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Abstract—A 2D antenna array introduces a new level of control make it difficult to send many spatial streams to one user,
and additional degrees of freedom in multiple-input-multiple- byt may make simultaneous transmissions to a large number
output (MIMO) systems patrticularly for the so-called “massive users (in a MU-MIMO fashion) from the 2D array practical.

MIMO” systems. To accurately assess the performance gainsfo Theref th lati tatisti ful f .
these large arrays, existing azimuth-only channel models dve erefore, the correlation statistics are useful for capac

been extended to handle 3D channels by modeling both the @nalysis, and analytical expressions can provide insiktie
elevation and azimuth dimensions. In this paper, we study te correlation statistics of a full 3D channel.
channel correlation mat(ix of a generig ray-based 3D channe In this paper, we derive an analytic expression for cor-
model, and our analysis and simulation results demonstrate  o|ation matrices with a generic ray-based non-line-ghsi
that the 3D correlation matrix can be well approximated by a .
Kronecker production of azimuth and elevation correlations. This (NLQS) 3D (_:han.nel model. We compare the derlved. cor-
finding lays the theoretical support for the usage of a produt relation matrix with the Kronecker product of correlations
codebook for reduced complexity feedback from the receiveto in azimuth and elevation dimensions. We found that even
the transmitter. We also present the design of a product cod®ok  when a strictly mathematical equivalence does not hold, the
based on Grassmannian line packing. eigenvalue distributions of two matrices, derived cotieta
and Kronecker product correlation, are surprisingly close
each other. Therefore, in an ergodic capacity analysis, the
To meet the increasing demands on wireless communicatighiannel correlation matrices can be well approximated by
systems, two-dimensional antenna arrays have been prbpase Kronecker product correlation model. This approxiorati
for further improving the spectral efficiency of multi-inpu indicates that it is possible to separate the 3D channel into
multi-output (MIMO) technology. A two dimensional antennazimuth and elevation directions and treat them as indepen-
array provides control over not only the azimuth dimensiodent 2D channels for the purposes of designing an efficient
but the elevation dimension as well, thereby promising feedback strategy and for designing MIMO transmit weights.
further extend the gains from MIMO technology. Various Therefore, for a massive 2D antenna array with codebook-
methods for controlling a 2D array have been proposed. Elewsased feedback, instead of using a huge codebook for limited
tion sectorization[[[1] and user-specific elevation beamfog feedback, we can separately apply a product codebook, which
[2] are two examples of how the additional diversity in & simply a Kronecker product of two smaller codebook
3D channel can be exploited in current 4G LTE systems. tesigned for azimuth and elevation antenna dimensions. It i
addition, Massive MIMOI[3] or Full-Dimension MIMO (FD- well-known that Grassmannian line packing is an important
MIMO) [4] operates with tens or even hundreds of antennasol for optimal codebook design with both uncorrelated
at the base station (BS) and enables the multiplexing of ma[y and correlated channel$][8]. This paper examines the
users in a multi-user MIMO (MU-MIMO) fashion. application of Grassmannian line packing to the design of a
To accurately measure the performance of these 2D antepnaduct codebook for operation in a 3D channel. A specific
arrays, a 3D channel model is needed where both the elevafiwoduct codebook design is presented.
and azimuth directions is are taken into account in the new
model. At the time of writing this paper, 3GPP is actively Il. CHANNEL MODELING
developing a 3D channel model to enable the evaluation of el-We consider a ray-based 3D channel model as shown in
evation beamforming and massive MIMO. However, currentlyigure[1. The mobile terminal is surrounded by local scafter
there are only extensions to the 2D 3GPP/ITU model, amhd the channel is assumed to consisfL.agqual gain NLOS
where two examples are given inl [5] and [6]. paths. Suppose the BS in y-z plane is equipped with a 2D
In a massive MIMO system, with a large number of anterantenna array withl/ vertical antenna elements spaceddyy
nas assembled within a limited space at the BS, the channats/elengths, andv horizontal antennas with & wavelength
are highly likely to be correlated. Strong correlationslwilspacing. The BS array is deployed at a given height above the
greatly reduce the effective degrees of freedom in wirelegsound and typically the BS array will have some mechanical
channels, which will significantly impact the performande adowntilt. For simplicity, we assume no mechanical downtilt
a massive MIMO system. In particular high correlation mafor the antenna array in our model. The mobile terminal is
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assumed to have only one antenna for reception, but extgn= 1,..., M. Note that elevation variancg is a function
sions to more than one mobile antenna are straightforwaad.the distance between BS and mobile device, because recent
Assuming a downlink transmission, lgtbe the mean azimuth research shows that the elevation spread has a strongatdistan
angle-of-departure (AoD)Y be the mean AoD in elevatiom, dependence [6].
be the standard deviation of azimuth angular perturbatind,  Define

¢ be the standard deviation of elevation angular perturbatio

For each path, we assume a random varigbte emulate the a(ux)
phase shift fro_m _the different lengths of the trapsmlt paths b(uk) = [1,e-9%, .. ’e_j(N_l)vk]T. ®)
Note that a A similar 2D antenna array configuration was used
in [9] for angle-of-arrival (AoA) estimation. We next rewriteV (¢, 0) = a(uz)b” (vy). With a random
phase shifty uniformly distributed in [0, 27|, the channel
response for the 2D array can be formulated as

=[l,e77% . . e

A Q)

)

Z
L M?k
H(¢,0,0,8) = Z a(ug)b” (vg). (6)
k=1
Therefore, the channel vector is
M?k
= vec(H Z c ) @ a(ug). (7)

In a full channel model, we need to specify more statistic
parameters for the propagation. However, our ray-based-cha
nel model and the correlation we derive provide insight for
the real 3D channel propagation. For example, the channel
separability of a 3D channel into a Kronecker structure of
an azimuth covariance matrix with an elevation correlation
matrix..

II. CHANNEL CORRELATION: ANALYTICAL EXPRESSION

In this section, we derive an analytical expression for the
correlation matrix given the above 3D channel model. Al-
Fig. 1. Channel modeling witlh equal gain NLOS paths between the mobilethough the derivation is given for this specific channel nipode
and the base statiod/ vertical antennas witd; wavelength spacing, aW'  the methodology can be applied to any generic 3D channel
horizontal antennas witldy wavelength spacingy is for the azimuth angle, del h h d h e if |
and@ is for the elevation angle model. Note that the random phase shift is uniformly

distributed, hence the mean of the channel vectdr. is
The fast fading gain of path is represented by a random

. . L JPk
matrix for the 2D array given by E{h(¢,0,0,£)} = Z Efe }]E{b(vk) ®a(ux)} = 0. (8)
_i(N— — VL
1 . e F(N=1)vg k=1
B e duk . eIl (N=Duy] The correlation matrix, which is the same as the covariance
V(¢r, 0k) = . , : 1) :
: . matrix, can be calculated as
eI M=Nuy - —j[(M— 1)uk+( —1)vi] "
R((b? 97 g, é—) = ]E{h((b? 97 g, é—)h ((b? 97 g, 5)} (9)
where
27dy N Since all propagation paths have equal gain and they are
Uk = — cos by = N cos(6 + Aby), @) independent of each other, we need to consider only one
arbitrary path and simplify the expression as
27Td2 .
V= \ sin 0y, cos ¢ L 1 .
o, R= 3~ = E{(b(ox) @ a(us) (b(ur) @ a(u)) "}
=3 sin(6 + Aby) cos(¢p + Agy,). (3) k=1

H
Aby is the elevation angular perturbation for pathand it E{(b(v) ® a(u))(bv) ® a(w))"}.
is assumed to be normal distributed.&$0, £). Similarly, the Next, we derive the expression for each entry of the coiicelat
azimuth angular perturbatiah¢, is assumed to be distributedmatrix. Define the(k,[)-th antenna element as theth in
asN(0,0). Moreover, assume angular perturbatidng; and elevation and-th in azimuth antenna in the 2D array, so it
Af; are independent variables for all = 1,...,N and should be the: + (I — 1)M-th element in the channel vector.



Then the correlation betweefk,!)-th and (p, ¢)-th antenna where
element is

_ D5 = D35° +1, (21)

R o) = E{/FA0r800) (1)
where Dg = D45 + cos ¢, (22)
Acos(6 + A + n)=(p — k)d1 cos(6 + A) Dy = D3 cos® ¢ — D35% — 2Dy cos ¢. (23)

g = Ddasin(0 + Ad) cos(¢ + Ag) From the above analytical expressions, it is clear that term
(11) D, is only elevation related, i.e., only contains the term

from the trigonometric identity. Let, = cos(d+ A6 +17), and (P — k), while D,, D3 and D are azimuth related and only

we approximate the distribution of as/\/'(ﬂ,é) with have the term(q — [). Variable D4, Dg, and D; have the
cross term(p — k)(¢ — 1), contributing to both elevation and

fi = cos(0 +n))&, (12)  azimuth correlations. Howevel)s and D, are functions of

and D,. Therefore if D4 = 0, the correlation ternR g, ;,(,q) €an
€ = sin(6 + n)¢. (13) be written as a product of elevation and azimuth correlation

_ o o _ Furthermore, ifD4 = 0 is true for all antenna indek, /, p and
T_h|s typ_e of appr_OX|m§1t|0n for the normal_dlstrlbunon WIN ; then the correlation matrix is separable
sine/cosine functions is commonly used in the propagation

analysis of 2D channel modeling [10],_[11]. Note that a R =R.: ® Ry, (24)
different antenna ordering or an uplink transmission mayl le
. . .o where

to different signs for(p — k) and (¢ — [). However, it will s Ly Y
not change the overall correlation matrix, sirReis always [Re]ip =€l » (PrR)costp=3(E550)7(p=k)sin"0) (95
conjugate-transpose symmetric.

Therefore, we will first take the expectation with respect
1, and integrate in the elevation direction to get

Lgenotes the elevation correlation, and the correlationzin a
Imuth direction is

- 2 1 7D§2c;sz¢ jD2goso 7%(13[2)&)2
R0 q>—]Eu{\/1 / K e 5 dﬂ} Rochg = Jppe 77 e (29)
D, (p, 5-¢ |
,2,,5, ?°~2,,A 2 IV. KRONECKERCORRELATION MODEL
zE,L{eJT Ae—3ERA } (14) : . o o
The strictly mathematical separation discussed in theiprev

We can separate out the constant term, which happensotes section is difficult to satisfy in general. Even if we rela
coincide with the correlation in elevation direction to:get the constraint taD, ~ 0, an approximate separation is not
likely to hold in many practical settings. For example, wéth

_ A (p—k)cos 6, — L (6222 (p—k)2 sin? 6 ) )
Dy = el 75 (PR cosfem3 (Tl g (15)  massive 2D antenna arra, = 0 for all possiblek, [, p andq
To further simplify the expression, we define is a very harsh condition. Fadp, ~ 0 to hold, we need either
ord 0 ~ /2 0orc =~ 0.0 =~ 7/2 means that the mobile device
Dy = 3 2 (g —1)siné, (16) is very far away assuming there is no mechanical downtilt to
the antenna array. In such a case, the elevation channekis le
D3 = 52”d2 (q—1)cosh, (17) important, and the traditional 2D channel model sufficesteNo

also thato =~ 0 indicates that the channel has a very small
1/ 27\?2 ) elevation angular spread. Given the distance dependence of

Dy = 3 (57) dvda(p — k)(q — 1) sin(20). (18)  the elevation spread, the small elevation spread may itedica
that the device is very far away. Therefore, both cases do not

Hence, provide much insight into the channel separable condition.
_ jDov —lD?u2+D4u}

Rki).w.0) = DrEw {e ¢ o (19 Separation in Ergodic Capacity Analysis

where v = cos(¢ + A¢) is approximately distributed as However, it is not necessary for us to have a strict re-

N (cos ¢, ) with ¢ = (sin ¢)o. Then, we take the expectationquirement for a correlation model, such that every matrix

with respect tav, and the correlation matrix is formulated asgntry is close to the analytical expression. For example, in

D, Oy ADA e p., (o) a ergodic capacity analysis, if the eigenvalue distrimgiof
Ry 0= —75== / elTem e s e 27>~ dv  two correlation matrices are close enough, then the resulti
V21o J_ o . . . .
ergodic capacity will be similar. Therefore, we compare the

- De)? . 2 : . .
D, oo _( 25,;) — 27 eigenvalue distributions of the following correlation miees:
= T/ e/P2ve s dv the analytical correlation matriR defined as[(20), and the
e o Kronecker correlation model
D D7 DaDg 1 (D35)

— L 35 ] =
= D5e 5! D5 g 2 Ds | (20) Rx = R., ® Ry, 27)



eigenvalue distribution ergodic capacity comparison
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Fig. 2. The comparison on the eigenvalue distributions of tarrelation ma- Fig- 3. The comparison on the ergodic capacity of channelizet@n
trices with various channel settings. Legends with “R” @adé the distribution and using two correlation models. Although there are sonwatien in the
for analytical correlation matrifR, and “R sep” represents the distributions ¢@pacity cdf curves between using correlation models andre! realization,
for Kronecker correlation moddR . two curves fOI" correlation mod_els are vgry_close to ee_ich rotheevery
simulation settings. Legends with “SIM” indicate the capacurves are
plotted using the channel model directly. Legends with “Ridd'R_sep”
represent the curves using correlation matriBesind R i, respectively.

with R,, and R, defined in [26) and(25).
In Figure[2, we plot the eigenvalues distributions for 4 .
different channel configurations. We compare two correfati little difference.
models for both moderate (4-by-4) 2D arrays and massige separation in Feedback
(16-by-16) 2D arrays. The comparison is obtained for both
moderate § = 7/12 and¢ = 7/36) and large § = =/6 and
¢ = w/12) angular spreads. The similarity in the eigenvalu
distribution is then translated into the closeness of tipaciy R~R,, ®Rq. (28)
curves of using the both correlation matrices. ] ) ]
In Figure[3, we compare three ergodic capacity curves Yye first show the effect of using the Kronecker Correlation
each channel configuration. First, we generate the chanfdﬁdel in statisti(_:al peamforming. Statistic_al bea_mforgﬂn
vector h following our ray-based NLOS 3D channel model,lz]' [13] rransmits signals along the dominant eigenvecto
labled as “SIM” in the legend. We generafe — 20 paths of the correlation matrix in a spatial correlated channeé W

1) . ; 1)
with randomly selected phase shift, and the azimuth amsume\( ) is the maximum eigenvalue f, andu(!) is the

elevation AoDs selected from their respective distritnugicn cc(Jlr)responding dominant eigenvector. Similarly, we canngefi

the model. Second, we generate the channel vectors usingthe’ usy, /\S) and ui_ll) for R., andR., respectively. From
correlation matrices abgr — RY2w and hg, — R}(/Qw, above _ergogllc capacity d|§cu55|on, we know that the folgwi
wherew is a random vector distributed as i.CdV'(0, 1). Let approximation between eigenvalues holds

p denote the signal-to-noise-ratio, and the ergodic capacit A o AW (29)

is then calculated ag’ = log(1 + ph’h). From the plots, an el

we notice the correlation model curves have some visiblie fact, the approximation between corresponding eigetovec
deviation from the channel “SIM” results because of thalso holds. If we use our Kronecker correlation model in
normal distribution approximation on the cosine functionstatistical beamforming, the transmit signal is beamfatme
However, in all three different settings with a 16-by-16 2@long ul)) ® u!) instead ofu(®). Hence, the maximum
antenna array, two correlation model curves are always en #heamforming gain is

top of each other. o (O\H 1 (1)

The previous analysis indicates that massive 2D arrays with p= (0 ©uy ) R(uy) © ui). (30)
large elevation spread are likely to have a lafgeterm, and In Figure[4, we plot the beamfoming gain loss by using
thus the correlation matrix is not mathematically sepaablR.,, ® R.. The simulations are conducted with various com-
However, our simulation results demonstrate that evensesabination of channel variables: angle-of-departure (AoBDyl a
with wide angular spread, which mean a larBg term, the angular perturbation variance (APV) for azimuth and elievat
Kronecker correlation model still has a similar eigenvadiee  dimensions. The default setting for the variables are: 7 /3,
tribution with as analytical expression. Therefore, thgodic 6 = 37/8, 0 = /6 and{ = n/12, and we vary one variable
capacity performances of two correlation models only hawe each simulation. From the figure, the loss is less thag

In this section, we show the channel separation property can
%e used in feedback. We approximate malixwith



little performance degradation compare to conventiondl fu
feedback with same amount of feedback bits. However, with
a 4-by-4 or an even larger 2D antenna array, constructing
and maintaining a large codebook itself becomes a problem.
Hence, separate feedback becomes a feasible solutiorrder la
antenna arrays. In next section, we present a product coétebo
design with our Kronecker correlation model.

dB, and in most channel realizations, the loss is less th@h
dB, which is negligible.

Maximum beamforimg gain loss by using Kronecker Correlation
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Fig. 4. The difference of maximum statistical beamformimgngoy using full
correlation matrixR and our Kronecker correlation modBlx = Ra,QR,;.
The gain loss is less than06 dB in most cases. The default setting of channe
variables are pp = /3, 6 = 37/8, 0 = /6 and{ = 7 /12. 10
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Figure[4 demonstrates thatis very close toA(!), which
means thatugé) ® ug), the dominant eigenvector dR, Fig. 5. Feedback performance for a 2-by-2 antenna array wita /3,
is close to the dominant eigenvector Bf. Therefore, using ¢ = 37/8, ¢ = m/12 and¢ = «/36. Two unlimited feedback schemes

. e . . .~ have almost identical performance. For limited feedbackag&mannian
our Kronecker model in statistical beamforming yields toi jine packing based), the separate feedback with the Kremecarrelation
performance loss, and we separate the eigenvector feedbagtie! suffers little performance loss compared, but it irgumuch smaller
into azimuth and elevation directions. The separate fegidb&°debooks.
has smaller scale, i.e. @V vector and aC™ vector instead
of a CM¥ vector.

Next, we show that the Kronecker correlation model is
a good approximation with limited feedback. Consider the
following beamforming transmission with input-output ael
tionship

V. PrRoDUCT CODEBOOK

As shown in the previous section, assuming a separable
channel correlation matrix leads to very small losses imbea
forming gain. The Kronecker correlation model naturallyde
to the idea of using a separate codebook for each of the
whereh = (R'/?)w is the channel vector withw distributed azimuth and elevation dimensions. For massive MIMO, irstea
as i.i.dCN(0,1), andn is theCN (0, No) noise. To maximize of applying a largel x N codebook according to the entire
the receive SNR, the optimal infinite feedback beamformer igrrelation matrix, we can construct two separate codebook
given by s with elevation and azimuth correlation, respectively. T ke

- ‘h — R!/2w can take a Kronecker product of them to form the product
b [RY2w]’ codebook for MIMO system.

Suppose the correlation matrix is known to both end, and

y = [ f]s +n, (31)

(32)

N:
mobile user will feedback vectow to the BS. However, if  Fas @ Fer = {c, ...} @ {c{,.... ™}, (34)
we replace theR with our Kronecker modeR k at the BS, _
the beamformer is then formed as the best entries are chosen as
1/2
_ BRiw Ry @Ra)w (33) (fay, £u1)= argmax |h¥ (£, @ £.))|

IR} *w|  [[(Raz @ Re))'/2w|| fon €70
Figure[% shows that these two unlimite_d feedback schemes = argmax ‘WH(R;{" ® Rilﬂ)(faz ® fel)‘
have very close performance. For limited feedback, using ffazejzaz
our Kronecker correlation allow us to separate codebook and 1€ 12
feedback with azimuth and elevation directions. In Figure :%rgH;aX’WH(Riézfaz)®(Rel fcl)‘- (35)

az €L az

B, the separate feedback for a 2-by-2 antenna array has a e



Qgrass(F) <2Ms ! *Efmin min |R? (¢, @ 'war) = R2 () @ )] (43a)
<2Mt,¢/2E[m3€nmm{HRz (9 Was) @ RE( W — )| + [IRE (7 way — ) @ RE(})[1}] (43b)
=2Mys'/2Efmin min{| RE (90 way ) [ RE (€ War — )] + [RE (e wa, — )[R ()]
<2M Ayt Blmin min{|e?wa, — | + [l war — e’ |} (43c)

<M A bt {(2 — 2E[max [wiLeld ()12 + (2 — 2E[max [wl{ ) /).

min az ~az

To maximize the receive SNR, the optimal infinite Kro3D channel model. We demonstrated that the Kronecker cor-

necker feedback vectors are given by relation model has very similar eigenvalue distributionttzes
correlation matrix, and thus it is a good approximation foz t
opt opty __ H 1/2 1/2 .. . .
(Wor' wep ) = argmax (W' (R, "Waz) ® (R “wel) |- original correlation matrix. Therefore the 3D channel can b
ez Wel (36) separated into azimuth and elevation directions. Baseden t
Similarly to [8], we construct the azimuth codebooks channel separability, we presented a product codeboogmiesi
using Grassmannian line packing.
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VI. CONCLUSION

In this paper, we derived an analytic expression of the
correlation matrix for a 2D antenna array using a ray-based
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