessarily true).

We first extract information cascades from the datasets
using the algorithm in [6] and put them in a log, re-
ferred to as the cascade log. In each round of the exper-
iments, we randomly shuffle the cascades in the cascade
log and break them into 2 equal sets. A model is con-
sidered more stable if the parameters derived from the
two sets are more comparable. A similar metric was
adopted in [6]. The parameters that we infer are the
influence probabilities on the edges. By applying the
algorithm in [6] on both sets, we calculate the probabil-
ity vectors p1,p2 = [pu,v]1×m with any edge (u, v) ∈ E,
respectively, where m = |E| from the two sets. The
Root Mean Square Error between p1 and p2 is derived

as RMSE(p1,p2) =

√∑m
i=1 (p1(i)−p2(i))2

m . Denote by
RMSEFI and RMSEIC the value of RMSE calcu-
lated from the FI and IC models respectively. RMSE
indicates how much deviation the two set of inferred pa-
rameters exhibit. Higher RMSE implies the model is
less stable. We conduct 100 rounds of experiments and
report the average RMSE and the standard deviation.

Figure 8(a) shows the histogram inferred p1 and p2

on 7 datasets in log scale. We observe that though pre-
dominately the edge influence probabilities are small,
there are many edges having influence probabilities close
to 1. This is due to the small number of cascades in
the datasets along some edges. For example, if there
is only one message from A to B and B retweets, the
edge influence probability from A to B is 1. From Fig-
ure 8(b), we see that both RMSEFI and RMSEIC are
small in all communities. However RMSEFI is con-
sistently smaller than RMSEIC , demonstrate the su-
perior stability of the FI model. Figure 8(c) gives the
ratio between RMSEFI and RMSEIC . The x-axis cor-
responds to communities with increasing densities from
left to right. On dense networks, the IC model tends to
overestimate the spread probabilities since each active
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Figure 9: Comparison of the influence spread prediction of the
FI and IC models. The communities are ordered by increasing
densities from left to right.

neighbour has a chance to influence. As a result, we see
a larger performance gap between FI and IC when the
network is denser (e.g., the tea party community).

Influence spread prediction:. The second set of ex-
periments aim to evaluate which model is more accurate
in predicting the influence spread in the network. In-
fluence spread is defined as the average number of users
influenced. First, we derive the edge influence probabil-
ity using the method discussed before. However, in this
set of experiments, the propagation probability is deter-
mined from the whole cascade log. Denote by pFI and
pIC the probability vectors from the FI and IC mod-
els, respectively. We compute the vectors of expected
spread σFI , σIC = [σ(u)]1×n from pFI and pIC for each
user u ∈ V and n = |V | using 10,000 rounds of Monte
Carlo simulations (since the exact calculation of σ from
p is #P-complete [10]). To obtain the ground truth
σ(u), we calculate the average size of cascades from a
user u.

The histogram of σ(u) on 7 communities is plotted in
Figure 9(a). The majority of users have σ = 1, which
means they fail to spread the information to any of their
followers. The mean value of σ is 1.135. We also calcu-
late the RMSE between the two distributions of σFI and

σIC versus the ground truth σ and present the result in
Figure 9(b). We observe that the FI model consistently
outperforms the IC model and can achieve a more ac-
curate influence spread prediction in all communities.

4.4 Discussion
We show through the two set of experiments that the

FI model is more stable and results in more accurate
influence prediction than the IC model in the Twitter
communities. Thus, in predicting influence spread on
Twitter networks, the FI model is more appropriate. It
is motivated by the current implementation of Twitter
in suppressing duplicated messages, and is thus appli-
cation specific. It should be noted that FI may not be
suitable for other online social networks, such as Face-
book, Google+, etc. However, we believe our study
points to an interesting direction in devising practical
influence propagation models by examining the actual
implementation of messaging mechanisms in these net-
works.

Twitter’s decision to surpress dupliciated message has
implications on the extent of influence propogation in
Twitter communities as evident from the non-monotonicity
of the FI model.

5. CONCLUSIONS
In this paper, we made two contributions in charac-

terizing influences in Twitter communities. First, we
conducted a quantitative analysis on Twitter from the
user influence perspective. We found that users who
share similar interests, or have similar influences, are
likely to befriend each other. We also found that twit-
terers tend to follow those with more influence. Second,
we observed the information diffusion on Twitter and
proposed the FI model to capture the spreading process.
The findings provide a more comprehensive understand-
ing of Twitter characteristics, which has implications in
many application domains, such as viral marketing and
recommendation systems.
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