
Chalmers Publication Library            

 

 

 

 

 

Copyright Notice 

 

  

©2014 IEEE. Personal use of this material is permitted. However, permission to 
reprint/republish this material for advertising or promotional purposes or for creating new 
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted 
component of this work in other works must be obtained from the IEEE.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This document was downloaded from Chalmers Publication Library (http://publications.lib.chalmers.se/), where it 
is available in accordance with the IEEE PSPB Operations Manual, amended 19 Nov. 2010, Sec. 8.1.9 
(http://www.ieee.org/documents/opsmanual.pdf) 

 
(Article begins on next page) 

http://publications.lib.chalmers.se/�
http://www.ieee.org/documents/opsmanual.pdf�


I/Q Imbalance in Two-Way AF Relaying:
Power Allocation and Performance Analysis

Jingya Li†, Michail Matthaiou?†, and Tommy Svensson†
†Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden

?School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast, U.K.
Email: jingya.li@chalmers.se, tommy.svensson@chalmers.se, m.matthaiou@qub.ac.uk

Abstract—We investigate the performance of dual-hop two-
way amplify-and-forward (AF) relaying in the presence of in-
phase and quadrature-phase imbalance (IQI) at the relay node.
In particular, the effective signal-to-interference-plus-noise ratio
(SINR) at both sources is derived. These SINRs are used to design
an instantaneous power allocation scheme, which maximizes the
minimum SINR of the two sources under a total transmit power
constraint. The solution to this optimization problem is analyti-
cally determined and used to evaluate the outage probability (OP)
of the considered two-way AF relaying system. Both analytical
and numerical results show that IQI can create fundamental
performance limits on two-way relaying, which cannot be avoided
by simply improving the channel conditions.

I. INTRODUCTION

Relaying-assisted transmission is considered as one of
the key technologies for future wireless networks thanks to
its capability of improving the system reliability, extending
network coverage and ensuring quality of service [1]. The
amplify-and-forward (AF) and decode-and-forward are two
popular relaying protocols. Recall that the former has lower
implementation complexity, since it only amplifies the received
signal, without performing any decoding. In this paper, we
focus on half-duplex two-way AF relaying, which allows
two sources to exchange data through a relay simultaneously
within two phases. Thus, it can achieve higher spectral effi-
ciency compared to standard one-way relaying [2], [3].

Most works in the area of relaying assume that the
transceiver hardware of the relay is perfect [2]–[5]. However,
in practice, due to the limited accuracy of the analog hardware
and the up/down conversion operations at the relay, relaying
systems are intimately affected by hardware impairments, e.g.,
phase noise, power amplifier nonlinearities, and in-phase and
quadrature-phase imbalance (IQI). In this paper, we focus on
the impact of IQI, which refers to the phase and amplitude
mismatch between the in-phase (I) and quadrature (Q) signals
at the transmitter (TX) and receiver (RX) sides. Such imbal-
ance creates an additional image-signal, leading to significant
performance loss especially in high-rate systems [6]. Since the
hardware of the low-cost relay nodes is most likely to be of
poor quality, relays are more prone to IQI.
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Fig. 1. Dual-hop two-way AF relaying with IQI at the relay node.

Despite the importance of IQI for relaying systems, there
are only a few relevant works reported in the literature. In
particular, the IQI effects on one-way AF relaying were inves-
tigated in [7], [8], where novel digital baseband compensation
algorithms were proposed. In [9], analytical expressions for the
OP and ergodic capacity were derived for one-way AF relaying
in the presence of IQI at the relay node. Most recently, [10]
elaborated on the impact of IQI on two-way AF relaying. In
contrast to this paper, the authors in [10] did not consider IQI
effects at the relay node and all analytical results were limited
to Rayleigh fading channels. Most importantly, [10] did not
work out any power allocation policy to mitigate the impact
of IQI.

Motivated by the above discussion, we hereafter charac-
terize the performance of dual-hop two-way AF relaying in
the presence of IQI at the relay. First, we obtain expressions
for the end-to-end SINRs at both sources. Then, an instan-
taneous power allocation scheme is formulated to maximize
the minimum SINR, thus, improving the system reliability.
With the closed-form optimal power allocation solution in
hand, lower bounds on the OP are derived over independent,
non-identically distributed Nakagami-m fading channels. Both
analytical and numerical results show that IQI can create
fundamental performance limits on two-way relaying, even
with optimal power allocation. More specifically, when the
target SINR value is above the inverse of the joint image-
leakage ratio, as defined in Section II, the system will always
be in outage. This cannot be avoided by simply improving the
channel conditions, or increasing the transmit power.

II. SYSTEM AND SIGNAL MODEL

We consider a two-way AF relaying system where two
source nodes, S1 and S2, communicate with each other
through a single relay node. All nodes are equipped with a
single antenna, and transmission at all nodes is constrained to



the half-duplex mode, i.e., no node can transmit and receive
at the same time. The data transmission is carried out in
two phases, as depicted in Fig. 1. In phase 1, S1 and S2

simultaneously transmit their information to the relay node. In
phase 2, the relay amplifies the received signal and broadcasts
it to both sources. The RF front-ends of the source and the
destination are assumed to be perfect. In this paper, we focus
on the impact of the IQI at the relay node, since it normally
deploys lower-quality hardware.

A. IQI Model

In general, IQI refers to as the phase and amplitude im-
balance between the I and Q signal paths at the transceivers.
Here, we consider an asymmetrical IQI model, where the I
branch is assumed to be ideal and the errors are modeled in
the Q branch [6], [11]. In the case of TX IQI, the baseband
representation of the up-converted TX signal can be given as

x̂ = G1x+G∗2x
∗ (1)

where x is the baseband TX signal under perfect TX I/Q
matching. In turn, G1, G2 are given by

G1 ,
(
1 + gT e

jφT
)
/2 and G2 ,

(
1− gT e−jφT

)
/2 (2)

where gT and φT model the TX amplitude and phase
mismatch, respectively. Regarding the RX IQI, the down-
conversion of the RF RX signal is given by

ŷ = K1y +K2y
∗ (3)

where y denotes the down-converted baseband RX signal
under perfect RX I/Q matching. The coefficients K1 and K2

are given by

K1 ,
(
1 + gRe

−jφR
)
/2 and K2 ,

(
1− gRejφR

)
/2 (4)

where gR and φR denote the RX amplitude and phase mis-
match, respectively. The x∗ and y∗ terms in (1) and (3) are
often referred to as the mirror signals introduced by IQI [6].
It is noted that for perfect I/Q matching, these imbalance
parameters reduce to gT = gR = 1 and φT = φR = 0; thus,
in this case, we will have G1 = K1 = 1 and G2 = K2 = 0.

B. End-to-end SNR

Let hi denote the channel coefficient for the Si-to-relay
link for i = 1, 2. The amplitudes g1 , |h1| and g2 , |h2| are
modeled as independent, non-identical Nakagami-m random
variables with fading parameters mi ≥ 0.5, and average
powers Ωi = E

{
|hi|2

}
for i = 1, 2. Here, the operator E {·}

stands for expectation. The complex Gaussian receiver noises
at S1, S2, and the relay are denoted by n1 ∼ CN (0, N1),
n2 ∼ CN (0, N2), and nr ∼ CN (0, Nr), respectively. For
simplicity, it is assumed that all noise powers are N1 = N2 =
Nr = 1. We will now use the relationships (1) and (3) to
derive the end-to-end SINR for each source, considering the
two-phase, two-way AF relaying protocol. We assume that the
channels between the sources and the relay are reciprocal, and
remain constant during these two phases; the instantaneous
channel realizations of h1 and h2 are known at all nodes.

In phase 1, S1 and S2 simultaneously transmit their informa-
tion to the relay node. Under RX I/Q mismatch, the baseband
RX signal after down-conversion at the relay node, yr, can be
expressed as

yr = K1 (h1x1 + h2x2 + nr) +K2 (h1x1 + h2x2 + nr)
∗

(5)
where x1, x2 ∈ C are the transmitted signals from the S1

and S2, with average transmit power E
{
|x1|2

}
= P1 and

E
{
|x2|2

}
= P2 respectively. In phase 2, the relay node

amplifies the received signal at baseband with an amplification
factor G, up-converts it to RF, and then broadcasts it to both
sources. With TX IQI at the relay, the baseband RX signal at
Si is given by

yi = hi
(
Gi (Gyr) +G∗j (Gyr)

∗)
+ ni (6)

where j = 2
i with i = 1, 2. Substituting (5) into (6), we can

write the received signals at Si as

yi = GAh2
ixi + GB |hi|2 x∗i + GAhihjxj + GBhih

∗
jx
∗
j

+ GAhinr + GBhin
∗
r + ni (7)

where

A , G1K1 +G∗2K
∗
2 and B , G1K2 +G∗2K

∗
1 . (8)

Since the relay node has perfect instantaneous knowledge of
the fading channels h1 and h2, the variable amplification factor
G can be selected as

G =

√
Pr

D (ρ1P1 + ρ2P2 + 1)
(9)

where Pr is the power of the transmitted signal at the output
of the relay node. Also, ρi , |hi|2 for i = 1, 2, and

D ,
(
|G1|2 + |G2|2

)(
|K1|2 + |K2|2

)
. (10)

The IQI parameters (A, B and D) and the gain factor G

are broadcasted from the relay to both sources. Hence, each
source can cancel the corresponding self-interference terms,
i.e., GAh2

ixi + GB |hi|2 x∗i for Si, from which we get1

ỹi = GAhihjxj +GBhih
∗
jx
∗
j +GAhinr+GBhin

∗
r +ni. (11)

Thus, the received SINR at Si can be obtained as

γi =
ρiρjPj

κρiρjPj + (1 + κ) ρi + 1
|A|2G2

(12)

where the ratio κ , |B|2 / |A|2 is referred to as the joint
image-leakage ratio of the considered relaying system [9],
[12], [13]. Note that for the case of perfect I/Q matching at
the relay node, we have A = 1, B = 0 and κ = 0.

1Note that with knowledge of the IQI parameters (A, B and D) and the
fading channels h1 and h2, each source node Si can also perform standard
IQI compensation by augmenting the signal ỹi with its conjugate. Power
allocation with IQI compensation will be considered in the journal version of
this paper.



Utilizing the general SINR expressions in (12), in the fol-
lowing, we study an instantaneous power allocation problem.
In order to enhance the system reliability, the transmit powers
are optimized to maximize the minimum SINR of the two
sources for each instantaneous channel realization.

III. OPTIMAL POWER ALLOCATION

We consider an instantaneous power allocation problem,
which maximizes the minimum SINR of the two sources.
It is assumed that the system has a maximum total power
constraint, Pmax. From (9), the transmit power from the relay
node, Pr, can be written as Pr = G2D (ρ1P1 + ρ2P2 + 1).
Therefore, the total transmit power, Ptot, can be calculated as

Ptot = P1 + P2 + G2D (ρ1P1 + ρ2P2 + 1) . (13)

For each instantaneous channel realization, the optimization
problem can then be formulated as

max
P1,P2,G2

min (γ1, γ2)

s.t. P1 + P2 + G2D (ρ1P1 + ρ2P2 + 1) ≤ Pmax.
(14)

From (12), we see that γi for i = 1, 2 are non-decreasing
functions with respect to P1, P2 and G2. Thus, the minimum
SINR is maximized when the inequality constraint in (14) is
satisfied with equality. Moreover, similar to [5], we can show
that γ1 = γ2 at the optimum. Hence, the power allocation
problem (14) is equivalent to

max
P1,P2,G2

γ1

s.t. P1 + P2 + G2D (ρ1P1 + ρ2P2 + 1) = Pmax, γ1 = γ2.
(15)

Plugging the SINR expression (12) into the two equality
constraints in (15), we have

P1 = P2
1 + G2Cρ2

1 + G2Cρ1
(16)

P2 =

(
Pmax − G2D

) (
1 + G2Cρ1

)
(1 + G2Cρ1) (1 + G2Dρ2) + (1 + G2Cρ2) (1 + G2Dρ1)

(17)

where C , |A|2 + |B|2. Then, (15) can be reformulated as

max
G2

|A|2 J
|B|2 J + 1

(18)

where

J ,

(
Pmax − G2D

)
G2

(1 + G2Cρ1) (1 + G2Dρ2) + (1 + G2Cρ2) (1 + G2Dρ1)
.

Based on the fact that f (x) = ax
bx+1 is monotonically increas-

ing in x, for a, b > 0, the problem (18) can be simplified to
max
G2
J . By calculating the first derivative of J with respect

to G2 and setting it to zero, the optimal G2 can be derived as

G2
opt =

Pmax

D (1 +K)
(19)

where α , C/D, and

K ,

√
1 +

(α+ 1)

2
(ρ1 + ρ2)Pmax + αρ1ρ2P 2

max. (20)

Substituting (19) into (16) and (17), the optimal P1, P2 and
Pr can be obtained as

P1,opt =
K (K + 1 + αρ2Pmax)

I
Pmax (21)

P2,opt =
K (K + 1 + αρ1Pmax)

I
Pmax (22)

Pr,opt =

(
1− K (2K + 2 + (αρ1 + ρ2)Pmax)

I

)
Pmax (23)

where I , (K + 1 + αρ1Pmax) (K + 1 + ρ2Pmax) +
(K + 1 + αρ2Pmax) (K + 1 + ρ1Pmax) . From (21) and (22),
we observe that the source associated with the weakest chan-
nel, i.e., smaller ρi, should transmit more power compared to
the source associated with the best channel.

A. The Impact of the IQI Parameter α

From (2), (4), (8) and recalling that C , |A|2 + |B|2, we
get

α ,
C

D
=

2
(
1 + g2

T g
2
R + 2gT gR sinφT sinφR

)
(1 + g2

T ) (1 + g2
R)

. (24)

Hence,

0 ≤ 2 (1− gT gR)
2

(1 + g2
T ) (1 + g2

R)
≤ α ≤ 2 (1 + gT gR)

2

(1 + g2
T ) (1 + g2

R)
≤ 2.

We can now introduce the following insightful corollaries:
Corollary 1: The optimal transmit power at the relay node,

Pr,opt, is a monotonically decreasing function of α.
Proof: See Appendix I.

Corollary 2: Suppose gT = gR = gIQI, φT = φR = φ, with
∆gIQI ,

∣∣∣1− gIQI

∣∣∣ and
∣∣∣φ∣∣∣ < π

2 . The optimal transmit power
at the relay node, Pr,opt, decreases as the IQI at the relay node
increases, i.e., as ∆gIQI and/or

∣∣∣φ∣∣∣ increase.
Proof: See Appendix II.

Corollary 1 implies that, in order to maximize the system
reliability, the transmit power allocated to the relay node
should decrease as the IQI parameter, α, increases, while the
total power transmitted from the two source nodes should
increase. Corollary 2 claims that, when the relay node has the
same TX and RX IQI, the power transmitted from the relay
node should decrease if the IQI at the relay node increases.

B. Special Cases

Recall that C = D = 1 for the case of perfect I/Q matching.
For the case of one-side (TX-only or RX-only) IQI at the relay
node, it is easy to show that C = D = |A|2 + |B|2. Hence, in
both special cases, we have α , C/D = 1. Plugging α = 1
into (20), we get K =

√
(ρ1Pmax + 1) (ρ2Pmax + 1). Thus, the

optimal amplification factor G2 in (19) reduces to

G2
opt =

Pmax

D
(

1 +
√

(ρ1Pmax + 1) (ρ2Pmax + 1)
) (25)

with D = 1 for the ideal case, and D = |A|2 + |B|2 for
the one-side IQI case. The optimal power allocation solution
reduces to [4]



P1,opt =
Pmax

√
ρ2Pmax + 1

2
(√
ρ1Pmax + 1 +

√
ρ2Pmax + 1

) (26)

P2,opt =
Pmax

√
ρ1Pmax + 1

2
(√
ρ1Pmax + 1 +

√
ρ2Pmax + 1

) (27)

Pr,opt =
Pmax

2
(28)

which is the same for both the one-side IQI case and the ideal
hardware case. From (28), we see that, for the two special
cases, the relay node and the source nodes should equally
share the total transmit power, i.e., Pr,opt = P1,opt + P2,opt =
Pmax

2 . Note that the optimal solution in (26)-(28), is obtained
when α = 1. Recall that Pr,opt is a monotonically decreasing
function of α. Therefore, when considering joint RX and TX
IQI at the relay node, at the optimal point, the power allocated
to the relay node should be less than half of the total transmit
power if α > 1. On the other hand, if α < 1, the relay node
should transmit with more than half of the total transmit power,
in order to maximize the minimum SINR of the two sources.

Plugging (25), (26) and (27) into (12), the received SINR
of S1 and S2 can be obtained as γ1 = γ2 = γ, where

γ =
ρ1ρ2P

2
max

κρ1ρ2P 2
max + 2 (1 + κ)

(√
ρ1Pmax + 1 +

√
ρ2Pmax + 1

)2 .
(29)

In the following, we analyze the OP of two-way relaying, by
using the SINR expression in (29), considering one-side only
IQI at the relay node with optimal power allocation.

IV. OUTAGE PROBABILITY ANALYSIS

Recall that the channel amplitude gi, i = 1, 2, follows
a Nakagami-mi distribution with fading parameters mi and
average powers Ωi for i = 1, 2. Therefore, ρi , g2

i is a
Gamma random variable distributed with shape parameter mi

and scale parameter
Ωi
mi

. The corresponding probability dis-

tribution function (PDF) and cumulative distribution function
(CDF) for |hi| and ρi can be found in [14, Eq. (2.20) and
(2.21)]. The OP at Si, i = 1, 2, is defined as the probability
that its instantaneous equivalent SINR, γi, falls below a certain
threshold γth, that is,

Pout,i(γth) = Pr {γi ≤ γth} (30)

where Pr {·} denotes probability. Note that γ1 = γ2 = γ for
the optimal power allocation. Thus, Pout,1(γth) = Pout,2(γth).
From (29), the received SINR for both sources can be upper
bounded by γ ≤ γupp1, where

γupp1 ,
ρ1ρ2P

2
max

κρ1ρ2P 2
max + 2 (1 + κ)

(√
ρ1Pmax +

√
ρ2Pmax

)2
=

Pmax

κPmax + 2 (1 + κ)
(

1√
ρ1

+ 1√
ρ2

)2 (31)

=
X2

κX2 + 2 (1 + κ)
(32)

with X ,
√
ρ1ρ2Pmax√

ρ1Pmax+
√
ρ2Pmax

. Based on (32), and utilizing the
fact that min

(√
ρ1Pmax,

√
ρ2Pmax

)
is a tight upper bound of

X when
√
ρ1Pmax and

√
ρ2Pmax grow large, we present the

following lower bound on the OP, which becomes exact in the
high SNR regime.

Proposition 1: For Nakagami-m fading channels with op-
timal power allocation, the OP in the presence of one-sided
only IQI at the relay node is lower bounded as Pout(γth) ≥
Pout,low1(γth), where

Pout,low1(γth) = 1−
2∏
i=1

1−
γ
(
mi,

mi
Ωiγ̃

)
Γ(mi)

 (33)

for 0 ≤ γth <
1
κ , and Pout,low1(γth) = 1 for γth ≥ 1

κ . Here,
γ̃ , Pmax(1−κγth)

2(1+κ)γth
and γ (s, x) =

´ x
0
ts−1 exp (−t) dt is the

lower incomplete Gamma function.
Proof: See Appendix III.

According to the geometric mean-harmonic mean inequal-
ity, γupp1 in (32) can be further upper bounded as

γupp1 ≤
Pmaxg1g2

κPmaxg1g2 + 8 (1 + κ)
. (34)

Now, we provide an alternative lower bound on the OP, which
is tight at low and moderate SNRs.

Proposition 2: For Nakagami-m fading channels with opti-
mal power allocation and integer m2, the OP in the presence
of one-sided only IQI at the relay node is lower bounded as
Pout(γth) ≥ Pout,low2(γth), where

Pout,low2(γth) = 1− 2

Γ(m1)

(
m1

Ω1

)m1 m2−1∑
k=0

1

k!

(
16m2

γ̃2Ω2

)k

×
(

16m2Ω1

γ̃2Ω2m1

)m1−k
2

Km1−k

(
8

γ̃

√
m1m2

Ω1Ω2

)
(35)

for 0 ≤ γth <
1
κ , and Pout,low2(γth) = 1 for γth ≥ 1

κ . Here,
Kv (·) is the v-th order modified Bessel function of the second
kind.

Proof: See Appendix IV.
Note that Proposition 1 applies for any arbitrary fading

parameters, whereas Proposition 2 is valid when m1 and m2

are positive integers. For the special case of Rayleigh fading,
m1 = m2 = 1, we present the following lower bound on the
OP, which remains tight over the entire SNR regime.

Proposition 3: For Rayleigh fading channels with optimal
power allocation, the OP in the presence of one-side only IQI
at the relay node is lower bounded as Pout(γth) ≥ Pout,low3(γth),
where

Pout,low3(γth) = 1−
N∑
k=0

exp

(
− 1

γ̃Ω1

(
1 +

1

(k + 1) ∆t

)2
)

×

(
exp

(
− (k∆t+ 1)

2

γ̃Ω2

)
− exp

(
− ((k + 1) ∆t+ 1)

2

γ̃Ω2

))

− exp

(
− 1

γ̃Ω1
− ((N + 1) ∆t+ 1)

2

γ̃Ω2

)
(36)

for 0 ≤ γth <
1
κ , and Pout,low3(γth) = 1 for γth ≥ 1

κ . Here,
N is an arbitrary positive integer and the interval ∆t is an
arbitrary positive value.
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Proof: See Appendix V.
The choice of N and ∆t affects the tightness of the lower

bound. In general, a larger N combined with a smaller ∆t
will provide a tighter lower bound.

From Propositions 1, 2 and 3, we see that, due to the effect
of IQI, the OP is always 1 if γth is above the inverse of the
joint image-leakage ratio. This implies that, for high levels of
IQI, the system is always in outage, which cannot be avoided
by simply hardening the channel conditions or transmitting
more power. This observation is in line with [15], [16].

V. NUMERICAL RESULTS

In this section, we present a set of numerical results to
evaluate the performance of the power allocation scheme and
to verify our analytical results. The noise power is assumed
to be 1mW. Figure 2 shows the optimal power values in (21),
(22) and (23) as functions of the phase mismatch parameter,
φ, for two different channel realizations, i.e., ρ1 = ρ2 = 1
and ρ1 = 0.1, ρ2 = 1. We consider a symmetric IQI case
with φT = φR = φ and gT = gR = 1. In agreement with
Corollary 2, the optimal transmit power at the relay node,
Pr,opt, decreases as the phase imbalance, φ, increases. We
also observe that for the considered asymmetric channel case,
the source associated with the weaker link transmits with a
higher power, which increases as φ increases. On the other
hand, the optimal transmit power at the source associated with
the stronger link, remains unaffected by the phase imbalance.
Moreover, as anticipated, for the special case of perfect I/Q
matching, i.e., when φT = φR = 0 and gT = gR = 1,
the optimal value for Pr,opt is always Pmax/2, which is
independent of the channel conditions.

Figure 3 demonstrates the maximum OP of the two sources,
i.e., max (Pout,1(γth), Pout,2(γth)), versus the target SINR γth.
The proposed optimal power allocation scheme is compared
with the equal power allocation scheme, where P1 = P2 =
Pr = Pmax/3. We consider two IQI cases: the joint IQI case
with gT = gR = 1.1, φT = φR = π

8 ; and the RX-only IQI
case with gR = 1.1 and φR = π

8 . The corresponding values of
the joint image-leakage ratio, κ, are 0.15 and 0.04 respectively.
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Recall that gT = gR = 1, φT = φR = 0 represents
the perfect I/Q matching case with κ = 0. By increasing
κ, the performance loss compared to the case with perfect
I/Q matching increases substantially for both power allocation
schemes. For the considered IQI cases, the OP becomes equal
to 1 once the SINR threshold, γth, reaches to the SINR ceiling,
i.e., 1

κ . This implies that the system is in full outage due to the
effect of IQI, which is in fundamental contrast to the perfect
I/Q matching case where the SINR ceiling effect does not
occur. We also observe that, at low values of γth, i.e., when
γth � 1

κ , power allocation is important for reducing the IQI
effects, thereby improving the outage performance.

Figure 4 investigates the analytical lower bounds derived in
Propositions 1 and 2 for the OP versus Pmax for different
fading parameters m. As anticipated, we see that the OP
decreases as m increases, since the channel condition becomes
better when m becomes large. Moreover, Pout,low1(γth) matches
well with the numerical results for very large Pmax and
Pout,low2(γth) is tight for small and moderate Pmax. Generally
speaking, in the performance evaluation, the maximum of
these two lower bounds can be selected to predict the exact
OP with a better accuracy. In Fig. 5, we examine Pout,low3(γth)
derived in Proposition 3 for the Rayleigh fading case. As
mentioned before, a larger N combined with a smaller ∆t
will provide a tighter lower bound. Yet, we observe that
the improvement brought by further increasing N beyond
10 becomes negligible. In addition, compared to the equal
power allocation scheme, we see that the proposed scheme
can significantly improve the maximum OP, thus improving
the reliability of both sources, especially when the total power
budget Pmax is large.

VI. CONCLUSIONS

We analyzed the performance of a dual-hop two-way AF
relaying system, where the relay node suffers from both TX
and RX IQI. An instantaneous power allocation scheme was
proposed to maximize the minimum SINR of the two sources
under a total transmit power constraint. Moreover, tractable
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lower bounds have been derived for the outage probability
over Nakagami-m fading channels. Our theoretical analysis
indicated that, for high levels of IQI, the system is always
in outage, which cannot be avoided by simply hardening the
channel conditions. Compared to the equal power allocation
scheme, it was also shown that the proposed power allocation
scheme can significantly improve the outage performance,
thus reducing the IQI effects, especially when the total power
budget is large.

APPENDIX I
PROOF OF COROLLARY 1

From (23), we get Pr,opt = Pmax
x(α)
y(α) , where

x (α) , 2 ((I1 + I2)α+ (I2 + 1) (K + 1))

y (α) , 2
(

(I1 + I2)α+ (K + 1)
2

+ I2K (α+ 1) + I2

)
with I1 , ρ1ρ2P

2
max and I2 , ρ1+ρ2

2 Pmax. It is sufficient to
show that f (α) , ∂x(a)

∂α y (α)− x (α) ∂y(α)
∂α < 0 for 0 ≤ α ≤

2. After some basic algebra, we get

f (α) = 2K
(
I1 − 3I2

2 − I2 − I1I2

)
− I3

where I3 = 2
K (I1 + I2) (1 + αI2) (1 + I2 + α (I1 + I2)) +

4I2K2 (I2 + 1) > 0. Utilizing the fact that the geometric
mean is smaller or equal to the arithmetic mean, we have
I1 ≤ I2

2 . Hence, f (α) < 0, i.e., Pr,opt decreases as α
increases.

APPENDIX II
PROOF OF COROLLARY 2

Substituting gT = gR = gIQI and φT = φR = φ into (24),
we get

α = 2 +
4g2

IQI

(
(sinφ)

2 − 1
)

(
1 + g2

IQI

)2 . (37)

Hence, α increases as
∣∣∣φ∣∣∣ increases for

∣∣∣φ∣∣∣ < π
2 . The first

derivative of α with respect to gIQI can be derived as

∂α

∂gIQI
=

8gIQI

(
(sinφ)

2 − 1
) (

1− g2
)

(
1 + g2

IQI

)3{
≤ 0, gIQI ≥ 1,

≥ 0, 0 < gIQI ≤ 1.
(38)

Thus, if gIQI ≥ 1, α increases as gIQI increases; otherwise, if
0 < gIQI ≤ 1, then α increases as gIQI decreases. Therefore,
α increases as ∆gIQI ,

∣∣∣1 − gIQI

∣∣∣ increases. Combined with
Corollary 1, the statement in Corollary 2 is proved.

APPENDIX III
PROOF OF PROPOSITION 1

Note that X ≤ min
(√
ρ1Pmax,

√
ρ2Pmax

)
. Hence,

γupp1 ≤
(
min

(√
ρ1Pmax,

√
ρ2Pmax

))2
κ
(
min

(√
ρ1Pmax,

√
ρ2Pmax

))2
+ 2 (1 + κ)

. (39)

Therefore, Pout(γth) can be lower bounded by Pout(γth) ≥
Pout,low1(γth), where

Pout,low1(γth)

= Pr

{ (
min

(√
ρ1Pmax,

√
ρ2Pmax

))2
κ
(
min

(√
ρ1Pmax,

√
ρ2Pmax

))2
+ 2 (1 + κ)

≤ γth

}

=

1, γth ≥ 1
κ ,

Fmin(
√
ρ1Pmax,

√
ρ2Pmax)

(√
2(1+κ)γth

1−κγth

)
, 0 ≤ γth <

1
κ

(40)

where

Fmin(
√
ρ1Pmax,

√
ρ2Pmax)

(√
2 (1 + κ) γth

1− κγth

)

, Pr

{
min

(√
ρ1Pmax,

√
ρ2Pmax

)
≤

√
2 (1 + κ) γth

1− κγth

}
(a)
= 1− Pr

{
ρ1 >

2 (1 + κ) γth

Pmax (1− κγth)

}
Pr
{
ρ2 >

2 (1 + κ) γth

Pmax (1− κγth)

}

= 1−
2∏
i=1

1−
γ
(
mi,

mi
Ωiγ̃

)
Γ(mi)

 . (41)



Here, (a) follows from the fact that ρ1 and ρ2 are independent
of each other. The desired result is obtained by substituting
(41) into (40).

APPENDIX IV
PROOF OF PROPOSITION 2

Let pgi(x) and Fgi (x) denote the PDF and CDF of gi,
respectively. From (34), Pout(γth) can be lower bounded by
Pout(γth) ≥ Pout,low2(γth), where

Pout,low2(γth) = Pr
{

g1g2Pmax

κg1g2Pmax + 8 (1 + κ)
≤ γth

}
=

{
1, γth ≥ 1

κ ,

Pr
{
g1g2 ≤ 4

γ̃

}
, 0 ≤ γth <

1
κ

(42)

with

Pr
{
g1g2 ≤

4

γ̃

}
=

ˆ ∞
0

pg1(x)Fg2

(
4

γ̃x

)
dx (43)

= 1− 2

Γ(m1)

(
m1

Ω1

)m1 m2−1∑
k=0

1

k!

(
m2

Ω2

)k (
4

γ̃

)2k

Jk (44)

where from (43) to (44) we have used the binomial expansion
for integer m2. Also,

Jk ,
ˆ ∞

0

x2m1−2k−1 exp

(
−m1

Ω1
x2 − 16m2

γ̃2Ω2

1

x2

)
dx (45)

=

(
16m2Ω1

γ̃2Ω2m1

)m1−k
2

Km1−k

(
8

γ̃

√
m1m2

Ω1Ω2

)
. (46)

Here, we have used [17, Eq. (3.478.4)] to evaluate the integral
in (45). By substituting (46) into (44) and combining it with
(42), the result in (35) is obtained.

APPENDIX V
PROOF OF PROPOSITION 3

From (31), Pout(γth) can be lower bounded by

Pout(γth) ≥ Pr

 Pmax

κPmax + 2 (1 + κ)
(

1
g1

+ 1
g2

)2 ≤ γth


=

{
1, γth ≥ 1

κ ,

Pr
{

1
g1

+ 1
g2
≥
√
γ̃
}
, 0 ≤ γth <

1
κ

(47)

with
Pr
{

1

g1
+

1

g2
≥
√
γ̃

}
= 1− 2

γ̃Ω2
I4 (48)

where I4 , γ̃
´∞√

1
γ̃

x exp
(
− 1

Ω1

x2

(
√
γ̃x−1)2

− 1
Ω2
x2
)
dx. By

making the change of variables y →
√
γ̃x, we get

I4 =

ˆ ∞
1

y exp

(
− 1

γ̃Ω2
y2

)
f (y) dy

=

N∑
k=0

ˆ (k+1)∆t+1

k∆t+1

y exp

(
− 1

γ̃Ω2
y2

)
f (y) dy

+

ˆ ∞
(N+1)∆t+1

y exp

(
− 1

γ̃Ω2
y2

)
f (y) dy

where f (y) , exp

(
− 1
γ̃Ω1

(
1 + 1

y−1

)2
)

. Note that f (y) is

an increasing function of y for y > 1. Hence,

I4 ≤
N∑
k=0

exp

(
− 1

γ̃Ω1

(
1 +

1

(k + 1) ∆t

)2
)

×
ˆ (k+1)∆t+1

k∆t+1

y exp

(
− y2

γ̃Ω2

)
dy

+ exp

(
− 1

γ̃Ω1

)ˆ ∞
(N+1)∆t+1

y exp

(
− y2

γ̃Ω2

)
dy. (49)

By evaluating the integrals in (49) with the aid of [17, Eq.
(3.381.9)], then substituting the result into (48) and combining
with (47), we can readily obtain (36).
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