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Abstract

This paper considers distributed linear beamforming in downlink multicell multiuser orthogonal

frequency-division multiple access networks. A fast convergent solution maximizing the weighted sum-

rate with per base station (BS) transmiting power constraint is formulated. We approximate the non-

convex weighted sum-rate maximization (WSRM) problem with a semidefinite relaxed solvable convex

form by means of a series of approximation based on interference alignment (IA) analysis. The WSRM

optimization is a two-stage optimization process. In the first stage, the IA conditions are satisfied. In the

second stage, the convex approximation of the non-convex WSRM is obtained based on the consequences

of IA, and high signal-to-interference-plus-noise ratio assumption. Compared to the conventional iterative

distributed algorithms where the BSs exchange additional information at each iteration, the BSs of our

proposed solution optimize their beamformers locally without reporting additional information during

the iterative procedure.

Index Terms

Weighted sum-rate maximization, Distributed beamforming, Interference alignment, Convex ap-

proximation.

I. Introduction

The weighted sum-rate maximization (WSRM) is a key element in many network design and

optimization methods. However, for a downlink beamforming system, the WSRM problem is
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known to be NP-hard [1], therefore, very difficult to find the solution. As a result, we have to

be reliant on the centralized and computationally very expensive global optimization approaches

[2]–[4] for obtaining the exact solution. However, for a centralized processing based WSRM

optimization [5]–[7], the overhead for information exchange among the associated base stations

(BSs) may be too massive to be implemented in practical systems. Therefore, devising even

suboptimal but distributed approaches for WSRM is indeed very important from a practical

system design perspective.

There has been a substantial amount of research on suboptimal and distributed WSRM opti-

mization. In [8], the authors proposed a distributed WSRM algorithm based on primal decompo-

sition and subgradient methods, where the original nonconvex WSRM problem is divided into

a number of subproblems (one for each base station) and a master problem. In [9], the authors

make high signal-to-interference-plus-noise ratio (SINR) approximation to decouple the WSRM

problem which involves the beamforming vectors of all BSs into a distributed WSRM problem

as a function of local channel state information (CSI), and then solve each decoupled problem

by employing a zero-gradient based algorithm. Furthermore, the distributed solutions proposed

in [10] and [11] for WSRM are not fully distributed in a sense that at each iteration the BSs have

to notify their interference power that depend on other usersf beamformers, and a single user is

served per BS in these schemes. However, all these iterative WSRM optimization designs are

for a single career system with the users equipped with a single antenna. The increasing number

of antenna elements at the user terminals makes the optimization process even more complex;

hence, it is very important to formulate an efficient WSRM solution for multi-antenna users and

to evaluate the convergence behavior.

The aim of this study is to propose a distributed WSRM algorithm for the downlink of multicell

multiuser multi-input multi-output (MU-MIMO) orthogonal frequency-division multiple access

(OFDMA) system. In a multicell scenario, due to the intercell-interference, which affects the

respective weighted sum-rate of all the associated BSs, solving the WSRM problem becomes

very complicated. We simplify the WSRM problem by decoupling it into multiple distributed

problems, each of them solved by the corresponding BS independently. We propose an iterative

solution based on a high SINR assumption and the consequences of the interference alignment

(IA) technique [12], [15]–[17]. In the iterative procedure, each BS optimizes its own beamformers

considering the beamformers used by other BSs as fixed, while keeping the optimization of the
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weighted sum-rate of the whole system as a global perspective. Unlike [10], [11], our solution

does not require the BSs to report the interference powers at each iteration, and therefore,

substantially reduces the system overhead.

This paper is organized as follows. The multicell MU-MIMO OFDMA system model and

the WSRM optimization framework are presented in Section II. In Section III, we address the

convex approximation techniques based on IA and a high SINR assumption, and the proposed

distributed WSRM solution. In Section IV, we discuss the iterative distributed WSRM algorithm.

Section V provides the simulation results and performance analysis. Section VI concludes the

paper.

Notations: (·)H stands for Hermitian-transpose operation. The Gaussian distribution of complex

random variables with mean µ and variance σ2 is defined as CN(µ, σ2). Boldface lower-case and

upper-case letters define a vector and a matrix, respectively. Operator diag(·) stacks the diagonal

elements of a matrix in a column vector. C defines a complex space.

II. SystemModel and theWSRM Problem Formulation

In this section, we discuss the system model for the multicell MU-MIMO downlink. We

consider a cellular system of M cells supporting data traffic to K users per cell. We denote the

number of BS transmiting antennas and the number of receiving antennas at each user terminal

by Nt and Nr (≥ 2), respectively. An OFDMA scheme with N subcarriers with 1-cell frequency

reuse factor is employed. We also consider non-overlapping subcarrier allocation among the

users within a cell. Therefore, the users do not experience intra-cell interference. The subcarrier

assignment function k = f (m, n) defines that user k in cell m is assigned with subcarrier n. The

set of all the BSs is denoted as M , {1, 2, · · · ,M}. Thus, the received data vector at user k of

cell m over subcarrier n, ykmn ∈ C
Nr×1 is expressed as

ymkn = HmknVmknsmkn +
∑

m′∈M\m

Hm′knVm′k′nsm′k′n + zmkn. (1)

where Hkmn ∈ C
Nr×Nt is the complex channel matrix between BS m and user k, and Vkmn ∈ C

Nt×Nr

denotes the beamformer used by BS m to transmit data to user k on subcarrier n. skmn ∼

CN(0, INr) is data vector transmitted by BS m on subcarrier n that is intended for user k.

zkmn ∼ CN(0, INr) denotes the additive white Gaussian noise (AWGN) at user k.
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Fig. 1. System model for multicell MU-MIMO downlink with distributed processing at each BS.

The received SINR of user k from cell m scheduled on subcarrier n is given by

γmkn = V H
mknH

H
mknX

−1
mknHmknVmkn (2)

with X−1
mkn = I +

∑
m′∈M\m

Hm′knVm′k′nV
H

m′k′nH
H
m′kn, and the corresponding instantaneous downlink

rate achieved by user k is formulated as

Rmkn = log det
(
I + γmkn

)
. (3)

Let us define the set of all the subcarriers scheduled for user k in cell m as Skm = {n|k = f (m, n)}.

Therefore, the total instantaneous rate for user k over all the subcarriers can be expressed by

Cmk =
∑

n∈Skm
Rmkn. Let wkm be the weight associated with user k in cell m that may reflect the

quality of the service user k requests in the system or its priority. In this work, the system design

objective is to maximize the weighted sum-rate under per BS transmit power constraint. The

WSRM problem under BS transmitting power constraints is defined as

max
∑
m∈M

∑
n∈N

wmkRmkn

subject to
∑
n∈N

trace
(
VmknV

H
mkn

)
≤ Pm,max, m = 1, ...,M,

(4)

where N , {1, 2, · · · ,N} is the set of all the subcarriers. The rate function in Eq. (3) is nonconvex

in the beamforming matrices Vmkn; hence, finding the solution to Eq. (4) by direct optimization

of the beamforming matrices is very hard. As a simplification of this difficulty, we introduce and

employ linear receiving filters Umkn∀m, n as auxiliary optimization variables. Now, the received
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data vector at user k, ymkn passes through the linear filter Umkn, and joint decoding operation

is performed to extract the the data vector skmn from the filtered and received vector UH
mknymkn,

which is given by

UH
mknymkn = UH

mknHmknVmknsmkn + UH
mkn

∑
m′∈M\m

Hm′kn · · ·

Vm′k′nsm′k′n + UH
mknzmkn.

(5)

When both transmitting beamformers and receiving filters are employed together, the rate func-

tion in Eq. (3) can be expressed as

Rmkn = log det
(
I + V H

mknH
H
mknUmkn

(
UH

mknXmknUmkn

)−1
· · ·

UH
mknHmknVmkn

)
= log det

(
I +

(
UH

mknXmknUmkn

)−1
UH

mknHmknVmkn · · ·

V H
mknH

H
mknUmkn

)
.

(6)

It can be immediately justified that there is no capacity loss, i.e., Eq. (3)=Eq. (6), as long as the

following optimal receiving filters are applied

Umkn = X−1
mknHmknVmkn ∀m, n. (7)

Therefore, the objective values obtained by solving Eq. (4) without receiving filters and with

receiving filters given in Eq. (7) are equal. The advantageous fact of introducing additional

optimization variables is that it enables us to perform convex approximation of the nonconvex

WSRM problem.

III. Convex Approximation based on a high SINR assumption and the consequences of

Interference Alignment

In the convex approximation process, we first make the high SINR approximation of the rate

function Rmkn in Eq. (6) as

Rmkn = log det
(
I +

(
UH

mknXmknUmkn

)−1
UH

mknHmknVmkn · · ·

V H
mknH

H
mknUmkn

)
≈ log det

(
UH

mknHmknVmknV
H

mknH
H
mknUmkn

)
− log det (· · ·

UH
mknXmknUmkn

)
.

(8)
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In our considered distributed WSRM optimization process, each BS optimizes its own beamform-

ing matrices over all its subcarriers Vmkn iteratively considering the beamformers used by other

BSs as fixed without exchanging any information during the iterative procedure. Consequently,

BS m optimizes its own beamformers with WSRM as the objective function as

max
∑
n∈N

wmknRmkn

subject to
∑
n∈N

trace
(
VmknV

H
mkn

)
≤ Pm,max,

(9)

where wmkn = wmk ∀n ∈ N . With the high-SINR approximated rate function given in Eq. (8), the

WSRM problem in Eq. (9) can further be equivalently expressed as

max
∑
n∈N

wmkn log det
(
UH

mknHmknVmknV
H

mknH
H
mknUmkn

)
−
∑
m′,m

· · ·

wm′k′n log det
(
UH

m′k′nHmk′nVmknV
H

mknH
H
mk′nUm′k′n+Nm′k′n

)
s.t.

∑
n∈N

trace
(
VmknV

H
mkn

)
≤ Pm,max,

(10)

where Nm′k′n is the aggregate leakage interference plus noise at user k′ of cell m′ scheduled on

subcarrier n from the users on the same subcarrier of cells i ∈ M\m, and can be written as

Nm′k′n =
∑

i∈M\(m,m′)
j= f (i,n)

UH
m′k′nHik′nVi jnV

H
i jnH

H
ik′nUm′k′n + UH

m′k′nUm′k′n. (11)

We can further rewrite the objective function in Eq. (10) as

max
∑
n∈N

wmkn log det
(
UH

mknHmknVmknV
H

mknH
H
mknUmkn

)
−
∑
m′,m

· · ·

wm′k′n log det
(
N−1

m′k′nU
H
m′k′nHmk′nVmknV

H
mknH

H
mk′nUm′k′n

)
· · ·

− wm′k′n log det (Nm′k′n)

 .
(12)

Note that the WSRM problem in Eq. (12) is still nonconvex since the objective function is

nonconvex. Thus, we convexify the objective function based on the implications of the IA process.

For any user k′ of cell m′, the term UH
mknHmknVmknV

H
mknH

H
mknUmkn corresponds to the leakage

interference from user k of cell m, and Nm′k′n is the aggregate leakage interference from the users
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of cells other than cell m. When the IA achieved is good enough, the leakage interference from

user k, UH
mknHmknVmknV

H
mknH

H
mknUmkn lies in the subspace spanned by the interferences from the

users of cells m′ ∈ M\m. When we have almost perfect IA achieved, the total leakage interference

from all the interfering users, UH
m′k′nHmk′nVmknV

H
mknH

H
mk′nUm′k′n + Nm′k′n becomes comparable to

the background noise at user k′ of cell m′. Consequently, under a sufficient IA scenario, the

largest eigen value of N−1
m′k′nU

H
m′k′nHmk′nVmknV

H
mknH

H
mk′nUm′k′n will be very small. According to

[14] and [13], we can approximate log det
(
N−1

m′k′nU
H
m′k′nHmk′nVmknV

H
mknH

H
mk′nUm′k′n + I

)
as

log det
(
N−1

m′k′nU
H
m′k′nHmk′nVmknV

H
mknH

H
mk′nUm′k′n + I

)
≈ trace

(
N−1

m′k′nU
H
m′k′nHmk′nVmknV

H
mknH

H
mk′nUm′k′n

)
.

(13)

Consequently, the objective function of the WSRM problem can be reformulated as in expression

given below

max
∑
n∈N

wmkn log det
(
UH

mknHmknVmknV
H

mknH
H
mknUmkn

)
−
∑
m′,m

· · ·

wm′k′n trace
(
N−1

m′k′nU
H
m′k′nHmk′nVmknV

H
mknH

H
mk′nUm′k′n

)  .
(14)

It is advantageous to specify the optimization of the beamforming matrices Vmkn in terms of

their corresponding covariance matrices Wmkn = VmknV
H

mkn. In order to generate the transmitting

symbols with the specified covariances, we can designate the beamforming matrices Vmkn to be

Vmkn = GmknD
1/2
mkn, (15)

where Dmkn is a diagonal matrix and GmknDmknG
H
mkn is the eigen-value-decomposition (EVD) of

Wmkn. Furthermore, to find the optimal beamformers in terms of covariance matrices, we impose

Wmkn � O to obtain semidefinite program structure of the optimization problem in Eq. (14). As

a consequence, Wmkn becomes the new optimization variables, and we can reformulate Eq. (10)
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as

max
∑
n∈N

wmkn log det
(
UH

mknHmknWmknH
H
mknUmkn

)
−
∑
m′,m

· · ·

wm′k′n trace
(
N−1

m′k′nU
H
m′k′nHmk′nWmknH

H
mk′nUm′k′n

) 
subject to. C1:

∑
n∈N

tr (Wmkn) ≤ Pm,max

C2: Wmkn � O

C3: rank (Wmkn) = Nr.
(16)

In this multi-beam scenario, we consider that the BS transmits Nr streams to user k in cell m.

However, the matrix constraint involves NP-Hard difficulty. We drop the rank constraint and

obtain an SDP relaxation of Eq. (16). The beamforming matrices Vmkn are recovered from the

covariance matrices according to Eq. (15) by obtaining a rank-Nr approxmation. To do so, we

keep the largest Nr eigen values while zeroing the rest, and recover Vmkn as

Vmkn = [v1,v2, · · · ,vNr] diag(
√
σ1,
√
σ2, · · · ,

√
σNr), (17)

where σi is the ith largest eigen value of Wmkn and vi is the associated eigen vector. The intuition

is that, after IA is achieved for all the users, the number of interference-free dimensions at

receiver k equals Nr. Note that our proposed WSRM solution for multi-antenna users can be

straightforwardly formulated for single antenna users; then the optimization variables Vmkn and

Umkn become vectors such as vmkn and umkn, respectively.

IV. Iterative DistributedWSRM algorithm

In this paper, we propose a convex approximation technique for the nonconvex WSRM

optimization problem based on the consequences of IA. This approach iteratively solves the

WSRM problem until a convergence point is obtained. The whole optimization process is divided

into two independent phases: i) IA phase and ii) post-IA WSRM optimization phase. Each

BS performs the optimization process in a distributed manner optimizing its own beamformers

while keeping the optimization of the objective function, WSR as a global perspective. For

convexification of the WSRM problem, we first make a high SINR assumption, and then

subsequently use the implications of the IA process.
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During the IA phase, for obtaining the initial Vmkn matrices to be used during the WSRM

phase, we employ the rank constrained rank minimization (RCRM) technique [15], which refor-

mulates all IA requirements to the requirements involving ranks. Under RCRM approach, the

minimization of the sum of the ranks of the interference matrices is performed by minimizing

the sum of their corresponding nuclear norms. The rank constraints in RCRM associates the

useful signal spaces spanning all available spatial dimensions. This RCRM technique takes a

very small number of iterations compared to the max-SINR [16] and leakage-minimization [17]

based IA approaches. Note that the IA phase does not aim to maximize the weighted sum-rate,

only the IA requirements are fulfilled; hence, complies with the preconditions used for convex

approximation. Another important note is that in this paper we do not study the feasibility issue

of IA technique. We assume that Nr degrees of freedom is achievable per user with the IA

technique under the considered system model, and use the consequences of the IA technique to

facilitate the convex approximation of the nonconvex WSRM problem.

Finally, during the WSRM optimization phase, the IA results are used as the basis. The optimal

transmitting beamformers obtained from the RCRM IA phase are used as the initial points in the

iterative optimization process. The corresponding receiving beamformers are calculated without

incurring any capacity loss that we have already discussed in Section ??. Then, we alternatively

optimize the transmitting and receiving beamformers until we achieve a convergence point.

During the iterative process, there is no inter-BS information exchange. The distributed WSRM

algorithm is summarized below

V. Simulation Results and Performance analysis

In this section, we perform the performance analysis of our proposed convex approximated

distributed WSRM solution. We consider a 2-cell system model supporting 2 users each. All

the BSs and the users are equipped with 4 antennas and 2 antennas, respectively. The OFDMA

scheme with 1-cell frequency reuse factor and 64 subcarriers is considered. Without loss of

generality, the user weights are taken as [0.25, 0.54, 0.67, 0.79], which reflect their priorities.

The complex coefficients of the channel matrices Hmkn,∀m, n and Hm′kn,∀m′ ∈ M\m, n are

drawn from CN(0, 1). The path-loss and shadowing effects are not considered. To solve the

convex approximated problem, we use disciplined convex programming toolbox CVX [18] with

internal solver SeDuMi [19]. As the convergence of the proposed solution strongly depends on
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IA Phase: generates initial Vmkn ∀m, n for the WSRM phase;

Initialization: i = 1, Niter1 = 10, Nrelz = 100;

while i < Nrealz do

Generate feasible Vmkn,∀m, n, randomly;

Run RCRM with Niter1 iterations, obtain Vmkn,∀m, n;

Choose Vmkn,∀m, n that gives the maximum capacity;

end

Post-IA WSRM Phase;

Initialization: j = 1, Niter2 = 20, Vmkn ∀m, n (IA Phase) ;

while i < Niter2 or not converged do

Solve Eq. (7) and obtain Umkn,∀m, n.;

Obtain Wmkn ∀m, n by solving Eq. (16);

Decompose Wmkn as GmknDmknG
H
mkn, (EVD) ;

Calculate the optimal Vmkn as Vmkn = GmknD
1/2
mkn;

end

Algorithm 1: WSRM algorithm based on RCRM-IA

the initial of Vmkns, we follow the IA phase provided in the summarized WSRM algorithm,

where we choose the Vmkn that gives the maximum sum-rate out of Nrelz random initializations.

We analyze the convergence behavior of our proposed convex approximated WSRM solution

in Fig. 2. We assume that the iterative solution is converged when the difference between

two successive iterations is ≤ 0.01. The power budget for each BS is set to 20 dB. We plot

the convergence curves for both cells, and compare when initial beamformers Vmkn,∀m, n are

generated following the IA phase and randomly. We can clearly observe that there exists a

significant gap between the IA based initialization and randomly initialized curves. This gain

can be regarded as the IA gain. Furthermore, the convergence curve for randomly initialized is

not as smooth as the IA based curve. Though the proof of convergence is not provided; however,

we have observed that the solution converges all the times for the cases we consider.
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Fig. 2. Convergence behaviors comparison

In Fig. 3, we evaluate the average sum-rate (wmk = 1,∀m, k) performance of our proposed

solution. We sweep the BS transmitting power over the range from 5 dBW to 30 dBW. For this

experiment, the sum-rates are obtained when the iterative procedures in converged. Like Fig. 2,

we compare the capacities of theIA based and random initialization based convex approximation

solutions. We notice that as the BS transmit power increases, the gap between the IA based

initialization and the random initialization also increases. The rate of capacity increase goes up

Fig. 3. Average sum-rates comparison

as the BS transmits with more power. Like in Fig. 2, we observe a strong impact of beamformers

initialization on the achievable sum-rate.
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VI. Conclusions

A distributed approach for WSRM in a multicell MU-MIMO OFDMA is proposed. The

proposed algorithm satisfactorily improves the overall system performance with a small amount

of base station (BS) cooperations. Each BS optimizes its own beamformers while keeping the

whole system WSR as a global perspective. This distributed WSRM technique is indeed favorable

in the context of large-size practical communication systems. Unlike other iterative solutions for

the WSRM problem, our approach does not require the exchange of information during the

iterative optimization operation. Even though the global optimal solution cannot be guaranteed

due to the nonconvexity of the original WSRM problem, the numerical results show that our

approach requires very small number of iterations for convergence. The proof of convergence

of our proposed algorithm has not been studied yet, which is left as our future work.
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