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Abstract—A 2D antenna array introduces a new level of control
and additional degrees of freedom in multiple-input-multiple-
output (MIMO) systems particularly for the so-called “massive
MIMO” systems. To accurately assess the performance gains of
these large arrays, existing azimuth-only channel models have
been extended to handle 3D channels by modeling both the
elevation and azimuth dimensions. In this paper, we study the
channel correlation matrix of a generic ray-based 3D channel
model, and our analysis and simulation results demonstrate
that the 3D correlation matrix can be well approximated by a
Kronecker production of azimuth and elevation correlations. This
finding lays the theoretical support for the usage of a product
codebook for reduced complexity feedback from the receiverto
the transmitter. We also present the design of a product codebook
based on Grassmannian line packing.

I. I NTRODUCTION

To meet the increasing demands on wireless communication
systems, two-dimensional antenna arrays have been proposed
for further improving the spectral efficiency of multi-input-
multi-output (MIMO) technology. A two dimensional antenna
array provides control over not only the azimuth dimension,
but the elevation dimension as well, thereby promising to
further extend the gains from MIMO technology. Various
methods for controlling a 2D array have been proposed. Eleva-
tion sectorization [1] and user-specific elevation beamforming
[2] are two examples of how the additional diversity in a
3D channel can be exploited in current 4G LTE systems. In
addition, Massive MIMO [3] or Full-Dimension MIMO (FD-
MIMO) [4] operates with tens or even hundreds of antennas
at the base station (BS) and enables the multiplexing of many
users in a multi-user MIMO (MU-MIMO) fashion.

To accurately measure the performance of these 2D antenna
arrays, a 3D channel model is needed where both the elevation
and azimuth directions is are taken into account in the new
model. At the time of writing this paper, 3GPP is actively
developing a 3D channel model to enable the evaluation of el-
evation beamforming and massive MIMO. However, currently
there are only extensions to the 2D 3GPP/ITU model, and
where two examples are given in [5] and [6].

In a massive MIMO system, with a large number of anten-
nas assembled within a limited space at the BS, the channels
are highly likely to be correlated. Strong correlations will
greatly reduce the effective degrees of freedom in wireless
channels, which will significantly impact the performance of
a massive MIMO system. In particular high correlation may

make it difficult to send many spatial streams to one user,
but may make simultaneous transmissions to a large number
users (in a MU-MIMO fashion) from the 2D array practical.
Therefore, the correlation statistics are useful for capacity
analysis, and analytical expressions can provide insight to the
correlation statistics of a full 3D channel.

In this paper, we derive an analytic expression for cor-
relation matrices with a generic ray-based non-line-of-sight
(NLOS) 3D channel model. We compare the derived cor-
relation matrix with the Kronecker product of correlations
in azimuth and elevation dimensions. We found that even
when a strictly mathematical equivalence does not hold, the
eigenvalue distributions of two matrices, derived correlation
and Kronecker product correlation, are surprisingly closeto
each other. Therefore, in an ergodic capacity analysis, the
channel correlation matrices can be well approximated by
the Kronecker product correlation model. This approximation
indicates that it is possible to separate the 3D channel into
azimuth and elevation directions and treat them as indepen-
dent 2D channels for the purposes of designing an efficient
feedback strategy and for designing MIMO transmit weights.

Therefore, for a massive 2D antenna array with codebook-
based feedback, instead of using a huge codebook for limited
feedback, we can separately apply a product codebook, which
is simply a Kronecker product of two smaller codebook
designed for azimuth and elevation antenna dimensions. It is
well-known that Grassmannian line packing is an important
tool for optimal codebook design with both uncorrelated
[7] and correlated channels [8]. This paper examines the
application of Grassmannian line packing to the design of a
product codebook for operation in a 3D channel. A specific
product codebook design is presented.

II. CHANNEL MODELING

We consider a ray-based 3D channel model as shown in
Figure 1. The mobile terminal is surrounded by local scatters,
and the channel is assumed to consist ofL equal gain NLOS
paths. Suppose the BS in y-z plane is equipped with a 2D
antenna array withM vertical antenna elements spaced byd1
wavelengths, andN horizontal antennas with ad2 wavelength
spacing. The BS array is deployed at a given height above the
ground and typically the BS array will have some mechanical
downtilt. For simplicity, we assume no mechanical downtilt
for the antenna array in our model. The mobile terminal is
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assumed to have only one antenna for reception, but exten-
sions to more than one mobile antenna are straightforward.
Assuming a downlink transmission, letφ be the mean azimuth
angle-of-departure (AoD),θ be the mean AoD in elevation,σ
be the standard deviation of azimuth angular perturbation,and
ξ be the standard deviation of elevation angular perturbation.
For each path, we assume a random variableϕ to emulate the
phase shift from the different lengths of the transmit paths.
Note that a A similar 2D antenna array configuration was used
in [9] for angle-of-arrival (AoA) estimation.

Fig. 1. Channel modeling withL equal gain NLOS paths between the mobile
and the base station,M vertical antennas withd1 wavelength spacing, andN
horizontal antennas withd2 wavelength spacing.φ is for the azimuth angle,
andθ is for the elevation angle

The fast fading gain of pathk is represented by a random
matrix for the 2D array given by

V(φk, θk) =









1 · · · e−j(N−1)vk

e−juk · · · e−j[uk+(N−1)vk]

...
. . .

...
e−j(M−1)uk · · · e−j[(M−1)uk+(N−1)vk]









(1)

where

uk =
2πd1
λ

cos θk =
2πd1
λ

cos(θ +∆θk), (2)

vk=
2πd2
λ

sin θk cosφk

=
2πd2
λ

sin(θ +∆θk) cos(φ+∆φk). (3)

∆θk is the elevation angular perturbation for pathk, and it
is assumed to be normal distributed asN (0, ξ). Similarly, the
azimuth angular perturbation∆φk is assumed to be distributed
asN (0, σ). Moreover, assume angular perturbations∆φi and
∆θj are independent variables for alli = 1, . . . , N and

j = 1, . . . ,M . Note that elevation varianceξ is a function
of the distance between BS and mobile device, because recent
research shows that the elevation spread has a strong distance
dependence [6].

Define

a(uk) = [1, e−juk , . . . , e−j(M−1)uk ]T , (4)

b(vk) = [1, e−jvk , . . . , e−j(N−1)vk ]T . (5)

We next rewriteV(φk, θk) = a(uk)b
T (vk). With a random

phase shiftϕ uniformly distributed in [0, 2π], the channel
response for the 2D array can be formulated as

H(φ, θ, σ, ξ) =

L
∑

k=1

ejϕk

√
L
a(uk)b

T (vk). (6)

Therefore, the channel vector is

h = vec(H) =

L
∑

k=1

ejϕk

√
L
b(vk)⊗ a(uk). (7)

In a full channel model, we need to specify more statistic
parameters for the propagation. However, our ray-based chan-
nel model and the correlation we derive provide insight for
the real 3D channel propagation. For example, the channel
separability of a 3D channel into a Kronecker structure of
an azimuth covariance matrix with an elevation correlation
matrix..

III. C HANNEL CORRELATION: ANALYTICAL EXPRESSION

In this section, we derive an analytical expression for the
correlation matrix given the above 3D channel model. Al-
though the derivation is given for this specific channel model,
the methodology can be applied to any generic 3D channel
model. Note that the random phase shiftϕk is uniformly
distributed, hence the mean of the channel vector is0.

E{h(φ, θ, σ, ξ)} =

L
∑

k=1

E{ejϕk}√
L

E{b(vk)⊗ a(uk)} = 0. (8)

The correlation matrix, which is the same as the covariance
matrix, can be calculated as

R(φ, θ, σ, ξ) = E{h(φ, θ, σ, ξ)hH (φ, θ, σ, ξ)}. (9)

Since all propagation paths have equal gain and they are
independent of each other, we need to consider only one
arbitrary path and simplify the expression as

R=

L
∑

k=1

1√
L
E{(b(vk)⊗ a(uk))(b(vk)⊗ a(uk))

H}

= E{(b(v)⊗ a(u))(b(v) ⊗ a(u))H}.

Next, we derive the expression for each entry of the correlation
matrix. Define the(k, l)-th antenna element as thek-th in
elevation andl-th in azimuth antenna in the 2D array, so it
should be thek + (l− 1)M -th element in the channel vector.



Then the correlation between(k, l)-th and (p, q)-th antenna
element is

R(k,l),(p,q) = E

{

ej
2π
λ

A cos(θ+∆θ+η)
}

, (10)

where

A cos(θ +∆θ + η)=(p− k)d1 cos(θ +∆θ)

+(q − l)d2 sin(θ +∆θ) cos(φ +∆φ)

(11)

from the trigonometric identity. Letµ = cos(θ+∆θ+η), and
we approximate the distribution ofµ asN (µ̄, ξ̃) with

µ̄ = cos(θ + η))ξ, (12)

and
ξ̃ = sin(θ + η)ξ. (13)

This type of approximation for the normal distribution using
sine/cosine functions is commonly used in the propagation
analysis of 2D channel modeling [10], [11]. Note that a
different antenna ordering or an uplink transmission may lead
to different signs for(p − k) and (q − l). However, it will
not change the overall correlation matrix, sinceR is always
conjugate-transpose symmetric.

Therefore, we will first take the expectation with respect to
µ, and integrate in the elevation direction to get

R(k,l),(p,q)= Eµ

{

1√
2πξ̃

∫ ∞

−∞

ej
2π
λ

Aµe
−

(µ−µ̄)2

2ξ̃2 dµ

}

= Eµ

{

ej
2π
λ

Aµ̄e−
1
2 (ξ̃

2π
λ

A)2
}

. (14)

We can separate out the constant term, which happens to
coincide with the correlation in elevation direction to get:

D1 = ej
2πd1

λ
(p−k) cos θe−

1
2 (ξ

2πd1
λ

)2(p−k)2 sin2 θ). (15)

To further simplify the expression, we define

D2 =
2πd2
λ

(q − l) sin θ, (16)

D3 = ξ
2πd2
λ

(q − l) cos θ, (17)

D4 =
1

2

(

ξ
2π

λ

)2

d1d2(p− k)(q − l) sin(2θ). (18)

Hence,

R(k,l),(p,q) = D1Eν

{

ejD2νe−
1
2D

2
3ν

2+D4ν
}

, (19)

where ν = cos(φ + ∆φ) is approximately distributed as
N (cosφ, σ̃) with σ̃ = (sinφ)σ. Then, we take the expectation
with respect toν, and the correlation matrix is formulated as

R(k,l),(p,q)=
D1√
2πσ̃

∫ ∞

−∞

ejD2νe−
1
2D

2
3ν

2+D4νe−
(ν−cos(φ))2

2σ̃2 dν

=
D1√
2πσ̃

∫ ∞

−∞

ejD2νe
−
(ν−

D6
D5

)
2

2σ̃2
D5

−
D7
2D5

dν

=
D1√
D5

e−
D7
2D5 ej

D2D6
D5 e−

1
2

(D2σ̃)2

D5 , (20)

where

D5 = D2
3σ̃

2 + 1, (21)

D6 = D4σ̃
2 + cosφ, (22)

D7 = D2
3 cos

2 φ−D2
4σ̃

2 − 2D4 cosφ. (23)

From the above analytical expressions, it is clear that term
D1 is only elevation related, i.e., only contains the term
(p − k), while D2, D3 andD5 are azimuth related and only
have the term(q − l). Variable D4, D6, and D7 have the
cross term(p − k)(q − l), contributing to both elevation and
azimuth correlations. However,D6 and D7 are functions of
D4. Therefore ifD4 = 0, the correlation termR(k,l),(p,q) can
be written as a product of elevation and azimuth correlations.
Furthermore, ifD4 = 0 is true for all antenna indexk, l, p and
q, then the correlation matrix is separable

R = Raz ⊗Rel, (24)

where

[Rel]k,p = ej
2πd1

λ
(p−k) cos θe−

1
2 (ξ

2πd1
λ

)2(p−k)2 sin2 θ) (25)

denotes the elevation correlation, and the correlation in az-
imuth direction is

[Raz]l,q =
1√
D5

e
−

D2
3 cos2 φ

2D5 e
j
D2 cos φ

D5 e
− 1

2
(D2σ̃)2

D5 . (26)

IV. K RONECKERCORRELATION MODEL

The strictly mathematical separation discussed in the previ-
ous section is difficult to satisfy in general. Even if we relax
the constraint toD4 ≈ 0, an approximate separation is not
likely to hold in many practical settings. For example, witha
massive 2D antenna array,D4 ≈ 0 for all possiblek, l, p andq
is a very harsh condition. ForD4 ≈ 0 to hold, we need either
θ ≈ π/2 or σ ≈ 0. θ ≈ π/2 means that the mobile device
is very far away assuming there is no mechanical downtilt to
the antenna array. In such a case, the elevation channel is less
important, and the traditional 2D channel model suffices. Note
also thatσ ≈ 0 indicates that the channel has a very small
elevation angular spread. Given the distance dependence of
the elevation spread, the small elevation spread may indicate
that the device is very far away. Therefore, both cases do not
provide much insight into the channel separable condition.

A. Separation in Ergodic Capacity Analysis

However, it is not necessary for us to have a strict re-
quirement for a correlation model, such that every matrix
entry is close to the analytical expression. For example, in
a ergodic capacity analysis, if the eigenvalue distributions of
two correlation matrices are close enough, then the resulting
ergodic capacity will be similar. Therefore, we compare the
eigenvalue distributions of the following correlation matrices:
the analytical correlation matrixR defined as (20), and the
Kronecker correlation model

RK = Raz ⊗Rel, (27)



Fig. 2. The comparison on the eigenvalue distributions of two correlation ma-
trices with various channel settings. Legends with “R” indicate the distribution
for analytical correlation matrixR, and “R sep” represents the distributions
for Kronecker correlation modelRK .

with Raz andRel defined in (26) and (25).
In Figure 2, we plot the eigenvalues distributions for 4

different channel configurations. We compare two correlation
models for both moderate (4-by-4) 2D arrays and massive
(16-by-16) 2D arrays. The comparison is obtained for both
moderate (σ = π/12 andξ = π/36) and large (σ = π/6 and
ξ = π/12) angular spreads. The similarity in the eigenvalue
distribution is then translated into the closeness of the capacity
curves of using the both correlation matrices.

In Figure 3, we compare three ergodic capacity curves in
each channel configuration. First, we generate the channel
vectorh following our ray-based NLOS 3D channel model,
labled as “SIM” in the legend. We generateL = 20 paths
with randomly selected phase shift, and the azimuth and
elevation AoDs selected from their respective distributions in
the model. Second, we generate the channel vectors using the
correlation matrices ashR = R

1/2
w and hRK

= R
1/2
K w,

wherew is a random vector distributed as i.i.dCN (0, 1). Let
ρ denote the signal-to-noise-ratio, and the ergodic capacity
is then calculated asC = log(1 + ρhH

h). From the plots,
we notice the correlation model curves have some visible
deviation from the channel “SIM” results because of the
normal distribution approximation on the cosine functions.
However, in all three different settings with a 16-by-16 2D
antenna array, two correlation model curves are always on the
top of each other.

The previous analysis indicates that massive 2D arrays with
large elevation spread are likely to have a largeD4 term, and
thus the correlation matrix is not mathematically separable.
However, our simulation results demonstrate that even in cases
with wide angular spread, which mean a largeD4 term, the
Kronecker correlation model still has a similar eigenvaluedis-
tribution with as analytical expression. Therefore, the ergodic
capacity performances of two correlation models only have

Fig. 3. The comparison on the ergodic capacity of channel realization
and using two correlation models. Although there are some deviation in the
capacity cdf curves between using correlation models and channel realization,
two curves for correlation models are very close to each other in every
simulation settings. Legends with “SIM” indicate the capacity curves are
plotted using the channel model directly. Legends with “R” and “R sep”
represent the curves using correlation matricesR andRK , respectively.

little difference.

B. Separation in Feedback

In this section, we show the channel separation property can
be used in feedback. We approximate matrixR with

R ≈ Raz ⊗Rel. (28)

We first show the effect of using the Kronecker Correlation
Model in statistical beamforming. Statistical beamforming
[12], [13] transmits signals along the dominant eigenvector
of the correlation matrix in a spatial correlated channel. We
assumeλ(1) is the maximum eigenvalue forR, andu(1) is the
corresponding dominant eigenvector. Similarly, we can define
λ
(1)
az , u(1)

az , λ(1)
el andu(1)

el for Raz andRel, respectively. From
above ergodic capacity discussion, we know that the following
approximation between eigenvalues holds

λ(1) ≈ λ(1)
az λ

(1)
el . (29)

In fact, the approximation between corresponding eigenvectors
also holds. If we use our Kronecker correlation model in
statistical beamforming, the transmit signal is beamformed
along u

(1)
az ⊗ u

(1)
el instead of u(1). Hence, the maximum

beamforming gain is

µ = (u(1)
az ⊗ u

(1)
el )

H
R(u(1)

az ⊗ u
(1)
el ). (30)

In Figure 4, we plot the beamfoming gain loss by using
Raz ⊗Rel. The simulations are conducted with various com-
bination of channel variables: angle-of-departure (AoD) and
angular perturbation variance (APV) for azimuth and elevation
dimensions. The default setting for the variables are:φ = π/3,
θ = 3π/8, σ = π/6 andξ = π/12, and we vary one variable
in each simulation. From the figure, the loss is less than0.12



dB, and in most channel realizations, the loss is less than0.06
dB, which is negligible.
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Fig. 4. The difference of maximum statistical beamforming gain by using full
correlation matrixR and our Kronecker correlation modelRK = Raz⊗Rel.
The gain loss is less than0.06 dB in most cases. The default setting of channel
variables are :φ = π/3, θ = 3π/8, σ = π/6 andξ = π/12.

Figure 4 demonstrates thatµ is very close toλ(1), which
means thatu(1)

az ⊗ u
(1)
el , the dominant eigenvector ofRK ,

is close to the dominant eigenvector ofR. Therefore, using
our Kronecker model in statistical beamforming yields limited
performance loss, and we separate the eigenvector feedback
into azimuth and elevation directions. The separate feedback
has smaller scale, i.e. aCN vector and aCM vector instead
of a CMN vector.

Next, we show that the Kronecker correlation model is
a good approximation with limited feedback. Consider the
following beamforming transmission with input-output rela-
tionship

y = |hH
f |s+ n, (31)

whereh = (R1/2)w is the channel vector withw distributed
as i.i.dCN (0, 1), andn is theCN (0, N0) noise. To maximize
the receive SNR, the optimal infinite feedback beamformer is
given by

f =
h

‖h‖ =
R

1/2
w

‖R1/2w‖ . (32)

Suppose the correlation matrix is known to both end, and
mobile user will feedback vectorw to the BS. However, if
we replace theR with our Kronecker modelRK at the BS,
the beamformer is then formed as

f =
R

1/2
K w

‖R1/2
K w‖

=
(Raz ⊗Rel)

1/2
w

‖(Raz ⊗Rel)1/2w‖ . (33)

Figure 5 shows that these two unlimited feedback schemes
have very close performance. For limited feedback, using
our Kronecker correlation allow us to separate codebook and
feedback with azimuth and elevation directions. In Figure
5, the separate feedback for a 2-by-2 antenna array has a

little performance degradation compare to conventional full
feedback with same amount of feedback bits. However, with
a 4-by-4 or an even larger 2D antenna array, constructing
and maintaining a large codebook itself becomes a problem.
Hence, separate feedback becomes a feasible solution for large
antenna arrays. In next section, we present a product codebook
design with our Kronecker correlation model.
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Fig. 5. Feedback performance for a 2-by-2 antenna array withφ = π/3,
θ = 3π/8, σ = π/12 and ξ = π/36. Two unlimited feedback schemes
have almost identical performance. For limited feedback (Grassmannian
line packing based), the separate feedback with the Kronecker correlation
model suffers little performance loss compared, but it requires much smaller
codebooks.

V. PRODUCT CODEBOOK

As shown in the previous section, assuming a separable
channel correlation matrix leads to very small losses in beam-
forming gain. The Kronecker correlation model naturally leads
to the idea of using a separate codebook for each of the
azimuth and elevation dimensions. For massive MIMO, instead
of applying a largeM ×N codebook according to the entire
correlation matrix, we can construct two separate codebooks
with elevation and azimuth correlation, respectively. Then we
can take a Kronecker product of them to form the product
codebook for MIMO system.

Faz ⊗Fel = {c(1)az , . . . , c
(N1)
az } ⊗ {c(1)el , . . . , c

(N2)
el }, (34)

the best entries are chosen as

(faz, fel)= argmax
faz∈Faz
fel∈Fel

∣

∣h
H(faz ⊗ fel)

∣

∣

= argmax
faz∈Faz
fel∈Fel

∣

∣

∣w
H(R1/2

az ⊗R
1/2
el )(faz ⊗ fel)

∣

∣

∣

= argmax
faz∈Faz
fel∈Fel

∣

∣

∣w
H(R1/2

az faz)⊗ (R
1/2
el fel)

∣

∣

∣ . (35)



dgrass(F)≤2Mtκ
1/2

E[min
i,k

min
φ,θ

‖R 1
2 (ejφwaz ⊗ ejθwel)−R

1
2 (c(i)az ⊗ c

(k)
el )‖] (43a)

≤2Mtκ
1/2

E[min
i,k

min
φ,θ

{‖R
1
2
az(e

jφ
waz)⊗R

1
2

el(e
jθ
wel − c

(k)
el )‖ + ‖R

1
2
az(e

jφ
waz − c

(i)
az )⊗R

1
2

el(e
jθ
c
(k)
el )‖}] (43b)

=2Mtκ
1/2

E[min
i,k

min
φ,θ

{‖R
1
2
az(e

jφ
waz)‖‖R

1
2

el(e
jθ
wel − c

(k)
el )‖+ ‖R

1
2
az(e

jφ
waz − c

(i)
az )‖‖R

1
2

el(e
jθ
c
(k)
el )‖}]

≤2Mtλmaxλ
−1/2
min E[min

i,k
min
φ,θ

{‖ejφwaz − c
(i)
az ‖+ ‖ejθwel − c

(k)
el ‖}] (43c)

≤2Mtλmaxλ
−1/2
min {(2− 2E[max

i
|wH

azc
(i)
az |])1/2 + (2− 2E[max

k
|wH

el c
(k)
el |])1/2}.

To maximize the receive SNR, the optimal infinite Kro-
necker feedback vectors are given by

(wopt
az ,wopt

el ) = argmax
waz,wel

∣

∣

∣w
H(R1/2

az waz)⊗ (R
1/2
el wel)

∣

∣

∣ .

(36)
Similarly to [8], we construct the azimuth codebooks

Faz =

{

R
1/2
az c

(1)
az

‖R1/2
az c

(1)
az ‖

, . . . ,
R

1/2
az c

(N1)
az

‖R1/2
az c

(N1)
az ‖

}

(37)

and

Fel =

{

R
1/2
el c

(1)
el

‖R1/2
el c

(1)
el ‖

, . . . ,
R

1/2
el c

(N1)
el

‖R1/2
el c

(N1)
el ‖

}

(38)

for elevation.
Therefore, to minimize the average SNR loss, we can

formulate the distortion function as follows

dgrass(Faz ⊗Fel)

=E



min
i,k





∣

∣

∣

∣

∣

w
H Razwaz

‖R1/2
az waz‖

⊗ Relwel

‖R1/2
el wel‖

∣

∣

∣

∣

∣

2

−
∣

∣

∣

∣

∣

w
H Razc

(1)
az

‖R1/2
az c

(1)
az ‖

⊗ Relc
(1)
el

‖R1/2
el c

(1)
el ‖

∣

∣

∣

∣

∣

2






 . (39)

We can bound the expression as in (36), whereλmax denotes
the largest eigenvalue of matrixRaz ⊗ Rel, λmin denotes
its smallest eigenvalue, andκ denotes its condition number.
Inequality (43a) is given by [8] and (43b) use the triangle
inequality. Inequality (43c) comes from the fact that for all
unit vectorsu andv

∥

∥

∥R
1
2
azu

∥

∥

∥

∥

∥

∥R
1
2

elv

∥

∥

∥ ≤ λ
1
2
max‖u‖‖v‖ = λ

1
2
max (40)

As shown in [7], the upper bound in (36) can be minimized
by using Grassmannian line packing to generate two sub-
codebooks

{

c
(1)
az , . . . , c

(N1)
az

}

and
{

c
(1)
el , . . . , c

(N2)
el

}

. Figure
5 has a simulation results for the Grassmannian line packing
based product codebook for a 2-by-2 antenna array.

VI. CONCLUSION

In this paper, we derived an analytic expression of the
correlation matrix for a 2D antenna array using a ray-based

3D channel model. We demonstrated that the Kronecker cor-
relation model has very similar eigenvalue distribution asthe
correlation matrix, and thus it is a good approximation for the
original correlation matrix. Therefore the 3D channel can be
separated into azimuth and elevation directions. Based on the
channel separability, we presented a product codebook design
using Grassmannian line packing.
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