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Abstract

In relay assisted wireless communications, the multi-source, single relay and single destination system (an M -

1-1 system) is of growing importance, due to the increased demand for higher network throughput and connectivity.

Previously, power allocation in M -1-1 systems have assumed availability of instantaneous channel state information

(CSI), which is rather idealistic. In this paper we consider an M -1-1 Decode-and-Forward (DF), Full-Duplex,

orthogonal frequencey division multiple access (OFDMA) based relay system with statistical-CSI and analyze the

achievable rate R of such a system. We show how R can only be maximized by numerical power allocation

schemes which has a high-complexity of order O(M3). By introducing a rational approximation in the achievable

rate analysis, we develop two low-complexity power allocation schemes that can obtain a system achievable rate

very close to the maximum R. Most importantly, we show that the complexity of our power allocation schemes is

of order O(M logM). We then show how our power allocation schemes are suitable for a multi-user relay system,

where either the priority is to maximize system throughput, or where lower computations in power allocation

scheme are essential. The work we present in this paper will be of value to the design and implementation of

real-time multi-user relay systems operating under realistic channel conditions.

A part of this work was submitted to the IEEE International Conference on Communications (ICC), Miami, FL, USA, Jun.10-Jun.14,

2014. In this paper, we provide results with different low complexity power allocation schemes in addition to the ones proposed in [3].
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I. INTRODUCTION

Recently there has been significant interest from both academia and industry in the concept of cooper-

ative relaying in infrastructure based broadband wireless access for 4G networks, e.g., 802.16j - Mobile

Multihop Relay (MMR) specification [1]. In relay assisted communication, relay stations (RS), either fixed

or mobile, are introduced to increase the capacity (for both uplink and downlink) or connectivity among

mobile sources (MS). The 802.16j MMR standard, specifies two modes of relaying techniques. One is the

transparent relaying mode, where relays are used to increase capacity of MS who are within the range of

the Base Station (BS). The other is the non-transparent relaying mode, where relays are deployed mainly

to increase the coverage area of the BS. In this work, we will focus on the uplink of a cellular system

with transparent mode of relaying.

In the transparent mode, the relay is used to enhance the throughput of each source. The relaying can

employ either the amplify and forward (AF) or the DF strategy. It was shown in [2] that DF provides

a higher achievable rate relative to AF at low signal-to-noise ratio (SNR). Also, the relay can operate

in either full-duplex (sources and relay transmit simultaneously) or half-duplex mode (sources and relay

transmit during different time slots). Note that half-duplex mode can be implemented with a single antenna

whereas full-duplex mode will require additional antennas for self-intereference cancellation. It has been

previously shown (e.g., [5]) that the full-duplex mode of relaying is spectrally more efficient than the

half-duplex mode. A general precipt so far has been that the practical implementation of full-duplex mode

is often not possible due to large difference in transmit and receive power at the relay.

However, recently there have been significant works both from academics (e.g., [6]-[12]]) and industry

(e.g., [14]-[16]) regarding the feasibility of a full-duplex relay system with DF strategy. In fact, the works

in [8] and [9] showed that a practical full-duplex system can be built using off-the-shelf hardware. Antenna

seperation with Analog/Digital Cancellation techniques was used in [8] and the experiments showed that

the full-duplex mode can be practically implemented. A novel self intereference cancellation technique was

used in [9] and a working prototype was developed, which achieved median performance that was within

8% of an ideal full-duplexing system. Also, in [17] a transmission policy based on block Markov encoding

for a DF full-duplex relay system was described. The above works have clearly demonstrated that building

a practical DF full-duplex relay system without introducing significant latency into the transmission, is
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indeed possible. In this paper, we consider a DF full-duplex relay system with perfect self-interference

cancellation.

In the transparent mode, the single source, relay and destination form an 1-1-1 system. The 1-1-1

system has been well investigated over the years (e.g. [18]-[21] and the references therein) and various

studies have focused on several performance aspects, including achievable rates [19], outage probabilities

[11][12][13] and power allocation [11][13][20]. Recently the performance of an M -1-1 system has gained

much attention [22][23][24]. Resource allocation and relay selection in a multi-user OFDMA based system

was studied in [22], assuming access to full-CSI. The power allocation scheme for a multi-source AF relay

system to maximize the network throughput was investigated in [23]. The multi-source achievable rate

and power allocation for a half-duplex relay system was investigated for a multiple access relay channel

in [24], assuming availability of full-CSI at the relay.

However, none of the works have investigated practical power allocation schemes in an M -1-1 DF relay

system in Rayleigh fading environment, when no instantaneous CSI is available, or where only statistical

information of the channel state (i.e., statistical CSI) is available. This is mainly due to the complicated

nature of the throughput analysis and as such only numerical methods of optimal power allocation can

be employed, which have a complexity of order O(M3) [30]. Such complexity renders them infeasible

for implementation in real-time systems, especially when the number of users in the system increase.

Note that in a 4G network, the number of users M in the network is typically large [1] and efficient

power allocation at the relay will be lead to significant increase in the system throughput. In this paper,

we develop two low-complexity power allocation schemes (of different computational speed) at the relay

for an M -1-1 system with statistical-CSI. Let RPAS−0 be the maximum achievable rate of the system

obtained with an optimal power allocation scheme (we denote this as PAS-0) at the relay. We show how

our power allocation schemes can obtain a system achievable rate close to RPAS−0, and show that the

complexity of our power allocation schemes is of order O(M logM).

Our contributions reported in this paper are as follows. First, we analyze the achievable rate R an M -1-1

system with statistical-CSI. Second (and the key contribution in this paper), is that we introduce a rational

approximation in the achievable rate analysis, which helps us develop low-complexity power allocation

schemes that can obtain a system throughput close to RPAS−0. Third, using our rational approximation,
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we develop two low-complexity power allocation schemes (of varying computational speed) at the relay.

More specifically, we develop the following two power allocation schemes.

• We develop a Lagrangian-based power allocation scheme (we denote this as PAS-1) that obtains an

achievable rate RPAS−1, which is approximately equal to RPAS−0 for all practical purposes. We show

through analysis and simulations that PAS-1 has negligible loss in throughput compared to PAS-0. Most

importantly we show that the complexity of the PAS-1 algorithm is of order O(M logM).

• Utilizing the results from the PAS-1 algorithm, we develop a second power allocation scheme (we

denote this as PAS-2) which delivers a system achievable rate within ≈ 5− 10% of RPAS−0 and requires

lower computations compared to PAS-1 and is free of logarithmic and cube root operations.

The paper is organized as follows. In section III, we analyze the achievable rate R of an M -1-1 system

with statistical-CSI. In section IV, we provide the approximations required for our new power allocation

schemes. In section V, we develop a Lagrangian-based power allocation scheme (PAS-1) that obtains a

system achievable rate approximately equal to RPAS−0 for all practical purposes. In section VI we develop

the second power allocation scheme (PAS-2), which provides a system achievable rate within ≈ 5− 10%

of RPAS−0 and requires lower computations compared to the PAS-1 algorithm. In section VII, we discuss

the computational complexity of our two power allocation schemes. In section VIII we provide analytical

and simulations results. Finally, in section IX, we draw conclusions.

II. SYSTEM MODEL

Consider a multi-source relay system shown in Fig. 1. Sources Sm,m ∈ {1, ...M} transmit their

information to the destination d simultaneously with the help of a full-duplex relay r. A bin indexing

scheme as in [19] was assumed to transmit information and parity bits. The conventional DF relaying

with orthogonal transmission1 through OFDMA is assumed. With OFDMA, the mth source Sm transmits

its messages in the frequency bands fm, the relay r receives and transmits at frequencies f1, ..., fM ,

respectively. Note that one antenna is sufficient at the relay for transmitting/receiving an OFDMA signal

with M sub channels. The destination receives signals at these M orthogonal frequency bands. With these

constraints, the multi-source system can be viewed as M independent parallel 1 - 1 - 1 triangle systems,

1Here, by orthogonal transmission we mean there is no interference at the destination due to transmissions from multiple sources and

relay.
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one of which is shown in Fig. 2. All channels are assumed to undergo Rayleigh fading and are corrupted

with Additive White Gaussian Noise (AWGN). The source Sm transmits in the frequency bands fm to the

destination. The source Sm begins by encoding a q-bit message Qm into a codeword of length n (k < n).

The codeword is then divided into B blocks of length nrc bits each, where rc is channel coding rate at the

encoder (rc ≤ 1). The coding rate rc specifies how much redundancy is transmitted with every message

bit. For a q-bit message, q/r bits are transmitted in B + 1 blocks. The codeword is encoded into c symbols

x1[1], ..., x1[c] and transmitted over the channel, under the power constraint
∣∣∣1c∑c

j=1 x1[j]2
∣∣∣ ≤ Ps, where

Ps is the maximum transmit power available at each source. The relay decodes and forwards a new block

x2[j] to aid the communication between source and destination. x2[j] is also encoded into c symbols

subject to the power constraint
∣∣∣1c∑c

j=1 x2[j]2
∣∣∣ ≤ Pm, where Pm is the power allocated by the relay for

transmitting the mth source signal. The received signal at the relay yrm and the destination ydm are given

by,

yrm = Csr
mx1[j] + nr (1)

ydm = Csd
m x1[j] + Crd

m x2[j] + nd, (2)

where Csr
m , Csr

m and Csr
m represent the channel gains between Sm to r (denoted as S-R), Sm to d (denoted as

S-D), and r to d (denoted as R-D), respectively. Here, nr and nd are independent AWGN’s with zero mean

and unit variance. We consider a propagation model2 as in [17] and let, Csr
m = |hsrm |

2

(dsrm )αNr
, Csd

m =
|hsdm |2

(dsdm )αNd

and Crd
m =

|hrdm |2
(drdm )αNd

, where hsrm , hsdm and hrdm are complex fading random variables for channels between

Sm to r, Sm to d, and r to d, respectively. Nr and Nd are the noise spectral densities at the relay and

at the destination respectively. Here, dsdm , dsrm and drdm represent the normalized distances between S-D,

S-R and R-D respectively. Note that the distances are normalized with respect to a reference distance of

d0 = 1 unit. Here, α represents the pathloss exponent. For a Rayleigh channel, the real and imaginary

parts of the complex fading variables are Gaussian distributed having zero mean and variance 1/2.

2Note that, here we have ignored the effect of shadowing on the channel gain for simplification. Including the shadowing component

would scale down the achievable rate by a constant factor, but does not add any further insights.
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A. Problem Statement

Consider an M -1-1 system described above. Let the relay have a maximum total transmit power of Pr

and the transmit power Ps at each source be fixed. We investigate the following two problems. 1) What

is the achievable rate of the M -1-1 DF relay system when all channels undergo Rayleigh fading? 2) Let

the relay allocate power among M sub-channels as {P1, ..., PM}, such that
∑M

m=1 Pm = Pr. What is the

power allocation vector {P1, ..., PM} at the relay which obtains the achievable rate R?

III. ACHIEVABLE RATE WITH STATISTICAL-CSI

The mth source, the relay and the destination, form a 1-1-1 system as shown in Fig. 2. The instantaneous

achievable rate for such a 1-1-1 system can be expressed as ([17], Equation (4.33)),

Ri
m = min

{
log

(
1 +
|hsrm|

2 Ps
(dsrm)αNr

)
, log

(
1 +

∣∣hsdm ∣∣2 Ps
(dsdm)αNd

+

∣∣hrdm ∣∣2 Pm
(drdm )αNd

)}
. (3)

Note that (3) is valid (see [17], section 4.2.5) only for a fading channel where the phase is uniformly

distributed over [0, 2π) (e.g., Rayleigh Fading channel), i.e., there is no correlation between the relay

signal and the source signal. Note also that throughout this paper log(·) represents logarithm to base

2. The achievable rate of an 1-1-1 system with averaged over all channel fading states (with Rayleigh

distribution), i.e., with statistical-CSI is given by [25], Rm = min {R1m, R2m} ,

where, R1m = log(e)

[
exp

(
ksrm
Ps

)
E1

(
ksrm
Ps

)]
, (4)

and R2m =
log(e)

[
Pmk

sd
m exp

(
krdm
Pm

)
E1

(
krdm
Pm

)
− Pskrdm exp

(
ksdm
Ps

)
E1

(
ksdm
Ps

)]
(Pmksdm − Pskrdm )

, (5)

where, ksrm = (dsrm)αNr, ksdm = (dsdm)αNd and krdm = (drdm )αNd and where, E1(·) is the exponential integral

defined as E1(x) =
∫∞

1
e−xt

t
dt, (x > 0) and e = exp(1) ≈ 2.7183. It will be useful to rewrite (5) as,

R2m = R+
2m +R−2m, where,

R+
2m = log(e)

exp
(
krdm
Pm

)
E1

(
krdm
Pm

)
− exp

(
ksdm
Ps

)
E1

(
ksdm
Ps

)
(

1− Pskrdm
Pmksdm

)
 (6)

and R−2m = log(e)

[
exp

(
ksdm
Ps

)
E1

(
ksdm
Ps

)]
. (7)
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Since the transmissions from M sources are non-interfering at the destination, an M -1-1 system can be

considered as independent 1-1-1 systems. The achievable rate for the whole M -1-1 system can then be

written as,

R =
M∑
m=1

(
min

{
R1m, R

+
2m +R−2m

})
. (8)

Note that an important assumption in deriving (3) (see [17]), is that the S-R rate is always greater than the

sum rates of S-D and R-D (i.e., the relay is able to decode the source signal). When the relay is not able

to decode the source signal, the model assumption is that (e.g., [11][12][17]) either the source is far from

both the relay and destination or the source is closer to destination than the relay. In both scenarios, zero

power is allocated (i.e., Pm = 0 for the mth source) by the relay (using our proposed power allocation

scheme). This acts as an admission control mechanism, where only the sources with higher SNR between

themselves and the relay are admitted into the system (or allocated power at the relay). Such a scheme

is efficient in avoiding wastage of power at the relay, by only admitting sources into the system whose

S-R channel SNR is good (so that the relay is able to decode).

Therefore the rate R1m > R+
2m +R−2m ∀m. The achievable rate for an M -1-1 DF system with Rayleigh

fading is then given by,

R = min

{
M∑
m=1

R1m,
M∑
m=1

R+
2m +

M∑
m=1

R−2m

}
, (9)

which can be simplified as R =
∑M

m=1R2m =
∑M

m=1R
+
2m +

∑M
m=1R

−
2m. Note that when an optimal

power allocation scheme is found at the relay (i.e., the optimal vector P1, ..., Pm) the achievable rate in

(9) is maximized. In the following section we will develop low-complexity power allocation schemes at

the relay which delivers a system throughput close to the maximum R (denoted as RPAS−0).

Note that the channel gains between S-R can be measured by the relay and therefore instantaneous

CSI for S-R channels can be obtained at the relay. However, the instantaneous CSI for the channels

between the S-D along and the channel between the R-D is not known at the relay. Assuming availability

of instantaneous CSI of all channels via feedback with zero-delay is no that practical. Therefore, in our

system model, we have assumed availability of only statistical CSI for all channels, which is a more

realistic setting. However, considering availability of instantaneous CSI for S-R links and availability of

statistical CSI between S-D and R-D links forms a different hybrid system model. It is important to note
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that, our proposed power allocation scheme (in the following section) can be easily extended to the such

an hybrid system model. This is apparent from (3), where we need to integrate only the sum rate R2m

over all channel states (statistical CSI) and all other following results obtained are still applicable.

IV. POWER ALLOCATION SCHEMES AT THE RELAY

In this section we investigate our power allocation schemes at the relay which obtains a system

achievable rate close to RPAS−0 (maximum R). Due to the minimization term in (9), the second term∑M
m=1 R

+
2m +

∑M
m=1R

−
2m of this equation should be always less than the first term

∑M
m=1 R1m, for the

power allocation at the relay to be efficient. Therefore, any power allocation scheme at the relay must

be under the constraint of
∑M

m=1R
+
2m ≤

∑M
m=1R1m −

∑M
m=1R

−
2m. The relay has a total available power

of Pr and needs to allocate the power among M users in order to maximize R (i.e., to obtain RPAS−0).

Obtaining RPAS−0 is equivalent to the maximization of R+
2m. The power allocation vector P1, ..., Pm can

be obtained by solving the following convex optimization problem with the constraints listed below.

max{R+
2m} = max

P1,...,Pm

M∑
m=1

log(e)

exp
(
krdm
Pm

)
E1

(
krdm
Pm

)
− exp

(
ksdm
Ps

)
E1

(
ksdm
Ps

)
(

1− Pskrdm
Pmksdm

)
 (10)

subject to,

1)
∑M

m=1 Pm = Pr,

2) Pm ≥ 0,m = 1, · · · ,M ,

3) R+
2m −R1m +R−2m ≤ 0,m = 1, · · · ,M .

Since our objective is to maximize the throughput in the network, we need to allocate all the power

available at the relay and the first constraint (10) is required. Note that in our system model the relay

allocates lower power to sources which are closer the destination than the relay. This is because the

throughput increase with the help of a relay will not be significant for sources close to the destination.

Note also that the instantaneous CSI is not required for the power allocation at the relay to maximize the

achievable rate R. The optimization problem in (10) can be solved using numerical optimization tools.

However, in practical relay systems, numerical search algorithm may not be practical. Even the most

efficient optimization search algorithms are known to have complexity of the order O(M3) (e.g. interior

point method [30]). The complexity of such algorithms scales with the number of users, making them
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intractable. We therefore develop two low-complexity power allocation schemes (PAS-1 and PAS-2) which

can be easily implemented in a real-time system.

Due to the non-linear product exp
(
krdm
Pm

)
E1

(
krdm
Pm

)
in (10), the classical water-filling (CWF) algorithm

(e.g. [26]) cannot be used to obtain the power allocation vector. Further, the rate constraint in (10) also

has a non-linear product involved and an expression for the power limited by the constraint cannot be

directly obtained. Note that direct application of the CWF algorithm with the mean value of the channel

fading coefficients will prove to be sub-optimal (as we will see in section VIII). Our key contribution

in this paper is that we develop a rational approximation to the non-linear term exp
(
krdm
Pm

)
E1

(
krdm
Pm

)
, so

that we can solve the optimization problem in (10). Specifically we approximate the non-linear product

exp
(
krdm
Pm

)
E1

(
krdm
Pm

)
in (10) by using a rational function3 of the form,

exp

(
krdm
Pm

)
E1

(
krdm
Pm

)
=

am
(
krdm
Pm

)
+ bm

cm +
(
krdm
Pm

)
+ ε, (11)

where am, bm, cm are constants, and ε is the error in approximation. The approximation in (11) is based

on minimizing the error ε. As a measure of the approximation of the estimation of am, bm and cm, we

computed the root mean squared error (RMSE) on the approximation as, RMSE =
√

[S(am,bm,cm)]2

n
, where

S(am, bm, cm) and n are defined in Appendix A. For the approximation in (11), the RMSE was found to be

< 10−3 (when the SNR at the destination in the range of −15 to 30 dB) leading to error in approximation

ε < 10−3. The difference between the achievables rates with the approximation and with the exponential

integral function is therefore < 10−3. Note that in (11), the constants am, bm and cm depend on the ratio

krdm
Pm

(denoted by ∆ = krdm
Pm

). Note also, that for different values of ∆ we may need to find different values

of the constants am, bm, cm, which minimizes ε. We start by evaluating an estimate of the power (denoted

as P est
m ) allocated to the mth user. P est

m is found by setting hsrm , hsdm and hrdm to their mean value in (3),

and by using a CWF algorithm. Note that P est
m is only used to obtain the constants am, bm, cm so that

the approximation in (11) can be used. The constants am, bm and cm, for different ranges of ∆ are then

found by using the lookup Table I. Appendix A, describes the procedure to obtain Table I. The algorithm

for determining am, bm and cm is described below. Note that Table. I is pre-computed and stored in the
3In the above approximation, we have limited the degree of the rational function to 1, as any higher degree rational function leads to a

polynomial equation of degree five or higher when we try to solve the Lagrange’s function (discussed later). This leads to an intractable

solution for the power allocation scheme at the relay.
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Algorithm 1 Algorithm for determining am, bm and cm.
Step 1: Set hsrm = hsdm = hrdm = π

2
√

2
for all m ∈ {1, ...,M}. Note that ∆1, ∆2, ∆3 and Ωm are temporary

variables used in the algorithm.

Step 2: Obtain P est
m using the CWF algorithm, under the power constraint

∑M
m=1 P

est
m = Pr.

Step 3: Compute Ωm = 10 log10

(
krdm
P estm

)
, for all m ∈ {1, ...,M}. For all m ∈ {1, ...,M} do the following.

If Ωm ∈ ∆1, set am = a(∆1), bm = b(∆1) and cm = c(∆1). Else, if Ωm ∈ ∆2, set am = a(∆2), bm = b(∆2)

and cm = c(∆2). Otherwise set am = a(∆3), bm = b(∆3) and cm = c(∆3).

memory of the relay.

V. LAGRANGIAN-BASED POWER ALLOCATION SCHEME (PAS-1)

We now develop a Lagrangian-based power allocation scheme at the relay using the approximation

given in (11). To find the power allocation scheme which maximizes the achievable rate R+
2m in (10), we

set up the generalized Lagrange’s multiplier function for non-linear optimization as follows,

L(P, µ, ν, τ) = −
M∑
m=1

log(e)

exp
(
krdm
Pm

)
E1

(
krdm
Pm

)
− exp

(
ksdm
Ps

)
E1

(
ksdm
Ps

)
(

1− Pskrdm
Pmksdm

)


+
M∑
m=1

µm(−Pm)−
M∑
m=1

νm
(
R+

2m −R1m +R−2m
)

+

[(
M∑
m=1

τPm

)
− Pr

]
, (12)

with definitions P = [P1, ..., PM ], µ = [µ1, ..., µM ] and ν = [ν1, ..., νM ], where µ, ν and τ are Lagrange

multipliers associated with the constraints in (10). We obtain the necessary and sufficient Karush-Kuhn-

Tucker (KKT) conditions as,

{∂L(P,µ,ν,τ)
∂Pm

, µmPm} = 0

{−µm,−νm} ≤ 0

νm
(
R+

2m −R1m +R−2m
)
≤ 0

m = 1, ...,M. (13)

To solve the Lagrangian function in (12), we use the approximation in (11). Let φm(drdm , d
sd
m , Ps) =

{[0, Pr] : φm(·) ∈ R} be a function defined in Appendix B, which denotes the power allocated to the

mth user after finding the optimal Lagrange’s multiplier τ ∗, that satisfies the constraint
∑M

m=1 Pm = Pr.

Similarly, let πcm(drdm , d
sr
m , d

sd
m , Ps) = {[0, Pr] : πcm(·) ∈ R} be another function defined in Appendix B,

which denotes the power obtained by using substituting the approximation in (11) into the rate constraint

in (10), and solving for Pm. We propose the following theorem.
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Theorem 1: The power allocation scheme at the relay that approximately obtains the maximum through-

put of an M -1-1 system with statistical-CSI is given by,

Pm =


φm(drdm , d

sd
m , Ps), if φm(drdm , d

sd
m , Ps) < πcm(drdm , d

sr
m , d

sd
m , Ps)

πcm(drdm , d
sr
m , d

sd
m , Ps), if φm(drdm , d

sd
m , Ps) > πcm(drdm , d

sr
m , d

sd
m , Ps).

(14)

Proof: See Appendix B.

The PAS-1 algorithm is described below. Even though PAS-1 provides a system achievable rate approx-

Algorithm 2 PAS-1 Algorithm.
Step 1: Initialize Prem = Pr and M∗ = {1, ...,M}. Note that Prem, M∗, Pext are variables which are

function of the iterations between the steps.

Step 2: Obtain am, bm and cm using Alg. 1 for m ∈M∗. Compute πcm(·).

Step 3: Use bisection search method to compute Pm = φm(·) for m ∈M∗ subject to
∑

m∈M∗ Pm = Prem.

Step 4: Find the set M of users, which have φm(·) > πcm(·). If the number of elements in M is equal

to either 0 or M , then exit.

Step 5: Let Pm = πcm(·), for m ∈M. Calculate the extra power Pext =
∑

m∈M
[
φm(drdm , d

sd
m , Ps)− πcm(·)

]
.

Step 6: Obtain the set of channels M̄ complementary toM. For the set M̄ compute the total power PM̄

as PM̄ =
∑

m∈M̄ Pm. Compute Prem = Pext + PM̄ and set M∗ = M̄. Goto Step 2.

imately equal to RPAS−0, as we will see in section VIII, the computations required in the PAS-1 algorithm

may still be high due to the iterative bisection search in Step 2. The system achievable rate is insensitive

to exact power allocation for high values of received SNR at the destination since the achievable rate is a

logarithmic function of the power. This motivates us to investigate a lower computational power allocation

scheme that can perform close to PAS-1 in the following section.

VI. LOW-COMPUTATIONAL POWER ALLOCATION SCHEME (PAS-2)

Using the results from PAS-1, we now develop another power allocation scheme (PAS-2) at the

relay which achieves a system achievable rate within 5 − 10% of the achievable rate RPAS−0, but with

significantly lower computations. To develop PAS-2, we build on the work proposed in [28], in which a

low-complexity power allocation scheme was proposed for a single transmitter and receiver system with

multicarrier modulation and Intersymbol Interference (ISI) channels. In [28], the transmitter allocates
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zero power to subchannels with channel gains greater than a threshold, and equal power to the remaining

subchannels. This concept is motivated by the fact that R is insensitive to exact power allocation for

high values of SNR. However, the system model considered in [28] is different compared to our system,

and as such the power allocation scheme cannot be directly applied to our M -1-1 system. Any power

allocation scheme in our M -1-1 system needs to take into account the rate constraint in (10). Note that the

combined channel gain between the mth source and d; and the channel between r and d can be obtained

by rearranging the second term of (3) and is given by,

Gm =
(dsdm)α

∣∣hrdm ∣∣2
(drdm )α

[
Ps |hsdm |

2 +Nd(dsdm)α
] . (15)

Our power allocation scheme 2 (PAS-2) can be outlined as follows. We compute Gm in (15) using the

mean value of hsrm , hsdm and hrdm . We then sort the users based on their channel gains (Gm) and find the set

of users who should be allocated non-zero power. We divide the power equally among the set of users,

who must receive non-zero power. We then find the set of users M, whose allocated power exceeds the

power limited by the rate constraint function πcm(·). The remaining power after applying the constraints is

computed and redistributed equally among the users in the complementary set M̄. This is done iteratively

until all available power is distributed. The PAS-2 algorithm is described below.

VII. COMPUTATION COMPLEXITY

A. Computation Complexity of PAS-0 (Optimal)

The exact computational complexity of any numerical method of optimization is difficult to obtain as

it depends on the number of times that the objective function and its derivatives are computed. It also

depends on how many iterations are required to reach some stopping/convergence criterion and how many

constraints are active during an iteration. In general this will be of the order O(M3) (e.g. interior point

method [30]).

B. Computation Complexity of PAS-1

The complexity of the PAS-1 algorithm is mainly in Step 2 and Step 3. Obtaining am, bm and cm in

Step 2 involves the CWF algorithm, whose complexity is of order O(M logM) [27]. In Step 2 of PAS-1

algorithm, the optimum value of Lagrangian multiplier τ ∗ should be searched to compute φm(drdm , d
sd
m , Ps),
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Algorithm 3 PAS-2 Algorithm.
Step 1: Initialize Pm = 0, Prem = Pr and M∗ = {1, ...,M}. Note that Prem, M∗, Pext and Pest are

variables which are function of the iterations between the steps.

Step 2: Compute Gm for m ∈ {1, ...,M}, using (15) with hsrm , hsdm and hrdm set to their mean value. Sort

the channel gains, such that G1 ≥ G2 ≥ ... ≥ Gm for m ∈M∗.

Step 3: Set Pm = Prem/|M∗|, where |M∗|, denotes the cardinality of set M∗.

Step 4: If (1/G|M∗| ≥ Pr + 1/G1), then |M∗| = |M∗| − 1, Goto Step 3.

Step 5: Set Pest = Pm. Obtain am, bm and cm from Step 3 of Alg. 1. Compute πcm(·).

Step 6: Set M∗ = M∗ + 1. Find the set M of the channels, which have Pm > πcm(·) for m ∈M. If the

number of elements in M is equal to either 0 or M , then exit.

Step 7: Let Pm = πcm(·), for m ∈M and calculate the extra power as Pext =
∑

m∈M [Pm − πcm(·)].

Step 8: Obtain the set of users M̄ complementary to M. Compute the total power in set M̄ as

PM̄ =
∑

m∈M̄ Pm. Compute the remaining power Prem = Pext + PM̄ and set M∗ = M̄. Goto Step 2.

such that the constraint
∑M

m=1 φm(drdm , d
sd
m , Ps) = Pr is satisfied. We used a bisection search method [31]

to find τ ∗. The complexity of an efficient bisection search algorithm is of the order O(M logM) [32]. The

total complexity of the PAS-1 algorithm is then of the order O(KM + 2KM logM), where K (K < M )

is the number of iterations required between Step 2 and 7 in the PAS-1 algorithm. Through our simulations

(discussed in section VIII), we found that the maximum value of K is K = 20 for M = 100 users.

C. Computation Complexity of PAS-2

The PAS-2 algorithm does not require the bisection search of τ ∗ as in the PAS-1 algorithm. The

complexity of the sorting of users in Step 1 is O(M logM). The other complexity is in step 3 and 4

being iteratively executed. Step 3 and 4 has a complexity of O(M logM ) [28]. The total computational

complexity of the algorithm is then of the order O(KM + 2KM logM), where K (K < M ) is the

number of iterations required between Step 2 and 7 in the PAS-2 algorithm. Here, we will show that

the PAS-2 algorithm requires far less computations then the PAS-1 algorithm. This is because in Step

3 of the PAS-1 algorithm, we need to compute the rate R+
2m for each step of bisection search to find

the new value of τ (see [32]). However, in the PAS-2 algorithm the optimal water-level is found without
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actually computing R+
2m in each step, and is therefore free of logarithmic operations. Further, during each

iteration, the PAS-2 algorithm is free of logarithm and cube root operations, and requires only 1 square

root computation per user compared to 8 square roots computations per users in the in Step 2 of the

PAS-1 algorithm. The number of computations required per iteration for the PAS-1 and PAS-2 algorithms

are summarized in Table. II. We can see in Table. II that the PAS-2 algorithm requires significantly

lower number of computations compared to the PAS-1 algorithm. We also measured the execution times

required for each of the power allocation algorithms in MATLAB. The results plotted in Fig. 8 show that

PAS-0 takes over 1000x more time than PAS-1 and PAS-2 algorithms making them suitable for practical

implementations.

VIII. NUMERICAL RESULTS

Here we present the analytical and simulation results for the system achievable rate using the power

allocation schemes developed in the previous sections. The various parameters were configured as follows.

The path-loss exponent was set to α = 2, Ps was set to 5 and Nd and Nr was set to 1. Note that, we

have investigated the achievable rates for various values of the above parameters. For convenience, we

make the following notations. We denote the system achievable rate obtained with PAS-0 (numerical

optimization), PAS-1 and PAS-2 as RPAS−0, RPAS−1 and RPAS−2 respectively. We also implemented a

power allocation scheme as described in [28] with channel fading coefficients set to their mean value.

This corresponding system achievable rate will be denoted as RSUBOP . Note that for PAS-0, we used the

Interior-Point Algorithm [30] to obtain RPAS−0.

We also performed Monte Carlo simulations to verify our analysis. In our simulation setup, the

normalized distance between relay and destination is initially set to 1 and M sources are randomly

distributed, within a circle of radius 0.5 centered around the relay. The relay is then moved along the

straight line towards the destination. For each position of the relay, the system achievable rate is computed

as follows. The channel coefficients hsrm , hsdm and hrdm are drawn from a Rayleigh distribution. For each

channel realization, Rm for m = 1 to M users is computed from (3) using the PAS-1 algorithm. R was

obtained using (9) and averaged over 2000 channel realizations. The users were redistributed and the

simulations repeated over 2000 trails. The results are plotted in Fig. 3 for M = 5 users and Pr = 20.
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RPAS−0, RPAS−1, RPAS−2 and RSUBOP for M = 25, Ps = 3 and Pr = 75 are plotted in Fig. 4. RPAS−0,

RPAS−1, RPAS−2 for different values of Ps is plotted in Fig. 5, with M = 50 and Pr = 200. Note that we

have assumed a subchannel bandwidth of 1MHz (Mega Hertz) and that the achievable rate is in Mbits/sec.

Note also that with increasing values of M , RSUBOP is significantly lower than RPAS−0, whereas RPAS−1

is almost equal to RPAS−0.

The system achievable rate as function of M is plotted in Fig. 6 with relay placed midway on the line

between the center of the source circle and the destination. Note that with PAS-1, the system achievable

rate RPAS−1 in all the results is approximately equal to RPAS−0. RPAS−2 obtained with PAS-2 is within

≈ 5% of RPAS−0. Note that the rates plotted in all the figures is the sum of the achievable rates for

M users. The transmit powers at the source and relay and normalized with a reference power of 1 mW.

Similiarly the noise powers at the relay and destination are also normalized with a reference power of

1mW. We also plotted the results for various values of M , with the relay placed midway between the

source circle and destination, in Fig. 6. Note in Fig. 6, RPAS−1 is still approximately equal to RPAS−0,

whereas RPAS−2 is still within 5 − 10% of RPAS−0. Also note that RSUBOP proves to be sub-optimal.

The loss in system throughput with this sub-optimal power allocation is up to ≈ 30% relative to using

PAS-1, for M = 50 users in Fig. 6. We anticipate this loss to be higher for higher values of M . Using

the PAS-1 or the PAS-2 algorithm, then turns out to be a tradeoff between low computations and system

achievable rate. The system achievable rate with different power allocation schemes for Ps = 5, M = 50

users for different values of Pr is shown in Fig. 7. We can see from Fig. 7 that the PAS-1 algorithm

delivers a throughput close to RPAS−0 and that the PAS-2 algorithm is within 5 − 10% of RPAS−0.

Therefore, the PAS-1 algorithm is suitable in an M -1-1 system, where the priority is to maximize system

throughput, whereas the PAS-2 algorithm is suitable for an M -1-1 system where lower computations in

power allocation scheme are essential.

IX. CONCLUSIONS

In this paper, we considered a multi source decode-and-forward, full-duplex relay system (M-1-1 system)

with statistical-CSI. We investigated the achievable rate, R, of an M -1-1 system with statistical-CSI,

where all channels undergo independent Rayleigh fading. We showed how R can only be maximized
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using numerical power allocation schemes which has a high-complexity of order O(M3). We introduced

a rational approximation in the achievable rate analysis, based on which we developed two low-complexity

power allocation schemes at the relay that obtain a system throughput close to the maximum (RPAS−0).

Specifically, we developed a Lagrangian-based power allocation scheme (PAS-1), which obtains a system

achievable rate approximately equal to RPAS−0 for all practical purposes. Utilizing the results derived in

PAS-1, we developed another power allocation scheme (PAS-2), which delivers a system achievable rate

within 5− 10% of RPAS−0, but with a significantly lower number of computations.

Most importantly we showed that the complexity of the PAS-1 and PAS-2 algorithms is of order

O(M logM). We provided simulations results to justify our analysis. We showed how PAS-1 is suitable

in an M -1-1 system with priority on system throughput, whereas PAS-2 is suitable for an M -1-1 system

where lower computations in power allocation scheme are essential. The power allocation schemes, PAS-

1 and PAS-2, developed in this paper will be of value to design and implementation of an real-time

multi-user relay systems operating under realistic channel conditions.
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APPENDIX A

GENERATING TABLE I

We approximated the non-linear product exp
(
krdm
Pm

)
E1

(
krdm
Pm

)
in (10) by a curve fitting technique. The

average received SNR (in dB) at the receiver (destination) is given as, γSNR = Pt−PL+Gt+Gr−Nd, where

Pt = 10 log10(Pm), PL = α log10(drdm ) (in dB), and Gt and Gr are transmit and receive antenna gains (in

dB), respectively. In the ratio krdm
Pm

= (drdm )αNd
Pm

, (drdm )α represents the path-loss between the r and d. Therefore,

the ratio krdm
Pm

scales as 1/γSNR. Since γSNR is typically in the range of -15 to 30dB, we are interested in

finding the constants am, bm and cm, when krdm
Pm

is in the range of −15 to 30 dB. However, it is not possible

to find one set of values for am, bm and cm with an acceptable error in approximation (i.e., ε ≤ 10−3) over

the entire range of krdm
Pm

. We therefore divide krdm
Pm

into 3 ranges as {∆1 ∈ krdm
Pm

: − 15dB < ∆1 < 0dB},
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{∆2 ∈ krdm
Pm

: 0dB < ∆2 < 15dB} and {∆3 ∈ krdm
Pm

: 15dB < ∆3 < 30dB}. Note that splitting

krdm
Pm

into more than 3 ranges will although increase the precision of approximation in (11), but would not

alter the final results significantly. This is because the error in approximation ε over all three ranges is

already less than 10−3 and increasing the number of ranges k, will although reduce ε, but will not affect

R significantly. The values of am, bm and cm are found as follows. Let us define, ∆i
k as a discrete value in

the range ∆k. We perform a non-linear least squares analysis by minimizing the sum of non-linear least

squares defined as,

S(a, b, c) =
n∑
i=1

[
exp

(
∆i
k

)
E1

(
∆i
k

)
−
(
a∆i

k + b

c+ ∆i
k

)]2

, (16)

where n is the number of discrete values in ∆k = [∆1
k,∆

2
k, ...,∆

n−1
k ,∆n

k ]. We used the Levenberg-

Marquardt algorithm to minimize the sum of non-linear squares S(a, b, c) in 16, by setting n = 104.

Table. I lists the values of a, b, c for different ranges of ∆k with ε ≤ ×10−3. We stress here the fact

that the values of a, b and c are pre-computed and stored in the memory of the relay. Note that if hsr,

hsd and hrd are Rician distributed with parameter ν, then |hsr|2, |hsd|2, and |hrd|2 follow non-central χ2

distribution with two degrees of freedom and non-centrality parameter ν2. To find the average achievable

rate of the whole system, the channel rates have to be integrated over all channel states, which does not

yield a closed form expression. Therefore, the proposed approximation cannot be extended to a channel

with Rician distribution.

APPENDIX B

PROOF FOR POWER ALLOCATION THEOREM 1

Using the approximation in (11) in the partial derivative of the Lagrangian function with respect to Pm

in (13), leads to

µm = (νm + τ)−
(log e)krdmk

sd
m

((
amkrdm+bmPm
cmPm+krdm

)
− β

)
(Pm − krdmksdm )2 +

log e
(
Pm − krdm

(
amkrdm+bmPm
cmPm+krdm

))
Pm(Pm − krdmksdm )

, (17)
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where β = exp
(
ksdm
Ps

)
E1

(
ksdm
Ps

)
. The condition µmPm = 0 leads to either Pm = 0 or µm = 0. Setting

µm = 0 in (17) and after some algebra we get,

P 4
m(τ+νm)cm+P 3

m[krdm (τ+νm)−2cmk
rd
mk

sd
m (τ+νm)−cm log e]+P 2

m

[
cm(krdmk

sd
m )2(τ + νm)− 2(krdm )2ksdm (τ + νm)

+cmk
rd
mk

sd
m (1− β) log e+ bmk

rd
mk

sd
m log e+ bmk

rd
m log e(bm − 1)

]
+ Pm[(τ + νm)(krdm )3(ksdm )2 + am(krdm )2(ksdm + 1) log e− krdm )2ksdm (bm − β + 1) log e]

− am(krdm )3ksdm = 0. (18)

The rate constraint in (13) leads to two cases, 1) νm = 0 or 2)
(
R+

2m −R1m +R−2m
)

= 0. The second

case leads to,

Pm = πcm(krdm , k
sr
m , k

sd
m , Ps) =

k2 −
√
k2

2 + 4k1k3

2k1

. (19)

where k1 = bm − cmψ, k2 = krdm (am − ψ) + cmPskrdm
ksdm

(β − ψ), and k3 = Ps(krdm )2

ksdm
(ψ − β), and where,

ψ = exp
(
ksrm
Ps

)
E1

(
ksrm
Ps

)
, and β = exp

(
ksdm
Ps

)
E1

(
ksdm
Ps

)
. Setting νm = 0 in (17) and adding with (18) leads

to νm + µm = 0. But neither νm or µm can be lesser than 0 due to the conditions νm ≥ 0 and µm ≥ 0.

Thus the multipliers νm = µm = 0. Equation (18) with νm = 0 is a quartic equation. To solve for Pm, we

need to find the roots by first converting the regular quartic into a depressed quartic function of the form,

P 4
m + λ1P

3
m + λ2P

2
m + λ3Pm − λ4 = 0, (20)

where, λ1 =
−krdm (2cmk

sd
m − 1)

cm
− 1

τ log e
, (21)

λ2 =
krdm
cm

[
2ksdm (cmk

rd
mk

sd
m − 1) +

ksdm [cm(1− β) + bm]

τ log e
+
krdm [bm − 1]

τ log e

]
, (22)

λ3 =
krdmk

sd
m

[
(krdm )2ksdm τ log e+ bm + (1− β)

]
cmτ log e

+
(krdm )2am
cmτ log e

, (23)

and λ4 =
(krdm )3ksdmam
cmτ log e

. (24)

Pm is then, one of the roots to the quartic function [29] in (20). The four roots of the quartic function

are given by,

φm(drdm , d
sd
m , Ps) =


η1±η2

2
− λ1

4

−η1±η3
2
− λ1

4

(25)
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where, η1 =

√
λ2

1

4
− λ2 + θ, η2 =


√

3λ21
4
− η2

1 − 2λ2 +
(4λ1λ2−8λ3−λ31)

4η1
if η1 6= 0√

3λ21
4
− 2λ2 +

√
θ2 − 4λ4 if η1 = 0,

(26)

and η3 =


√

3λ21
4
− η2

1 − 2λ2 −
(4λ1λ2−8λ3−λ31)

4η1
if η1 6= 0√

3λ21
4
− 2λ2 −

√
θ2 − 4λ4 if η1 = 0.

(27)

In the above equations, θ is defined as

θ =
λ2

3
−

3
√

2 (−λ2
2 + 3λ1λ3 − 12λ4)

3

√
υ1 +

√
υ2 + υ2

1

+

3

√
υ1 +

√
υ2 + υ2

1

3
√

32
, (28)

where, υ1 = 2λ3
2 − 9λ1λ2λ3 + 27λ2

3 + 27λ2
1λ4 − 72λ2λ4, and υ2 = 4(3λ1λ3 − λ2

2 − 12λ4). Note that there

are four possible roots for φm(drdm , d
sd
m , Ps) in (25). A closer inspection reveals that not all the roots are

useful. This is because in (20), the coefficient λ4 defined in (24) is always greater than 0, since krdm , ksdm

and τ are greater than 0. From Descrates’s sign rule [29], there are either three roots or only one positive

root for the quartic function in (20), irrespective of the sign of λ1, λ2 or λ3. The first root in (25), is

positive, since, η1, η2 and η3 are ≥ 0 and λ1 ≤ 0. When three positive roots are available, the second,

third and fourth root in (25) are closer to or less than zero when the multiplier τ < 1. Since a small value

of τ is desirable [28], only the first root in (25) is useful. Pm is then given by,

Pm = φm(drdm , d
sd
m , Ps) =

η1 + η2

2
− λ1

4
. (29)

The power allocation vector Pm can be then be summarized as in (14). The optimal Lagrange’s multiplier

τ ∗, which maximizes (10), can be found through a one-dimensional search (e.g. using bisection [31]),

such that the constraint
∑M

m=1 φm(drdm , d
sd
m , Ps) = Pr is satisfied. Note that when all the sources are at

equal distances to the relay and destination, ksdm , ksrm and krdm are equal for all sources m = 1, ...,M . This

then leads to the parameters λ1, λ2, λ3, λ4, η1, η2, η3, θ, υ1 and υ2 to be equal for all sources, for any

value of the multiplier τ . Due to the constraint,
∑M

m=1 φm(drdm , d
sd
m , Ps) = Pr, equal power is allocated to

all the sources.
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Fig. 2. The mth source Sm, relay and destination form a 1-1-1 triangle model.
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TABLE I

RATIONAL FUNCTION CONSTANTS FOR DIFFERENT RANGES OF ∆k, k ∈ {1, 2, 3}

10 log10(∆k) in dB a b c

∆1 = {−15 to 0} dB 2.4989 0.0364 0.005416

∆2 = {0 to 15} dB 0.3495 0.3698 0.0985

∆3 = {15 to 30} dB 0.003246 0.9306 0.583

TABLE II

NUMBER OF COMPUTATIONS REQUIRED FOR THE PAS-1 AND PAS-2 ALGORITHMS PER ITERATION.

Operation PAS-1 Algorithm PAS-2 Algorithm

Mult. M logM + 64M M logM + 10M

Div. M logM + 15M M logM + 3M

log(·) M logM 0

exp(·) 2M 2M

E1(·) 2M 2M

2
√

(·) 8M M

3
√

(·) 2M 0
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Fig. 3. Achievable Rates with different power allocation schemes for M = 5 users, Ps = 5 and Pr = 20.
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Fig. 5. Achievable Rates with different power allocation schemes plotted against Ps for M = 50 users and Pr = 200.
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