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Abstract—Collisions are a main cause of throughput degrada-
tion in Wireless LANs. The current contention mechanism for
these networks is based on a random backoff strategy to avoid
collisions with other transmitters. Even though it can reduce the
probability of collisions, the random backoff prevents users from
achieving Collision-Free schedules, where the channel would be
used more efficiently. Modifying the contention mechanism by
waiting for a deterministic timer after successful transmissions,
users would be able to construct a Collision-Free schedule among
successful contenders. This work shows the experimental results
of a Collision-Free MAC (CF-MAC) protocol for WLANs using
commercial hardware and open firmware for wireless network
cards which is able to support many users. Testbed results show
that the proposed CF-MAC protocol leads to a better distribution
of the available bandwidth among users, higher throughput and
lower losses than the unmodified WLANs clients using a legacy
firmware.

Index Terms—Wireless LAN, Multiaccess Communication,
Collision-Free, OpenFWWF.

I. INTRODUCTION

Wireless Local Area Networks (WLANs) are a very well-
known and broadly used technology for providing wireless ac-
cess to a wired network or the Internet. As more throughput is
available due to advances at the Physical layer (PHY) [1], there
is an ever-increasing interest on providing WiFi connectivity
everywhere, ranging from conventional Small-Office/Home-
Office (SOHO) environments to campuses or stadiums.

These new scenarios carry new challenges in terms of
resource allocation. Given that WiFi networks operate over a
unlicensed spectrum band called the Industrial, Scientific and
Medical (ISM) radio band (particularly in the 2.4-2.5 GHz
and 5.725-5.875 GHz bands), packing many users into these
limited bands will challenge the advertised throughput. One of
the main causes of this throughput degradation derives from
transmissions performed at the same time over the same WiFi
channel, causing collisions among transmitting users, i.e.,
an unintelligible message to the intended receiver, therefore
wasting channel time and thus reducing the system throughput.

Although the IEEE 802.11 standard adopts the Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) at
the Medium Access Control (MAC) level to avoid collisions,
it is not able to prevent them completely. CSMA/CA is
implemented in WLANs through a Distributed Coordination

Function (DCF) that in turn is based on a Binary Exponential
Backoff (BEB) mechanism which defers each user’s trans-
mission for a random number of empty slots drawn from
a Contention Window (CW). However, as the number of
competing stations increases, the probability that two users
start transmitting at the same time gets higher, leading to
collision slots of an approximate duration equal to those slots
that contain successful transmissions.

To avoid collapsing the network, colliding nodes double
their respective CW. On the contrary, when only one transmits,
the successful slot embeds also a requirement for an acknowl-
edgment frame addressed to the original transmitter, which
resets the CW to the default minimum upon the reception of
the said acknowledgement frame. In any case, the time wasted
in collisions contribute to the degradation of the throughput.

Carrier Sense Multiple Access with Enhanced Collision
Avoidance (CSMA/ECA) [2] is also a totally distributed MAC
protocol for WLANs. CSMA/ECA is capable of constructing
a Collision-Free schedule by deferring the transmission of
successful users deterministically (i.e., using a deterministic
backoff after each successful transmission) instead of us-
ing a random backoff, as CSMA/CA does. This way, users
that successfully transmitted in the past will schedule future
transmissions without the possibility of colliding with other
successful users in future cycles.

There are many studies regarding the performance of
CSMA/ECA that show how the enhanced collision avoidance
mechanism is capable of achieving greater throughput and
with a greater number of contenders than the current MAC for
WiFi [2]–[6] . Furthermore, as CSMA/ECA deviates very little
from CSMA/CA its implementation in commercial hardware
using an open firmware like OpenFWWF [7] requires little
modification.

Previous experimental studies, like [8]–[10], show that
Collision-Free operation with OpenFWWF and CSMA/ECA
can be achieved only for high values of the deterministic
backoff. In particular, when using short deterministic backoff
values, like 8, 16 or 32 slots, stations failed to maintain
a collision-free operation for the length of the experiments,
whether due to lack of time precision or misinterpretation of
the state of the channel before transmission (caused by an
imperfect Clear Channel Assessment (CCA) mechanism).
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To avoid such problems a different approach is followed
in this work. In order to ensure precision in the scheduling
mechanism a more accurate set of instructions is implemented
at firmware level. These modifications make use of a con-
tinuous timer to schedule transmissions instead of a backoff
based on discrete slots. Further, possible problems with the
CCA mechanism are avoided by sensing the channel for a
period equivalent to only two empty slots before the scheduled
transmission.

This work shows the experimental results of a Collision-
Free MAC (CF-MAC) protocol for WLANs that uses a
deterministic timer after successful transmissions, similar to
CSMA/ECA’s deterministic backoff; nevertheless its imple-
mentation is done through more precise firmware instructions
which force the nodes to attempt transmission exactly when
scheduled, avoiding the inaccuracies experienced in [8]–[10].

Results show that using a continuous timer instead of
counting slots allows successful users to maintain longer
collision-free schedules and to achieve a better distribution
of the available bandwidth when compared to CSMA/CA.

The details of CSMA/ECA are described in Section II, while
our Collision-Free MAC protocol and the tools used to imple-
ment it on comercial hardware are discussed in Section III. The
testbed is detailed in Section IV while the results and drawn
conclusions appear in Section V and Section VI, respectively.

II. CARRIER SENSE MULTIPLE ACCESS WITH ENHANCED
COLLISION AVOIDANCE

CSMA/ECA is a totally distributed and collision-free MAC
protocol for WLANs. It differs slightly from CSMA/CA in
that nodes use a deterministic backoff after successful trans-
missions.

Users or contenders in a WLAN schedule transmissions
based on a Backoff Counter, B. At startup, in both CSMA/CA
and CSMA/ECA this Backoff Counter is drawn randomly
and uniformly, B ∈ [0, 2kCWmin − 1]; where CWmin is the
minimum Contention Window of typical value CWmin = 16
and k ∈ [0,m] is the backoff stage with initial value of k = 0
and maximum value of k = m = 6. After B number of empty
slots have passed, the contender will attempt transmission and
wait for an acknowledgement (ACK) from the receiver. If no
ACK is received, a collision is assumed and a retransmission
is scheduled.

For both CSMA/CA and CSMA/ECA, when a collision is
detected the affected contenders will recompute their Backoff
Counter increasing the backoff stage by one (k ← k + 1).
Nevertheless, the handling of a successful transmission is the
main difference between these two protocols.

When an ACK is received, CSMA/CA contenders reset their
backoff stage (k ← 0) and recompute the Backoff Counter.
Whereas CSMA/ECA, after resetting the backoff stage, in-
structs nodes to use a deterministic backoff, Bd = CWmin/2
after a successful transmission. This value of Bd is roughly
equal to the expectation of the backoff counter chosen by
CSMA/CA at the initial backoff stage; thus providing fairness
between CSMA/ECA and CSMA/CA stations [2].

This switch to Bd avoids collisions among successful trans-
mitters and thus increases the throughput for CSMA/ECA
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Fig. 2. CSMA/ECA vs. CSMA/CA: throughput. (Using a 65 Mb/s PHY.)

contenders. Fig. 1 shows the dynamics of CSMA/ECA with
four users.

In Fig. 1, the horizontal lines represent four contenders,
while the numbers are the number of empty slots until the
expiration of their respective Backoff Counters. The first
outline indicates that STA-3 and STA-4 collide because their
Backoff Counter is the same, B = 1. After the collision, both
stations recompute their backoff; for STA-3: B = 14, and
for STA-4: B = 2. Having passed two empty slots STA-
4 transmits and picks a deterministic backoff, Bd = 7 in
this case. When all stations have transmitted successfully,
a collision-free schedule is built. Fig. 2 (redrawn from [2])
shows the achieved throughput and the Jain’s Fairness Index
(JFI) [11] for both CSMA/ECA and CSMA/CA obtained from
computer simulations.

The collision-free schedule that is built with CSMA/ECA
is responsible for the increase in the aggregated throughput
shown in Fig. 2. Further, the value of JFI = 1 suggests
an even distribution of the available throughput regardless of
the number of contenders (N ). Nevertheless, when N sur-
passes the value of the deterministic backoff (Bd), collisions
reappear. This effect degrades CSMA/ECA throughput and
approximates it to CSMA/CA’s.

Further enhancements like Hysteresis and Fair Share pre-
sented in [2] provide an increase in the number of contenders
CSMA/ECA can accommodate in a collision-free schedule;
later called CSMA/ECAHys+FS to distinguish it from basic
CSMA/ECA.

CSMA/ECA prototypes in real hardware

One of the main advantages of CSMA/ECA in terms of
implementation is that it does not deviate too much from
the current MAC. This allows the use of open firmware that
already contains the base code for CSMA/CA to be modified
towards CSMA/ECA.

The CSMA/ECA implementations [8]–[10] manage to
change the backoff mechanism after a successful transmission.
Nevertheless, the CSMA/ECA behaviour was maintained only
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Fig. 1. CSMA/ECA example in saturation: all contenders have a message to transmit all the time.

for a short time: it turned out that contenders were not able to
accurately keep the deterministic schedule. This effect can be
the result of the cards’ imperfections while decrementing the
counter when the channel is sensed idle, or failing to freeze
it when another node’s transmission is taking place.

In this work we implement a Collision-Free MAC pro-
tocol for WLANs using a deterministic timer that instructs
nodes precisely when to attempt transmission, without being
frozen by ongoing transmissions in the channel (contrary to
CSMA/CA’s backoff counter). Furthermore, to avoid possible
CCA imperfections from causing a disruption of a collision-
free schedule, the carrier sense algorithm is activated only
two slots before each transmission attempt, mostly to avoid
collisions with ongoing transmissions. A similar approach was
proposed for ALOHA-based wireless multi-hop networks [12]
to achieve collision-free operation. The approach of [12] is
evaluated only analytically and by simulation.

III. THE COLLISION-FREE MAC (CF-MAC)
Several manufacturers embraced the Soft-MAC [13] ap-

proach for interconnecting their Wi-Fi Network Interface
Cards (NICs) with general purpose systems. A dedicated CPU
on the NIC controls the radio circuitry and pulls complete
802.11 frames prepared by the main Operating System (OS)
kernel from an interconnecting bus, e.g., a PCI bus, and
schedules their transmission in real time. Thanks to this
approach, the NIC offloads the time-critical actions related to
the channel access, while the main kernel controls all other
functionalities. The CPU on the NIC runs the MAC algorithm
by executing a software (the firmware from here on) that reacts
to transmission/reception history and drives the evolution of
the Contention Window and the Backoff Counter. By replacing
the firmware, one can deeply customize the MAC or even
switch to a different one, e.g., Time Division Multiple Access
(TDMA) [14], instead of CSMA/CA.

To build and test our Collision-Free MAC protocol we chose
the Open FirmWare for Wi-Fi networks (OpenFWWF [7])
as it is the only open source firmware ever released for
controlling Wi-Fi NICs. Specifically, it is compatible with the
Airforce54 [15] chipset family from Broadcom. Together with
the b43 Linux driver [16] it already showed up as a flexible
research platform [17], [18]: given the low per-node price1

it also allows inexpensive deployment of dense Linux based
testbeds.

1A Linksys WRT54GL node includes a MIPS main CPU and a Broadcom
4318 NIC and was quoted as low as $39

For this work we built on the CSMA/CA code available in
OpenFWWF and added a new packet scheduling mechanism
as we detail in the following.

A. Protocol Description

OpenFWWF implements a simple State Machine (SM) for
controlling the hardware in real time. The SM evolution is
driven by a main loop that reacts to events by executing
specific handlers2. When a packet, originally prepared by
the Linux kernel, is ready in the NIC memory, handler
packet_ready sets up the radio hardware according to the
packet meta data (e.g., it fixes rate, modulation format, and
power level), schedules the transmission and jumps back to the
main loop. Then, the Transmission Engine (TXE) takes care of
accessing the channel, i.e., it decrements the Backoff Counter
(B) according to the Distributed Channel Function (DCF) rules
and it eventually starts the actual transmission. This triggers
the execution of the tx_frame_now event that prepares the
ACK time-out clock and finalizes the MAC header3. If the
ACK-frame is received or if the ACK time-out expires and
the maximum number of attempts for this packet is reached,
handler update_params resets the Contention Window to
the minimum (CWmin), otherwise it doubles the CW. Finally
it loads the B counter with a fresh value.

As the TXE stops counting down B when it detects the
channel busy, we could not use it for implementing our
Collision-Free MAC protocol, i.e., by loading the B counter
with a value proportional to the exact schedule delay. Further,
as experimented in [8]–[10] nodes would quickly go out-of-
sync. To avoid these unpredictable backoff inaccuracies we
exploited another feature as in [19] that allows the firmware
to start the immediate transmission of a frame, independently
of the channel conditions (we call this feature TXnow from this
point onwards). We hence reworked the main loop to make it
continuously check if the schedule delay has elapsed. In this
case it invokes the TXnow code if the channel is found idle,
otherwise it keeps checking the channel for a period equivalent
to a couple of empty slots to better avoid collisions with
ongoing transmissions, e.g., tails of previous frames in the
global schedule. If the channel is still busy, it will backoff for
a period equivalent to a random number of slots drawn from

2In the following we consider only the limited subset of events that were
changed to implement CF-MAC.

3As transmission has already started, these actions must be completed
before the physical preamble end.
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Fig. 3. CSMA/CA (up) and CF-MAC (down) channel access with success and failure

a Reduced Window (RW= 7). In the case that the channel is
found busy again, the node aborts this round and goes back
to CSMA/CA.

B. Implementation

The modifications required to make use of the TXnow feature
have the following effects:

1) It supposes a modified use of the carrier sense algorithm.
That is, the node only listens to the channel for a short
period equivalent to two empty slots before attempting
the transmission.

2) For using the TXnow instruction a different approach
should be used. Therefore, we create a timer based on
real time (measured in µs).

3) The use of a timer (Tc(N, r)) is subject to the number
of contenders (N ) and rate (r).

Tc(N, r) basically is the duration of all transmissions in a
schedule with N contenders at a certain rate, plus the duration
of the reception of the ACK for such transmissions and a short
guard interval (ε).

Notice that Tc(N, r) supposes a previous knowledge of the
number of contenders, making the obtained results useful for
research purposes but with little practical use in real world
WLANs. Table I shows the value of Tc(N, r)/N for each rate
we tested our Collision-Free MAC protocol. It is important to
highlight that the value of ε was adjusted in order to find a
value of Tc(N, r) capable of accommodating all N contenders.
This adjustment is based on experimental results.

Algorithm 1 shows an example of the proposed protocol.
Basically, stations substitute the random backoff B by the
Tc(N, r) timer after a successful transmission. Successful
nodes will continue to attempt transmission every Tc(N, r) µs,
until two consecutive collisions are detected or the channel
is found busy for too long, after which a random backoff is
drawn and the node goes back to CSMA/CA operation (this

TABLE I
TC(N, r)/N AND ε VALUES FOR DIFFERENT RATES

r (Mb/s) Tc(N, r)/N (µs) ε (µs) Tc(N, r)/N + ε
6 2233.5 91.5 2325
11 1567.5 132.5 1700
12 1197.5 102.5 1300
24 681.5 106.5 788
48 421.5 103.5 525

process is detailed at line 21). Allowing successful nodes to
stick with the deterministic timer even after collisions was
first proposed in [20] and called stickiness (also tested with
CSMA/ECA [21]). This allows contenders to converge faster
towards a collision-free schedule. Further, when collision-free
operation is achieved, it prevents successful users from going
back to a random operation due to channel errors.

IV. TESTBED DESCRIPTION

Each node used for the testing of our prototype is equipped
with a commercial WiFi card compatible with both Open-
FWWF and the b43 driver. The modified firmware was loaded
into the twelve testing nodes which were arranged mimicking
a conventional workspace environment: placed at different
distances from an AP and using a free WiFi channel in order
to avoid external interferences from other networks. Fig. 4 is
a graphic representation of the nodes’ layout, while Table II
gathers the PHY and MAC settings used.

Upon each test, the rate of each station is fixed and a uni-
directional iPerf [22] session is established from each station
to a Server using UDP. Each transmitter then is saturated (is
always attempting to transmit) for a period of ninety seconds.
We used also another node, a Sniffer, to capture all traffic using
TCPdump [23]. The Server and the Sniffer are represented in
Fig. 4 as a single station, connected via Ethernet to the Access
Point (AP).
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1 while the device is on do
2 ret← 0 ; k ← 0;
3 B ← U [0, 2kCWmin − 1];
4 while there is a packet to transmit do
5 repeat
6 while B > 0 do
7 wait 1 slot;
8 B ← B − 1;

9 Attempt transmission of 1 packet;
10 if collision then
11 ret← ret+ 1;
12 k ← min(k + 1,m);
13 B ← U [0, 2kCWmin − 1];

14 until (ret = R) or (success);
15 r ← 0;
16 k ← 0;
17 if ret = R then
18 Discard packet;
19 else
20 repeat
21 wait Tc(N, r) seconds;
22 Attempt transmission of 1 packet;
23 until (two consec. collisions or busy two

times);

24 B ← U [0, 2kCWmin − 1];

25 Wait until there is a packet to transmit;
Algorithm 1: Overview of the packet scheduling mechanism for
CF-MAC.

Fig. 4. Testbed.

To better analyse the behaviour of our protocol we added to
the stations’ firmware a counter for the number of successful
transmission, i.e., those acknowledged by the receiver; and a
counter for the number of failures, i.e., those not acknowl-
edged. It is possible to derive several metrics by analysing the
captured traces and the counters, like:

• Throughput per station: by looking at the log of each
iPerf session, it is possible to obtain an estimation of the
achieved throughput of each station. Further, by looking

TABLE II
PHY AND MAC PARAMETERS FOR THE TESTBED

PHY
Parameter Value

PHY rate (Mb/s) 6, 11, 12, 24, 48
Empty slot (µs) 9 (20 for 11 Mb/s)

DIFS (µs) 28 (50 for 11 Mb/s)
SIFS (µs) 10

MAC
Parameter Value

Maximum backoff stage (m) 6
Minimum Contention Window (CWmin) 16

Maximum retransmission attempts 6
Packet size (Bytes) 1470

Duration of each test (s) 90
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Fig. 5. Throughput for different data rates. Each experiment if conformed
by twelve nodes. The left bar represents our CF-MAC and the right one
CSMA/CA. Hovering numbers indicate the accumulated throughput achieved
by CF-MAC in Mb/s.

at the number of successfully sent packets (counted by the
firmware) a measure of throughput can also be derived.

• Inter-arrival time: is the time between the transmission
of two frames by the same station. This metric reflects
the time invested in the contention mechanism.

• Fraction of lost frames: each time a station attempts a
retransmission, the result of the previous transmission is
counted as a failure. Knowing the number of failures and
the total number of transmission attempts, the fraction of
lost frames is computed.

In the following section we show and discuss the results
of the experiments that we performed. In each experiment we
used nodes configured in the same way, e.g., they were all
using our CF-MAC protocol, or CSMA/CA.

V. RESULTS

A. Throughput and Fairness

When comparing both protocols it is useful to look at the
achieved throughput, but also at how the available bandwidth
is distributed among the contenders.

Fig. 5 shows ten independent experiments with increasing
data rates and twelve nodes each. For each x-point, two
separate experiments are shown, one for a network composed
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of only CSMA/CA nodes (right bar) and one for nodes loaded
with our CF-MAC protocol (left bar). Each bar is divided in
boxes which represent the throughput share of a station.

Given that CF-MAC stations are able to construct a
Collision-Free schedule using the Tc(N, r) timer after a suc-
cessful transmission, the channel is used more efficiently.
Whereas CSMA/CA stations waste time recovering from col-
lisions and in contention for the channel.

We can see that the CSMA/CA network achieves less cu-
mulative throughput than CF-MAC for all the tests performed.
Further, the throughput is not evenly distributed among the
contenders. Boxes in each bar represent the throughput of the
corresponding node that we sorted decreasingly top to bottom:
we can clearly see that in the case of CSMA/CA the top
boxes are much taller than the bottom ones, while for the
CF-MAC protocol the boxes are equally shaped. This effect
is underlined in Fig. 6 that shows the min/max throughput
ratio for network setups with increasing number of nodes and
for all the experiments (different rates) that we performed. CF-
MAC with any number of nodes and all tested rates shows that
the throughput is efficiently shared among contenders, whereas
different CSMA/CA network setups (denoted as /CA in Fig. 6)
show an uneven distribution of the available throughput.

B. Inter-arrival Times

CSMA/CA nodes pick B randomly and freeze it when
a transmission is being performed in the channel, which
translates in a variable inter-arrival time; while CF-MAC
stations schedule transmissions according to the predefined
timer (Tc(N, r)). This is made evident by Fig. 7, where
the time between consecutive transmissions varies consider-
ably more for CSMA/CA than for CF-MAC. This suggests
that CSMA/CA nodes on average spend more time in con-
tention and recovering from collisions, also contributing to
the throughput degradation.
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Fig. 7. Inter-arrival Times (normalized to the average of CF-MAC). For each
X-axis point: left boxes represent CF-MAC stations, while the right circles are
CSMA/CA users. Middle circles represent the average among all CSMA/CA
nodes, while higher and lower circles represent the maximum and minimum
respectively. Hovering numbers are the average I.a.t for CF-MAC.

C. Lost Frames

To derive a measure of the average losses per node we
used the values of the two counters added to the firmware:
we counted the number of failed transmissions F (indicated
by the lack of reception of an ACK), successful transmissions
S (when an ACK is received) and the computed the number
of transmission attempts: A = F +S. Fig. 8 shows the losses
ratio (F/A) for CSMA/CA and CF-MAC alongside a reference
curve derived from the model proposed in [24].

CSMA/CA stations suffer from an increased number of
collisions, mostly due to the randomness of the backoff mecha-
nism; whereas CF-MAC nodes enjoy a much reduced number
of collisions due to the implementation of the deterministic
timer, Tc(N, r), after successful transmissions.

In Fig. 8, at higher rates (24, 48 Mb/s) the losses ratio for
CSMA/CA seem to be reduced with respect to the reference
curve. This effect can be caused by a defective CCA mecha-
nism on the cards. Transmissions at these rates are shorter, so
transmitters are less prone to make erroneous inferences about
the channel state. On the other hand, stations at lower rates
should listen to the channel for longer periods of time before
attempting transmission, thus increasing the probability of a
misinterpretation of the channel state.

VI. CONCLUSIONS

CF-MAC is able to construct Collision-Free schedules by
means of using a deterministic timer after successful transmis-
sions, which allows a better use of the available channel time
in WLANs.

In this work it is shown how using a precise schedule for
transmissions allows CF-MAC to greatly reduce the fraction
of collisions in comparison with CSMA/CA. Further, this
reduction of wasted channel time recovering from collisions or
spent in contention is reflected in a better distribution of the
available bandwidth among contenders. Moreover, by using
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a deterministic timer after successful transmissions stations
greatly reduce the variability of time between transmissions
attempts, making it a suitable technique for delay-sensitive
communications.

CF-MAC was tested in a real testbed, using off-the-shelf
hardware and a modified firmware for the wireless cards.
Many real-world un-ideal conditions, like the performance
of the CCA implementation or impractical assumptions like
previous knowledge of the number of contenders for setting
the deterministic timer prevent this specific implementation
from being an adecuate MAC protocol for WLANs.

Nevertheless, in itself this real-world factors are enough
motivation for keep attempting to unveil and enhance the
internal packet scheduling mechanisms of Collision-Free MAC
protocols using deterministic backoffs in WLANs.
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