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Abstract

In this paper, a simple memory limited transmitter for molecular communication is proposed, in which information is encoded
in the diffusion rate of the molecules. Taking advantage of memory, the proposed transmitter reduces the ISI problem by properly
adjusting its diffusion rate. The error probability of the proposed scheme is derived and the result is compared with the lower
bound on error probability of the optimum transmitter. It is shown that the performance of introduced transmitter is near optimal
(under certain simplifications). Simplicity is the key feature of the presented communication system: the transmitter follows a
simple rule, the receiver is a simple threshold decoder and only one type of molecule is used to convey the information.

I. INTRODUCTION

New applications such as smart drug delivery and health monitoring give rise to the importance of molecular communication,
a new paradigm for communication between nanomachines over a short (nanoscale or microscale) range. In molecular
communication, information is carried by molecules, rather than electrons or electromagnetic waves [1], [2]. Several types of
molecular communication have been considered, among them, diffusion based communication, which corresponds to traditional
wireless communication [3], is of great interest, since it does not require any prior communication link infrastructure. In diffusion
based communication, the transmitter nanomachine releases information molecules in the environment. These released molecules
diffuse randomly until they hit the receiver nanomachine. [4], [5]. Due to the random nature of molecular propagation, diffusion
based communication suffers from inter symbol interference (ISI). Several solutions have been proposed to mitigate ISI (e.g. see
[6]–[9]). In [10], a new modulation technique, named Molecular Concentration Shift Keying (MCSK), is suggested. Exploiting
two types of molecules, while MCSK eliminates the interference from the last transmitted symbol and reduces the error
probability, it suffers from interference due to earlier transmissions. A solution based on adding intelligence to receiver is
suggested in [11]. where the receiver stores the last decoded bits in memory to make an estimation of current interference
level, and uses this estimation to adjust the threshold for decoding the current bit. In [12], a linear and time invariant model is
presented and the optimal receiver is derived, under this model. However, this receiver is too complex to be implemented in
practice. In [13], the authors considered a deterministic noiseless diffusion channel with memory, and proposed using different
symbol durations to deal with ISI by taking into account the channel binary concentration state. They then computed the
channel capacity by adapting the Shannon telegraph channel method. In this paper, we propose a simple transmitter which
significantly reduces ISI by adaptively adjusting transmission rates to stabilize the rate of molecules at the receiver, enabling
the use of a simple fixed threshold receiver. To this end, the transmitter exploits memory to keep a partial transmission history,
so that it can estimate the interference rate that will be experienced at the receiver side, in order to determine a proper diffusion
rate for the current transmission. It is shown that the proposed transmitting protocol is near optimal by obtaining a tight lower
bound on the error probability and comparing its performance with the lower bound. The rest of this paper is organized as
follows: the system model is described in Section II and the proposed transmitter is introduced in Section III. In Section
IV, performance bounds are obtained and it is shown that the proposed transmitter is near optimal, and finally, the paper is
concluded in Section V. Throughout this paper all the logarithms are in base e.

II. SYSTEM MODEL

A. Transmitter and Receiver Model

We consider the communication model described in [11]- [10]. Transmission occurs in equal time slots Ts, called the symbol
duration. The input bit stream (b1, b2, · · · ) comprises of i.i.d. Bernoulli(1/2) rv’s. At the beginning of each time slot i, a number
of molecules is released by the transmitter that is approximated as Poisson variable, i.e., Poisson(Xi), where the rate Xi is
determined by the information that the transmitter wishes to transmit. In this work, in contrast to [11]- [10], the transmitter is
an intelligent device consisting of M bits of memory, a transmission function, and a memory updating function, as shown in
Fig. 1. The transmitter produces Xi based on the current information symbol bi and the M bits that are stored in the memory.
The receiver is as simple as possible, it is just a threshold decoder with a fixed threshold. So, all the intelligence is kept in
the transmitter to make the receiver simple.
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Fig. 1. Transmitter Model

B. Channel Model

We consider a diffusion based model for communication. That is, molecules are freely released in the fluid where they
propagate via Brownian motion. Although highly random, Brownian motion is always available, and has the advantage of
zero energy propagation cost [2]. The released molecules continuously diffuse until they hit the receiver, once they reach
the receiver they will be absorbed and removed from the media. Let us denote by Π = [π0, π1, ...] the sequence of hitting
probabilities in consecutive time slots, i.e., πi is the probability that a released molecule at the beginning of the k-th time slot
arrives at the receiver during the k + i-th time slot, i = 0, 1, 2, · · · . In the simple case of one dimensional Brownian motion
in a uniform medium, it is shown that the first arrival time follows an Inverse Gaussian distribution [1] and the vector Π can
be obtained easily (related equations can be found in [11]). There may exist other uninvited sources of molecules of the same
type as our information molecules, which are treated as noise, and is modeled by a Poisson random variable with parameter
λ0. Considering the channel characteristics just described, the channel output in each time slot is influenced by three factors:
(i) Input rate in the current time slot transmission (Xi), (ii) Input rates of previous transmissions (Xi−1, Xi−2, ...), (iii) The
noise parameter λ0. Using the thinning property of Poisson distribution and the fact that sum of independent Poisson rv’s is
itself a Poisson, the channel output is a Poisson rv, and is found in [10] as follows:

Yi ∼ Poisson

(
π0Xi +

∞∑
k=1

πkXi−k + λ0

)
= Poisson(π0Xi + Ii + λ0),

(1)

where Ii denotes the interference term at ith time slot. We say that the channel has memory Mc if

πk = 0, ∀k > Mc. (2)

III. THE ISI PROBLEM AND ADAPTIVE DIFFUSION RATE

Consider a conventional OOK (On-Off Keying) modulator, where the transmitter sends a constant rate of molecules for
bit ‘1’ and nothing for bit ‘0’. The performance of this modulator (which is commonly used in most positive systems like
optical communications) is degraded in diffusion based channels due to the ISI effect.1 This is due to the fact that the rate
of received molecules at the destination depends not only on the current transmission, but also on previously transmitted
bits (or equivalently rates). Fig. 2 shows a sample of the received rate of molecules at the destination. One can realize from
this figure that a constant threshold decoder is not an optimal or near optimal solution for this channel. Even though we
are using only two diffusion rates at the transmitter for bits ‘0’ and ‘1’, the absorption rates at the receiver are not fixed.
We now introduce our simple modulation: we use a constant threshold decoder at the receiver, but to avoid the ISI problem
mentioned above, we modify the OOK strategy by adapting the current transmission rate to the expected value of interference
at the receiver, i.e., for transmitting bit ‘1’, we diffuse less molecules if we expect a high concentration of molecules at the
receiver due to previous transmissions; for bit ‘0’, we send nothing. To achieve the expected absorption rate of molecules at
the receiver, the transmitter needs infinite bits of memory to remember all previously transmitted symbols which affect the
current transmission, in order to estimate the interference level at the receiver side, and hereby determine the rate of molecules
that should be released in the current time slot for bit one. To make the suggested scheme practical, we need to adapt it to
a limited memory system, in which only a few bits of memory is available. As a result, the transmitter cannot estimate the
exact value of the interference Ii in Eq. (1); however, we will see that limited memory systems reach a performance close to
that of unlimited memory. Suppose a transmitter with M bits of memory is available. Our proposed encoder uses the memory
to store the last M transmitted information bits, which indicates the transmitter’s state. A typical transmission function can be
considered as follows: a transmitting rate is assigned to each 2M states of memory, such that if the current input bit is ‘1’, the
rate corresponding to the state is selected for the transmission, and if the current input bit is ‘0’, nothing is transmitted. The
proposed transmitter can be modeled as finite state machine with 2M states. Fig. 3 shows the state diagram for a transmitter
with 2 bits memory, in which Lij i, j ∈ {0, 1} denotes the rate of molecules released, if the input bit is ‘1’ and the transmitter

1A positive system is a channel that only accepts non-negative inputs.



Fig. 2. Sample Received Mean Number of Molecules
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Fig. 3. Transmitter State Diagram

state is Sij i, j ∈ {0, 1}, noting that nothing is transmitted for bit ‘0’. The subindexes i, j in the above notation are equal
to two last transmitted information bits. The only remaining step is to define levels (Lij) such that for each bit ‘1’, we get
close to a constant rate at the receiver. The exact value of previous diffusion rates is not known, but the knowledge of last M
transmitted bits gives us partial information about previously transmitted rates. To clarify the concept, suppose only two bits
of memory are available (M = 2), and the last two transmitted bits are ‘1’ which means we are in state S11, then we are sure
that the last transmitted rate is either L01 or L11 each with probability 1/2, depending on whether the third earlier bit is zero
or one respectively. We can consider the expected value, i.e., (L01 + L11)/2, for the last transmitted rate. For each memory
state Sij i, j ∈ {0, 1}, we can write down the expected value of the rate of molecules that will be received at the destination
conditioned on being on that state, and by setting all expected rates equal to a preselected constant, we get a system of linear
equations. By solving these equations simultaneously, transmitting rates corresponding to different states are obtained, and
hereby the transmission function is determined. The set of equations for a transmitter with two bits memory that stores bits
(Bi−1 = bi−1, Bi−2 = bi−2), assuming the channel has memory equal to Mc (see Eq. 2), is derived as follows: when Bi = 1,
we transmit

Lbi−1,bi−2
=
C − E[Ii|Bi−1 = bi−1, Bi−2 = bi−2]

π0
,

where C is a constant (preselected rate that is expected to be achieved at the destination for each information bit ‘1’) and
E[Ii|Bi−1 = bi−1, Bi−2 = bi−2] is the conditional expected value of interference. Using the fact that Xi−k is a function of
(Bi−k, Bi−k−1, Bi−k−2), we can compute this conditional expected value as follows:

E[Ii|Bi−1 = bi−1, Bi−2 = bi−2]

=

∞∑
k=1

πkE[Xi−k|Bi−1 = bi−1, Bi−2 = bi−2]



= π1E[Xi−1|Bi−1 = bi−1, Bi−2 = bi−2]

+ π2E[Xi−2|Bi−2 = bi−2] +

∞∑
k=3

πkE[Xi−k]

= π1Lbi−1,bi−2/2 + π2(Lbi−2,0 + Lbi−2,1)/4 +

∞∑
k=3

πkE[Xi−k].

Simulation results (Fig. 5) show that a limited memory transmitter with only two bits of memory can reach the performance
of the unlimited memory transmitter, and the performance of our simple system is comparable to the system with memory at
the receiver side introduced in [11], which is more complex. In Section IV, we show that this transmission protocol is near
optimal under certain assumptions.

IV. PERFORMANCE BOUND AND NUMERICAL RESULTS

In this section, we are interested in evaluating the performance of proposed transmission protocol. To understand how
well the proposed scheme performs, we need to compare its bit error probability with that of the transmitter with an optimal
transmission function, i.e., transmitter with minimum error probability. Unfortunately, deriving the optimal transmission function
by minimizing the error probability is not a simple task, particularly when we are dealing with fixed values of memory, since
the decision on the transmitting rate in each time slot affects not only the current time slot, but also all following time slots,
which makes the problem highly complicated. As a result, we provide a combination of partial results, insights and simulation
to make a case for this modulation scheme. We first make an observation in Subsection IV. A where we show that under a
simplifying assumption the optimal transmission function matches the proposed one at all points in the real line except for
possibly one point. In Subsection IV. B we derive a lower bound on the error probability for the special case of channels with
one symbol memory, and we will see that our system performance is close enough to the lower bound. Further, it is shown
that the optimum transmission function must send zero when input Xi is zero, thus confirming our choice for this. Numerical
results are given in Subsection IV. C.

A. Fixed Interference distribution

For now, assume that the transmitter has unlimited memory, so it knows the exact value of the interference rate, Ii, experienced
at the receiver in each time slot. Let us denote the transmission function by f : R+ 7→ R+ which maps the interference rate to
a transmitting rate, such that the bit error probability is minimized. That is for bi = 1, we select Xi = f(Ii), where Ii is the
current level of the interference at the receiver side, and for bi = 0 we transmit nothing, i.e. Xi = 0. It is necessary to assume a
constraint on the average transmission rate for bit one, i.e., if we use the channel n times we should have 1

n

∑n
i=1Xi ≤ K for

some constant K; this should be interpreted as an input power constraint. The distribution of interference itself is determined
by our choice of f . However, let us fix some distribution qI on I and ask for the best function for that distribution. This can
give us some insights about f in general. That is given qI we are interested in a function f such that Eq[X] = Eq[f(I)] = K.
From Eq. (1) for a threshold decoder with threshold equal to T , the error probability is equal to

Pe =
1

2
Pe|0 +

1

2
Pe|1

= EI

[
1

2

∑
y>T

e−I
Iy

y!
+

1

2

∑
y<T

e−I−π0f(I)
(I + π0f(I))y

y!

]
.

(3)

We would like to select f(·) in a way to minimize Eq. (3). Alternatively, we would like to minimize

EI

e−I−π0f(I)
∑

0≤y<T

(I + π0f(I))y

y!

 , (4)

subject to E[f(I)] = K. Using the Lagrange multiplier technique we show in Appendix D that there exists some C > 0 such
that the optimum f(·) is equal to

f(i) =
C − i
π0

,

for all i ≥ 0, except for possibly one particular i∗. Thus, at the transmitter π0f(i) + i is kept constant for almost all possible
values of interference I = i, matching our proposed scheme. This statement holds universally for any arbitrary fixed distribution
on interference. Although we have simplified the original problem, but the results obtained in this section provides insights
about the solution of the original problem.
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Fig. 4. Transmitter State Diagram

B. Lower Bound on Error Probability

In this section, we derive a lower bound on the error probability. To track the dependence of the distribution of the interference
in terms of the transmission function, we restrict the channel to be one with only one symbol memory. i.e., MC = 1 and
πi = 0 for all i ≥ 2. In this case, at time slot j, interference value Ij is equal to π1Xj−1. Here, we also assume that the
released molecules have a higher probability of arriving at the receiver in their transmission time slot compared to the next
time slot, i.e., π0 > π1 ≥ π2 = π3 = · · · = 0. The transmitter works as before: if the input bit is ‘1’, the transmission function
determines the rate of released molecules, and if the input bit is ‘0’, nothing is transmitted. In this section, the transmitter is
assumed to know the exact value of the interference.

Remark 1. One might consider releasing a constant rate of molecules for bit ‘0’ instead of nothing. We prove in Appendix C
that, in an optimal transmission function, nothing should be transmitted for bit ‘0’.

Since the channel is assumed to have memory one, any ‘0’ input would clear the channel memory. Taking this point into
consideration, we model the transmitter as an infinite state machine, with each state S

′

i , i ∈ {0, 1, ..}, the subscript i describes
how many ‘1’s were transmitted in sequence after a memory reset via a ‘0’ bit., i.e. the last i+ 1 bits at the current time slot
j are (bj−i, · · · , bj) = (0, 1, 1, · · · , 1). The transmitter state diagram is shown in Fig. 4.
Let us denote by ai the interference rate at the receiver side, when the transmitter is in state S

′

i . The choice of the transmission
function determines the value of ai, i ∈ 1, 2, ... More precisely, assume that in time slot j, we are in state S

′

i and the interference
value is Ij = ai. If bj = 0, we send nothing and the state is reset to S

′

0. We send nothing in this slot and the channel memory,
Ij+1 = π1Xj = 0. Thus, a0 = 0. However if bj = 1, we transmit Xj = f(ai) and move from state S

′

i to S
′

i+1. The interference
value at state S

′

i+1 will be then equal to Ij+1 = π1Xj = π1f(ai). Then,

ai+1 = π1f(ai).

From Fig. 4, it can be easily shown that the probability of being in each state S
′

i equals Pi =
(
1/2
)i+1

for i ∈ {0, 1, ..}. To
determine the optimum transmission function, we must first compute the bit error probability, which, conditioned on the value
of the state, is equal to

Pe =
1

2
Pe|1 +

1

2
Pe|0

=
1

2

∞∑
i=0

Pi

e−(ai+π0π1 ai+1) ∑
y≤T

(ai +
π0
π1
ai+1)y

y!


+

1

2

∞∑
i=0

Pi

e−ai ∑
y>T

ayi
y!

 ,
(5)

where Pi =
(
1/2
)i+1

was the probability of being in state S
′

i , and π0

π1
ai+1 = π0f(ai) equals the average received molecules

due to the current transmitted bit ‘1’, when we are in state S
′

i . We are interested in minimizing Eq. (5) over all ai ≥ 0 subject
to

E[X] =

∞∑
i=0

Pif(ai) =

∞∑
i=0

Piai+1/π1 = K,

where K is the power constraint defined in Eq. (3). Since the constraint is linear, the Karush-Kuhn-Tucker regularity conditions



hold and can be written down as

Pie
−ai−

π0
π1

ai+1

(
ai +

π0
π1
ai+1

)T
T !

+ Pi−1
π0
π1
e
−ai−1−

π0
π1

ai

(
ai−1 +

π0
π1
ai

)T
T !

− Pie−ai
aTi
T !

= −µi + λPi for i = 1, 2, ...

(6)

Finding the ai’s satisfying these equations is equivalent to finding the optimum transmission function, and as a result, the
minimum error probability that can be achieved. A closed form solution for these equations does not exist. Instead of finding
the exact value of the minimum error probability, we derive a lower bound. To do so, we consider only the dominant terms
contributing to the error probability which are the terms containing a1 and a2. Let us define P(a1, a2) as below:

P(a1, a2) :=
1

2
P0e
−π0π1 a1

T∑
y=0

(
π0

π1
a1

)y
y!

+

1

2
P1e
−a1−π0π1 a2

T∑
y=0

(
a1 + π0

π1
a2

)y
y!

+

1

2
P1e
−a1

∞∑
y=T+1

ay1
y!

+
1

2
P2e
−a2

∞∑
y=T+1

ay2
y!
.

(7)

From Eq. (5) and Eq. (7) it is clear that (since a1, ..., an ≥ 0) P(a1, a2) ≤ Pe. It can be easily observed that

min
a1,a2≥0

P(a1, a2) ≤ min
aj≥0 ,

∑
Pjaj+1≤π1k

Pe.

Minimizing P over non-negative values of a1 and a2 requires solving ∇P(a1, a2) = 0, which results in equations of the form
of Eq. (6) and a closed form solution for them does not exit. However, we can prove some properties for the solutions. Using
these properties, we develope a simple tight lower bound on P(a1, a2) which is also a lower bound on the minimum error
probability. In the rest of this section, we first present some properties for the solutions of ∇P(a1, a2) = 0 in Theorem 1 and
then the lower bound is demonstrated in Theorem 2.

Theorem 1. Given a fixed threshold T , let θ be the unique solution of the following equation:

log
(
2θT+1

)
θ − 1

= T. (8)

Then for all π0

π1
greater than θ and for all solutions of ∇P(a1, a2) = 0, we have that a2 is less than T . Moreover all of the

solutions of ∇P(a1, a2) = 0 in the interval 0 < a1, a2 < T satisfy

log
(

2(π0

π1
)T+1

)
π0

π1
− 1

< a1.

Also, the function P(a1, a2) does not have any local minimum at the boundary points a1 = 0 or a2 = 0.

The proof is given in Appendix A. Using the bound on a1 given in Theorem 1, we can find a lower bound on the minimum
error probability, which is given in Theorem 2.

Theorem 2. Given a threshold greater than four molecules, i.e. T ≥ 4, we have

P(a1, a2) > L

 log
(

2(π0

π1
)T+1

)
π0

π1
− 1

,
T

π0

π1
+ 1

 ,



Fig. 5. Proposed System Performance. Parameters for this figure: average transmitted molecules per bit = 80, noise rate λ0 = 10, channel memory = 10.

for any a1, a2 > 0 and any π0

π1
> θ, where θ was given in Eq. (8). The function L is defined as follows:

L(a1, a2) :=e−a1
aT1
T !

(
1

8

a1
T + 1

+
1

8π0

π1

)
+

e−a2
aT2
T !

(
1

16

a2
T + 1

+
1

16π0

π1

− 1

16(π0

π1
)2

)
.

(9)

The proof is given in Appendix B. Numerical results show that the lower bound given in Eq. (9) is quite tight and the error
probability of our simple proposed transmitter is very close to the bound for typical values of channel parameters.

C. Numerical Results

In this section, we evaluate the performance of our proposed scheme. For all results presented in this section, the molecule
hitting probabilities are calculated as in [11]. In Fig. 5, the performance of the proposed transmitter is depicted versus the
symbol rate for different number of transmitter bit memory. For the comparisons, the error probability plots for the transmitter
with infinite memory (known interference), the conventional transmitter with simple threshold decoder and with the decoders
introduced in [11] are included. As it can be seen, with only two bits of memory in the transmitter, we can reach the
performance of an unlimited memory system, which is aware of the entire transmission history. From this figure, if the ISI
is totally neglected, the error probability is high and the system is unreliable. The system with memory at the receiver [11],
outperforms our system, but the current proposed system is superior in the sense of complexity. Fig. 23 shows the derived lower
bound versus the transmission symbol rate. For comparison, the error probability of the proposed system and the minimum
error probability obtained by minimizing Eq. (5) numerically are included as well. As can be seen, the proposed system is near
optimal and the lower bound is tight. In Fig. 7, the performance of proposed transmitter is compared with the conventional
OOK transmitter for different distances between transmitter and receiver. From this Fig. as the distance increases, the channel
memory also increases, and as a result the performance degrades.

V. CONCLUTION

In this paper, we focused on the ISI problem in diffusion based molecular communication. We proposed a simple system
consisting of a transmitter with varying molecular transmission rate and a simple threshold decoder. We observed that using
a limited memory system we can reach a performance close to that of unlimited memory. Also we showed that under certain
simplifications our transmitter is near optimal.
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APPENDIX A
PROOF OF THEOREM 1

Considering Eq. (7), ∇P(a1, a2) = 0 leads to:

2
π0
π1
e−

π0
π1
a1

(
π0

π1
a1

)T
T !

+ e−a1−
π0
π1
a2

(
a1 + π0

π1
a2

)T
T !

= e−a1
aT1
T !

(10)

2
π0
π1
e−a1−

π0
π1
a2

(
a1 + π0

π1
a2

)T
T !

= e−a2
aT2
T !
.

(11)

Proof of the inequality on a1 when a1 < T : Assume that ∇P(a1, a2) = 0 and a1 < T . From Eq. (10) we have that

2
π0
π1
e−

π0
π1
a1

(
π0

π1
a1

)T
T !

< e−a1
aT1
T !
. (12)

The above equation can be simplified as follows:

2
π0
π1
e(1−

π0
π1

)a1

(
π0
π1

)T
< 1. (13)

which implies that
log
(

2(π0

π1
)T+1

)
π0

π1
− 1

< a1.

Proof of the inequality a2 < T : Assume that ∇P(a1, a2) = 0. We would like to prove that a2 < T . We prove this by
contradiction. If a2 ≥ T , then a1 + π0

π1
a2 ≥ T . Since e−x x

T

T ! is a decreasing function for x ≥ T , from Eq. (11), we have that

2
π0
π1
e−

π0
π1
a2

(
π0

π1
a2

)T
T !

≥ 2
π0
π1
e−a1−

π0
π1
a2

(
a1 + π0

π1
a2

)T
T !

= e−a2
aT2
T !
.

Hence,

2

(
π0
π1

)T+1

≥ ea2(
π0
π1
−1).

Thus,
log
(

2(π0

π1
)T+1

)
π0

π1
− 1

≥ a2.

We will arrive at a contradiction if
log
(

2(π0

π1
)T+1

)
π0

π1
− 1

< T.

The left hand side is a decreasing function in terms of π0

π1
. Furthermore, at π0

π1
= θ given in Eq. (8) we have equality. This

proves both the uniqueness of the solution to Eq. (8) and the desired result for π0

π1
> θ. Proof for the boundary cases: To show

that a minimum cannot occur at the boundary, i.e., a2 = 0 or a1 = 0, let us consider the gradient. For a2 = 0

∂P

∂a2
= −P1

2

π0
π1
e−a1

(a1)T

T !
< 0, (14)

and for a1 = 0

∂P

∂a1
= −P1

2
e−

π0
π1
a2

(π0

π1
a2)T

T !
< 0. (15)



APPENDIX B
PROOF OF THEOREM 2

Proof: Theorem 1 shows that if a2 is an extremum point for P(a1, a2), it must be in [0, T ] for π0

π1
> θ. Furthermore, at

a2 = 0 the minimum does not occur. Therefore, we need to consider the cases of finite a2 ≤ T and the boundary case of
a2 →∞. Here we consider three cases:

Case 1: The function P(a1, a2) has a global minimizer with a1 ∈ [0, T ] and a2 ≤ T ; at this minimizer L
(

log(2(
π0
π1

)T+1)
π0
π1
−1 , T

π0
π1

+1

)
is a lower bound on minimum error probability;

Case 2: The function P(a1, a2) has a global minimizer with a1 > T and a2 ≤ T ; then P(a1, a2) is again bounded from below
by the above lower bound, assuming that T > 4;

Case 3: The minimum of P(a1, a2) occurs when a2 converges to infinity. Here again, the lower bound holds, assuming that
T > 2.

Proof of case 1: Each summation on y in P, in Eq. (7), is over positive terms. So one can consider only one of the terms in
summation instead of all the terms to get a lower bound. Thus, by considering the terms y = T in the first two summations
and y = T + 1 in the third and fourth summations, we have

1

2
P0e
−π0π1 a1

(π0

π1
a1)T

T !
+

1

2
P1e
−a1−π0π1 a2

(a1 + π0

π1
a2)T

T !
+

1

2
P1e
−a1 aT+1

1

(T + 1)!
+

1

2
P2e
−a2 aT+1

2

(T + 1)!
≤ P(a1, a2). (16)

Using Eq. (10), Eq. (11) and substituting the values of Pi =
(
1
2

)i+1
in Eq. (16) we get:

e−a1
aT1
T !

(
1

8

a1
T + 1

+
1

8π0

π1

)
+

e−a2
aT2
T !

(
1

16

a2
T + 1

+
1

16π0

π1

− 1

16(π0

π1
)2

)
≤ P(a1, a2).

(17)

For (a1, a2) ∈ [0, T ]2, the LHS of Eq. (17) is the sum of two increasing functions of a1 and a2 respectively. So if we find
lower bounds on a1 and a2, and substitute in Eq. (17), we get a lower bound on minimum error probability. To that end, from
Theorem 1, we know that a1 is bounded from below by log(2(π0

π1
)T+1/(π0

π1
− 1). From Eq. (11) a lower bound on a2 can be

obtained as follows: using the fact that 2π0

π1
> 1 in Eq. (11) implies that

e−a1−
π0
π1
a2

(a1 + π0

π1
a2)T

T !
< e−a2

aT2
T !
. (18)

Due to the “increasing/decreasing property” of e−xxT /T ! for x < T and x > T , we get that a1 + π0

π1
a2 > T as a2 ≤ T .

Furthermore, since g(x) = e−xxT /T ! has the property that g(T+α) ≥ g(T−α) for all α ∈ [0, T ] we get that a1+ π0

π1
a2−T >

T − a2, or

a1 + (
π0
π1

+ 1)a2 > 2T, (19)

Using the fact that a1 ≤ T , we get the following bound on a2:

T ≥ a2 >
2T − a1
π0

π1
+ 1

≥ T
π0

π1
+ 1

. (20)

Let us define

L(x, y) :=e−x
xT

T !

(
1

8

x

T + 1
+

1

8π0

π1

)
+

e−y
yT

T !

(
1

16

y

T + 1
+

1

16π0

π1

− 1

16(π0

π1
)2

)
.

(21)

Thus, From Eq. (17) and Eq. (21), by substituting the lower bounds on a1 and a2 in Eq. (17), the LHS becomes equal to L
and hence

L

(
log(2(π0

π1
)T+1)

π0

π1
− 1

,
T

π0

π1
+ 1

)
≤ P(a1, a2), (22)



is a lower bound on P(a1, ..., an).
Proof of case 2: In order to show that the lower bound obtained in the first case still holds if the minimizer value for a1 is

greater than T , we show that for all values of a1 > T and T > 4, P(a1, a2) is greater than the lower bound in Eq. (22). To
that end, we derive a new lower bound on P(a1, a2), when a1 is greater than T , i.e., we find some P̃ (T ) ≤ P(a1, a2). Note
that the lower bound depends only on T . We also find an upper bound on L in terms of T , i.e.

L̃ (T ) ≥ L

(
log(2(π0

π1
)T+1)

π0

π1
− 1

,
T

π0

π1
+ 1

)
.

The expression P̃ (T ) is an increasing function of T , whereas L̃ is a decreasing function of T . Furthermore, P̃ (T ) = L̃ at
T ∗ = 4.87. Thus, we can conclude that for T > T ∗ and for all values of a1 > T , P(a1, a2) is greater than lower bound in Eq.
(22). To get a lower bound on P(a1, a2) in Eq. (7), let us consider the third term and neglect the others. Among all values of
a1 > T , the third term is minimized at a1 = T , so we can write:

P̃ (T ) :=
1

2
P1e
−T

∞∑
y=T+1

T y

y!
< min
a2>0,a1>T

P(a1, a2). (23)

Now we calculate an upper bound on L(A,B) for A =
log
(
2(
π0
π1

)T+1
)

π0
π1
−1 and B = T

π0
π1

+1
. The following chain of inequalities

hold:

L(A,B) = e−A
AT

T !

[
1

8

A

T + 1
+

1

8π0

π1

]
+ e−B

BT

T !

[
1

16

B

T + 1
+

1

16π0

π1

− 1

16(π0

π1
)2

]
(i)
< e−T

(T )T

T !

[1

8

A

T + 1
+

1

8π0

π1

]
+ e−T/2

(T/2)T

T !

[ 1

16

B

T + 1
+

1

16

( 1
π0

π1

− 1
π0

π1

2

)]
(ii)
< e−T

(T )T

T !

1

4
+ e−T/2

(T/2)T

T !

[ 1

32
+

1

16
× 1

4

]
=

1

4
e−T

(T )T

T !
+

3

64
e−T/2

(T/2)T

T !

: = L̃ (T ) ,

(24)

where inequality (i) holds because e−xxT /T ! is an increasing function of x for x < T , and the fact that A < T and B < T/2;
inequality (ii) results from the fact that

(
1/π0

π1
− 1/(π0

π1
)2
)
< 1/4, A < T and B < T/2. The lower bound in Eq. (23) is an

increasing function of T over integer values and the upper bound in Eq. (24) is a decreasing one, so it can be concluded that
the upper bound is less than the lower bound, for T > T ∗ ∼= 4.87, where T ∗ is the solution for Eq. (25).

1

2
P1e
−T

∞∑
y=T+1

T y

y!
=

1

4
e−T

(T )T

T !
+

3

64
e−T/2

(T/2)T

T !
. (25)

Thus, we have shown that for T > 4 and for values of a1 > T , P(a1, a2) is greater than L(A,B).
Proof of case 3: We show that as a2 converges to infinity, the minimum value for P(a1, a2) in Eq. (7) is greater than the

lower bound in Eq. (22). Eq. (7) is sum of four poisson CDFs. At a2 → ∞ the second term equals zero and the last term
equals 1

2P2 = 1
16 ; the two other terms are functions of a1 and the sum is minimized at

a∗1 =
log
(

2(π0

π1
)T+1

)
π0

π1
− 1

.

So the minimum value for P(a1, a2) at a2 →∞ equals:

1

4
CDFPoisson(T, a∗1) +

1

8
(1− CDFPoisson(T, a∗1)) +

1

16
, (26)

where CDFPoisson(T, a∗1) =
∑T
y=0 e

−a∗1 a1
y

y! . From Eq. (26) we see that the minimum value for P(a1, a2) is always greater
than 1

16 at a2 → ∞ and from Eq. (24) we find out that for T > 2 the value of L̃ is less than 1
16 , so for all values of T > 2

the lower bound, L(A,B), still holds even if the minimizer value for a2 converges to ∞ and it completes the proof.



APPENDIX C
DOES SENDING A CONSTANT VALUE FOR BIT ‘0’ IMPROVES THE PERFORMANCE?

Theorem 3. Among all transmitters which send a constant rate for bit ‘0’, the optimal one sends nothing for bit ‘0’

Proof: Assuming a constant rate of transmission for bit ‘0’, we are interested in minimizing error probability, which can
be calculated similar to Eq. (5). We have

Pe(a0, a1, a2, ...) =
1

2
Pe|1 +

1

2
Pe|0 =

1

2

∞∑
i=0

pi

e−(ai+π0π1 ai+1) ∑
y≤T

(ai +
π0
π1
ai+1)y

y!

+

1

2

∞∑
i=0

pi

e−(ai+π0π1 a0) ∑
y>T

(ai + π0

π1
a0)y

y!

 ,
(27)

where a0 represents the interference experienced at the receiver if the last transmitted bit is ‘0’. In order to prove the theorem,
we show that for the values of a0 greater than 0, the necessary KKT conditions are not satisfied. If we write the KKT conditions,
we will have:

P0e
−a0−

π0
π1

a1

(
a0 +

π0
π1
a1

)T
T !

−

P0(1 +
π0
π1

)e−(1+
π0
π1

)a0

(
(1 + π0

π1
)a0

)T
T !

−

∞∑
i=1

Pi
π0
π1
e−ai−

π0
π1
a0

(
ai + π0

π1
a0

)T
T !

= −µ0 + λP0.

(28)

Moreover,

Pie
−ai−

π0
π1

ai+1

(
ai +

π0
π1
ai+1

)T
T !

+

Pi−1
π0
π1
e
−ai−1−

π0
π1

ai

(
ai−1 + π0

π1
ai

)T
T !

−

Pie
−ai−π0π1 a0

(
ai + π0

π1
a0

)T
T !

= −µi + λPi for i = 1, 2, · · · .

(29)

Using Eq. (29), we show that µ0 in Eq. (28) cannot be zero, implying that a0 equals zero in the optimum solution. Let us
take a summation over i in both sides of Eq. (29). We get

P0
π0
π1
e−a0−

π0
π1
a1

(
a0 + π0

π1
a1

)T
T !

−

∞∑
i=1

Pie
−ai−π0π1 a0

(
ai + π0

π1
a0

)T
T !

=

λ

∞∑
i=1

Pi −
∞∑
i=1

µi −
∞∑
i=1

Pi(1 +
π0
π1

)e−ai−
π0
π1
ai+1

(
ai + π0

π1
ai+1

)T
T !

.

(30)

Since
∑∞
i=1 Pi = 1/2, we know that the LHS of Eq. (30) is less than λ/2. Therefore, by comparing Eq. (28) and Eq. (30) we



can write

LHS of Eq. (28) = P0e
−a0−

π0
π1

a1

(
a0 +

π0
π1
a1

)T
T !

−

∞∑
i=1

Pi
π0
π1
e−ai−

π0
π1
a0

(
ai + π0

π1
a0

)T
T !

−

P0(1 +
π0
π1

)e−(1+
π0
π1

)a0

(
(1 + π0

π1
)a0

)T
T !

≤ LHS of Eq. (30) = P0
π0
π1
e−a0−

π0
π1
a1

(
a0 + π0

π1
a1

)T
T !

−

∞∑
i=1

Pie
−ai−π0π1 a0

(
ai + π0

π1
a0

)T
T !

≤ λ

2
= λP0.

(31)

We have shown that the LHS of Eq. (28) is less than λP0, so we can conclude that µ0 6= 0 which means in all points satisfying
KKT condition we should have a0 = 0 or equivalently we should send nothing for bit ‘0’.

APPENDIX D
LOOKING INSIDE MINIMUM SOLUTION FOR EQ. (4)

We are interested in minimizing Eq. 4 subject to E[f(I)] = K. More specifically, for simplicity, let us assume that I is a

discrete R.V., taking values a1, a2, · · · , ar ≥ 0 with probabilities p1, · · · , pr where
∑
j pj = 1. Let f(aj) =

bj
π0
≥ 0, then we

want to minimize
r∑
j=1

pj

e−aj−bj ∑
0≤y<T

(aj + bj)
y

y!

 (32)

over all bj ≥ 0 subject to
∑
j pjbj = π0K. Since the constraint is linear, regularity conditions for KKT hold and from the

KKT equations we can obtain:

pje
−aj−bj (aj + bj)

T

T !
= −µi + λpj (33)

where µibi = 0, µi ≥ 0. The function e−xxT /T ! is increasing in [0, T ] and decreasing from [T,∞]. Therefore, e−xxT /T ! = λ
has two solutions C1 and C2 one of which is less than T and the other greater than T . Thus, assuming that bi > 0, for some
constant λ ≥ 0, one of the following holds:

• bj = 0 and e−aj
aTj
T ! ≤ λ.

• aj + bj = α1 < T where e−α1 α
T
1

T ! = λ.
• aj + bj = α2 > T where e−α2 α

T
2

T ! = λ.
In this Appendix, we show that the minimization problem described in Eq. (32) has two solutions. First we show that there
does not exists more than one value aj which maps to bj = C1 − aj . Assume it is not true and for some j1, j2 we have
aj1 + bj1 = aj2 + bj2 = C1 where bj2 > 0. Let us increase bj1 by ε/pj1 and decrease bj2 by ε/pj2 in Eq. (32), as a result

the constraint on the average transmission rate, i.e.,
∑
j pj

bj
π0

= K is kept constant. The first derivative of function we are

minimizing in Eq. (32), with respect to ε is

−
[
e−C1−ε/pj1 (C1 + ε/pj1)T

T !

]
+[

e−C1+ε/pj2
(C1 − ε/pj2)T

T !

] (34)

which is zero at ε = 0 (both terms are equal to λ). The second derivative at zero is

1

pj1
λ
C1 − T
C1

+
1

pj2
λ
C1 − T
C1

(35)



which should be non-negative; but since C1 is less than T, it is negative. Thus, this is a contradiction, indicating that aj+bj = C1

does not happen for two js. So at most one point is mapped to C1. On the other hand, if aj1+bj1 = aj2+bj2 = C2, the second
derivative is always non-negative at zero and if we form the Hessian matrix it can be shown that it is positive semi-definite
with all eigenvalues non-negative; Thus, ∀j ∈ [1, 2, ..., r] : aj + bj = C2 is a local minimum. That is the transmitting function
bj = f(aj) = C2 − aj , the proposed scheme, is locally optimum. Assume that for some j1 we have aj1 + bj1 = C1 and for
some j2, aj2 + bj2 = C2. Using the same method as for the previous case, it can be shown that a necessary condition for
being a local minimum is

pj2
pj1
≤ C1

C2

C2 − T
T − C1

(36)

We have shown that C1

C2

T−C2

C1−T < 1. Thus,
pj2 < pj1

As has been shown above, only one j can be mapped to C1. So in addition to the case that all js are mapped to C2 (proposed
scheme), there may exist other local minimums in which the largest pj is mapped to C1 , i.e., f(aj) = C1 − aj , and other
pjs are mapped to C2 , i.e., bi = C2 − ai, for all i 6= j.
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