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Abstract

Zero-Forcing (ZF) has been considered as one of the potential practical precoding and detection method for

massive MIMO systems. One of the most important advantages of massive MIMO is the capability of supporting a

large number of users in the same time-frequency resource, which requires much larger dimensions of matrix

inversion for ZF than conventional multi-user MIMO systems. In this case, Neumann Series (NS) has been

considered for the Matrix Inversion Approximation (MIA), because of its suitability for massive MIMO systems and

its advantages in hardware implementation. The performance-complexity trade-off and the hardware implementation

of NS-based MIA in massive MIMO systems have been discussed.In this paper, we analyze the effects of the

ratio of the number of massive MIMO antennas to the number of users on the performance of NS-based MIA.

In addition, we derive the approximation error estimation formulas for different practical numbers of terms of

NS-based MIA. These results could offer useful guidelines for practical massive MIMO systems.

I. INTRODUCTION

Massive Multiple-Input Multiple-Output (MIMO) systems were firstly introduced in [1], and have drawn

great interest form both academia and industry. In such systems, each Base Station (BS) is equipped with

dozens to hundreds of antennas to serve tens of users in the same time-frequency resource. Therefore, they

can achieve significantly higher spatial multiplexing gains than conventional multi-user MIMO systems,

which offers one of the most important advantages of massiveMIMO systems, the potential capability to

offer linear capacity growth without increasing power or bandwidth [1]–[4].
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It has been shown that, for massive MIMO systems where the number of antennasM , e.g.,M = 128,

is much larger than the number of served usersK, e.g.,K = 16, [2], [4], Zero-Forcing (ZF) precoding

and detection can achieve performance very close to the channel capacity for the downlink and uplink

respectively [2]. As a result, ZF has been considered as one of the potential practical precoding and

detection method for massive MIMO systems [2], [4]–[6].

For the hardware implementation of ZF, despite of the very large number ofM , the main complexity

is the inverse of aK ×K matrix [2], [7], [8]. Unfortunately, for massive MIMO systems, althoughK is

much smaller thanM , it is still much larger than conventional multi-user MIMO systems. As a result, in

this case, the computation of the exact inversion of theK×K matrix could result in very high complexity

[8], which may cause large processing delay so that the demands of the channel coherence time is not

met. Due to this reason, Neumann Series (NS) has been considered to carry out the Matrix Inversion

Approximation (MIA), because it is well suited for massive MIMO systems and it is advantageous for

hardware implementation [2], [7], [8].

Despite of the advantages, some potential application issues of the NS-based MIA have also been

identified. Firstly, for a finiteM/K ratio, the NS may not converge, resulting the failure of the algorithm

[2], [7]. WhatM/K ratio could offer high convergence probability is still notclear. Secondly, for the NS-

based MIA to achieve good performance with quick convergence, theK×K matrix needs to be diagonally

dominant [8]. In order to satisfy this condition,M ≫ K is required [2], [8]. Similarly, whatM/K ratio

could provide high probability of diagonally dominant is also not clear. Moreover, with a larger number

of terms, the NS-based MIA offers closer performance to the exact inversion [7], [8]. However, the larger

number of terms results in more processing cycles. Hence, for practical hardware implementation, the

number of terms cannot be very large. Although the approximation error analysis was carried out and a

residual error upper bound of the NS-based MIA was derived [8], the approximation error analysis with

high accuracy has not been derived.

In this paper, we address the three problems listed above. Specifically, we firstly derived aM/K ratio

condition that offers high convergence probability. Then,we derived anotherM/K ratio condition that

provides high probability for theK × K matrix to be diagonally dominant. Finally, we carry out the

approximation error analysis with high accuracy for practical numbers of terms for the NS-based MIA in

hardware implementation.

The remainder of this paper is organized as follows. In Section II, the basis of the NS-based MIA in
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massive MIMO systems is briefly reviewed. TheM/K ratio condition that provides high convergence

probability is derived in Section III. Then, anotherM/K ratio condition that offers high diagonally

dominant probability for theK × K matrix is derived in Section IV. In Section V, the approximation

error analysis with high accuracy for practical numbers of terms for the NS-based MIA is carried out.

Finally, after a discussion in Section VI, conclusions are drawn in Section VII.

II. BASIS OF NS-BASED MIA IN MASSIVE MIMO SYSTEMS

Consider a massive MIMO wireless system where the BS is equipped withM antennas to serveK

single-antenna users in the same time-frequency resource.Then, for the uplink, theM×K channel matrix

is represented byH = [hmk], wherehmk denotes the channel coefficient between themth antenna and

the kth user, withm = 1, . . . ,M , andk = 1, . . . , K. Similarly to [2], [7], [8], the analysis in this paper

assumes that thehmk elements are in uncorrelated Rayleigh flat fading, i.e., independent and identically

distributed (i.i.d.) zero-mean unit-variance complex Gaussian variables. Note that, for the Time-Division

Duplexing (TDD) mode, due to the channel reciprocity, the downlink has the same channel matrixH as

the uplink, as long as the transmission duration is within the channel coherence time [1]–[6].

In order to carry out ZF precoding for the downlink or the ZF detection for the uplink, the pseudo-inverse

of H needs to be calculated [2], [4]–[6], which is written as

H
† =

(

H
H
H
)−1

H
H. (1)

Let G = H
H
H. Then, in (1), despite of the very large number ofM , e.g., 256, in massive MIMO

systems, the main complexity of the hardware implementation lies in the inversion of theK ×K matrix

G [2], [7], [8]. To exploit the large spatial multiplexing gains of massive MIMO systems, although much

smaller thanM , the number ofK is much larger than conventional multi-user MIMO systems, e.g.,

K = 16. As a result, the complexity of calculatingG−1 may be too high for hardware implementation.

To address this issue, NS has been considered to carry out theMIA, because it is advantageous in hardware

implementation and it is suitable for massive MIMO systems [2], [7], [8]. Specifically, it can be written

as

G
−1
N ≈

N−1
∑

n=0

(IK −ΘG)n Θ, (2)

whereN denotes the number of terms used in the NS, andΘ is aK ×K diagonal matrix. Note that for
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(2) to work, the requirement below has to be satisfied

lim
n→∞

(IK −ΘG)n → 0K . (3)

Note thatG is a complex central Wishart matrix because the elements ofH are i.i.d. complex Gaussian

random variables [9]. Letα = M/K. As K andM grow, as derived in [10], the largest and the smallest

eigenvalues ofG converge respectively to

λmax (G) → M

(

1 +
1√
α

)2

,

λmin (G) → M

(

1− 1√
α

)2

. (4)

As a result, ifΘ is chosen as [2], which is

Θ =
α

M (1 + α)
IK =

1

M +K
IK , (5)

then,

λmax (ΘG) → 1 +
2
√
α

1 +
√
α
,

λmin (ΘG) → 1− 2
√
α

1 +
√
α
. (6)

Therefore, the eigenvalues of(IK−ΘG) lie approximately in the range of[−2
√
α/(1+α), 2

√
α/(1+α)]

[2], [7]. Since 2
√
α/(1 + α) ≤ 1 whenα ≥ 1, the convergence of (3) is satisfied with the choice (5).

Moreover, whenα is very large,2
√
α/(1+α) → 0, which means that (3) converges very quickly. Hence,

a small number ofN in (2) can offer close performance to the exact inverse.

Unfortunately, for finiteM andK values, the eigenvalues of the productΘG for a particular channel

realization can lie outside the range of[−2
√
α/(1+α), 2

√
α/(1+α)] [2], [7], which results in the failure

of (3). To address this issue, an attenuation factorδ where0 < δ < 1 was introduced in [2], so (5) changes

to

Θ =
δ

M +K
IK . (7)

However, the proper choice ofδ is hard to be determined. On the one hand, ifδ is too large, the non-

convergence issue still exists. On the other hand, ifδ is too small, the convergence speed becomes very

slow, so the number ofN needs to be very large to offer a good MIA, increasing the burden of the
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hardware implementation.

Instead of (7), anotherΘ was applied in [7], [8], which achieves a better MIA [7]. Specifically, G is

decomposed as

G = D+ E, (8)

whereD is a diagonal matrix including the diagonal elements ofG, andE is a hollow matrix including

the off-diagonal elements ofG. Then,Θ is chosen as

Θ = D
−1. (9)

To achieve a good MIA with quick convergence, (9) requires that G is a Diagonally Dominant Matrix

(DDM) [7], [8], i.e.,

|gii| >
∑

j,j 6=i

|gij|, i, j = 1, . . . , K. (10)

The performance-complexity trade-off and hardware implementation of the NS-based MIA employing (9)

have been discussed for the downlink and uplink in [7] and [8]respectively. In both cases, the NS-based

MIA employing (9) was considered as a promising and practical method for massive MIMO systems. As

a result, the analysis carried out in this paper is based on the choice of (9).

As mentioned in Section I, there still some issues on the application of (9) for finiteM andK values.

Firstly, it is unclear that whatα can offer high convergence probability. Secondly, it is unclear that whatα

can achieve high probability forG to be diagonal dominant. Moreover, more accurate approximation error

analysis for practicalN values is needed. In the next sections, the aforementioned issues are addressed.

III. CONVERGENCE ANDα

According to the theory of matrix power series [9], for aK ×K matrix B, the productBN converges

to 0K only when the spectral radius ofB, denoted byρ(B), i.e., the maximum modulus of eigenvalues

of B, is less than1. Then, for the choice of (9), a good MIA of (2) requires

ρ
(

IK −D
−1
G
)

< 1. (11)

Since the elements ofH are i.i.d. zero-mean unit-variance complex Gaussian random variables, when the

number ofM is large, the diagonal elements ofD approach toME{|hkk|2} = M by the law of large
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numbers [1], [2], [4]. Therefore, the diagonal matrixD can be replaced byMIK , Then, the condition

(11) changes to

|M − λ (G)| < M ⇒ 0 < λ (G) < 2M. (12)

As G is a positive-definite matrix [9], its eigenvalues are all larger than0 [9]. As a result, (12) is equivalent

to

λmax(G) < 2M. (13)

Note thatG = H
H
H is a complex central Wishart matrix [9], and the distribution of λmax(G) is

provided in [11] as

P (λmax(G) < x) =
CΓK (K)

CΓK (M +K)
xKM

× 1F1 (M ;M +K;−xI) , (14)

wherex is a non-negative number. The complex multivariate gamma function CΓp(a) is defined as

CΓp (a) = πp(p−1)/2

p
∏

i=1

Γ [a− i+ 1] , (15)

where p is a positive integer,a is a complex-valued number, andΓ[a] is the gamma function. The

hypergeometric function1F1(M ;M +K;−xI) is

1F1 (M ;M +K;−xI) =
∞
∑

k=0

∑

κ

[M ]κ
[M +K]κ

Cκ (−xI)

k!
. (16)

The details of[M ]κ andCκ(−xI) in (16) can be found in [11]. Based on (14), the probability of(13) can

be directly derived. However, (14) includes the summation of infinite terms in (16) which has extreme

complexity, so it cannot provide a closed-form convergencecondition of (13) in terms ofα.

Fortunately, based on (4), the condition of (13) changes to

M

(

1 +
1√
α

)2

< 2M. (17)

Based on (17), a high probability convergence condition in terms ofα is derived as

α >
1

(√
2− 1

)2 ≈ 5.83. (18)

With (18), the maximum possible number ofK can be found for a specific number ofM to achieve a
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Fig. 1. The maximumK values for differentM values that satisfy (18)

TABLE I
TYPICAL M VALUES WITH THEIR ASSOCIATED MAXIMUM VALUES OF K AND CONVERGENCE PROBABILITY VALUES

M 64 128 256 512

K 10 21 43 87

Probability of (3) 0.999 0.998 0.995 0.991

very high probability of convergence for (3).

Fig. 1 illustrates the maximum values ofK corresponding toM values that vary from64 to 512 based

on the convergence condition (18). With theseK values, the simulated convergence probability values

of (3) based on the accurate condition (11) and the approximated condition (13) are shown in Fig. 2.

The results indicate that they provide close probability with (11) being slightly better in massive MIMO

systems with largeM . The results verify that (13) is an acceptable approximation of (11). Furthermore,

the results show that the condition (18) in terms ofα can offer high convergence probability for (3). Table

I summarizes the typicalM values of massive MIMO systems with their corresponding maximum values

of K and the convergence probability values of (3). Note that (18) does not ensure fast convergence of

(3), so a more strictα condition forG being a DDM is studied in the next section.
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Fig. 2. Convergence probability values of (3) for theK values in Fig. 1

IV. D IAGONALLY DOMINANT AND α

Let hk denote thekth column vector of theM × K channel matrixH. Then,hk represents theM-

dimensional channel vector for thekth user. Hence, the elements of theK × K matrix G = H
H
H is

calculated as






gii = ‖hi‖22 , i = 1, . . . , K,

gij = h
H
i hj , j = 1, . . . , K, j 6= i.

(19)

As mentioned in Section III, the diagonal elementsgii approach toM when the number ofM is large.

As a result, the requirement (10) in Section II forG being a DDM can be approximated as

∆i =
∑

j 6=i

|rij| < 1, ∀i, (20)

whererij is the normalized correlation coefficient betweenhi andhj defined as

rij =
h
H
i hj

‖hi‖2 ‖hj‖2
≈ h

H
i hj

M
. (21)
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Let x = |rij|. Note that the Probability Density Function (PDF) ofx was derived in [12] as

f (x) = 2 (M − 1)x
(

1− x2
)M−2

, 0 ≤ x ≤ 1. (22)

Hence, the mean ofx is

E (x) =

∫ 1

0

xf (x) dx = (M − 1) B (1.5,M − 1) , (23)

whereB(a, b) with a andb being complex-valued numbers is the beta function defined as

B (a, b) =

∫ 1

0

ta−1 (1− t)b−1 dt, ℜ{a} ,ℜ{b} > 0. (24)

Although (23) provides the values ofE(x), since the number ofK is not large enough,∆i in (20) can

be larger than(K− 1)E(x). However,∆i has a high probability being smaller than(K− 1)[E(x)+ δ(x)]

whereδ(x) denotes the standard deviation ofx, which is

δ (x) =

√

E (x2)− E (x)2, (25)

with

E
(

x2
)

=

∫ 1

0

x2f (x) dx = (M − 1)B (2,M − 1) . (26)

Therefore, the condition (20) can be approximated as

(K − 1) [E (x) + δ (x)] < 1. (27)

Based on (27), a high probability condition for theG matrix being a DDM in terms ofα is derived as

α >
M [E (x) + δ (x)]

E (x) + δ (x) + 1
. (28)

With (28), the maximum possible number ofK can be found for a specific number ofM to achieve a

very high probability forG being a DDM.

Fig. 3 shows the maximum values ofK corresponding toM values that vary from64 to 512 based on

the diagonally dominant condition (28). With theseK values, the simulated DDM probability based on

the definition (10) and the approximated condition (20) are illustrated in Fig. 4. The results show that they

achieve close probability in massive MIMO systems with large M . The results verify that (20) is a good
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Fig. 3. The maximumK values for differentM values that satisfy (28)

TABLE II
TYPICAL M VALUES WITH THEIR ASSOCIATED MAXIMUM VALUES OF K AND DIAGONALLY DOMINANT PROBABILITY VALUES

M 64 128 256 512

K 6 9 12 17

Probability of (10) 0.990 0.977 0.998 0.999

approximation of (10), especially whenM is very large. Moreover, the results show that the condition

(28) in terms ofα can offer high DDM probability. Table II summarizes the typicalM values of massive

MIMO systems with their corresponding maximum values ofK and the diagonally dominant probability

values of (10). Note that the DDM condition (28) is sufficientfor the convergence condition (18) and

leads to quicker convergence, so it is more useful in practice.

V. ERROR ANALYSIS

Based on (8) and (9), the NS-based MIA of (2) changes to

G
−1
N =

N−1
∑

n

(

−D
−1
E
)n

D
−1. (29)
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Fig. 4. Diagonally dominant probability values for theK values in Fig. 3

Note that if the convergence condition (3) is satisfied,G
−1
∞ is the exact matrix inverse ofG. However, in

practice, the number ofN cannot be very large. Otherwise, it would cause excessive burden for hardware

implementation. In this case, residual error resulted fromthe NS-based MIAG−1
N exists. Let theK-

dimensional vectors denote the transmitted symbols for the uplink or the downlink. Without loss of

generality,E(|sk|2) = 1 is assumed, withk = 1, . . . , K. Let Z = D
−1
E. Then, the Mean Square Error

(MSE) of the NS-based MIAG−1
N for the uplink is derived as

ǫulN = E
{

∥

∥

(

G
−1
∞ −G

−1
N

)

H
H
Hs

∥

∥

2

2

}

= E







∥

∥

∥

∥

∥

Z
N

∞
∑

n=0

(−Z)nD−1
H

H
Hs

∥

∥

∥

∥

∥

2

2







= E
{

∥

∥Z
N
G

−1
∞ Gs

∥

∥

2

2

}

= E
{

∥

∥Z
N
s
∥

∥

2

2

}

= E
{

Tr
[

Z
N
ss

H
(

Z
N
)H

]}
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= E
{

Tr
[

ss
H
(

Z
N
)H

Z
N
]}

= Tr
{

E
[

ss
H
]

E
[

(

Z
N
)H

Z
N
]}

= Tr
{

IKE
[

(

Z
N
)H

Z
N
]}

= E
{

Tr
[

(

Z
N
)H

Z
N
]}

= E
{

∥

∥Z
N
∥

∥

2

F

}

. (30)

Note that for the downlink case, the MSE result is

ǫdlN = E
{

∥

∥s
T
(

G
−1
∞ −G

−1
N

)

H
H
H
∥

∥

2

2

}

= E
{

∥

∥s
T
Z

N
∥

∥

2

2

}

= E
{

∥

∥Z
N
∥

∥

2

F

}

, (31)

which is the same as (30). Hence,ǫN is used instead ofǫulN and ǫdlN in this section below. SinceǫN

can be interpreted as the power of the residual interferenceof ZF precoding or detection, the average

Signal-to-Interference Ratio (SIR) for each user is calculated as

γN =
‖s‖2

K
ǫN
K

=
K

ǫN
. (32)

In [8], the MSEǫN in (30) and (31) is upper bounded as

ǫN ≤
[

(K2 −K)

√

2M(M + 1)

(M − 1) (M − 2) (M − 3) (M − 4)

]N

, (33)

with M > 4. Unfortunately, (33) is a very loose upper bound, resultingin a very loose lower bound of

γN in (32). In Fig. 5, the exact SIR values and the lower bound values are compared withM = 128 for

differentK andM values. The results show substantial differences whenN > 1, which cannot provide

sufficient insight for the residual error of the NS-based MIAfor N > 1. Due to this reason, we seek to

derive a more accurate approximation ofǫN in this section below.

WhenM is large, becauseD can be approximated asMIK as mentioned in Section III, according to

(19) and (21), the elements ofZ is approximated as







zii = 0 i = 1, . . . , K,

zij = z∗ji ≈
h
H

i hj

M
≈ rij , j = 1, . . . , K, j 6= i.

(34)
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Fig. 5. Comparison between the exact SIR values and the lowerbound values resulting from (33) withM = 128 for different K andN

values.

As a result, the PDF ofx = |zij| can be approximated as (22). Then, a more accurate approximation of

γN can be derived based on (22).

WhenN = 1, the MSEǫN in (30) and (31) changes to

ǫ1 = ‖Z‖2F =
K
∑

i=1

K
∑

j=1,j 6=i

|zij |2 ≈ K (K − 1) E
(

x2
)

. (35)

SinceE(x2) has been derived as (26), the termǫ1 in (35) is rewritten as

ǫ1 ≈ K (K − 1) B2,M , (36)

whereBa,M is defined as

Ba,M = (M − 1)B (a,M − 1) . (37)

WhenN = 2, the MSEǫN in (30) and (31) changes to

ǫ2 =
∥

∥Z
2
∥

∥

2

F
, (38)
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where the elements inY = Z
2 is



















yii =
K
∑

k=1,k 6=i

|zik|2 , i = 1, . . . , K,

yij =
K
∑

k=1,k 6=i,j

zikz
∗
jk, j = 1, . . . , K, j 6= i.

(39)

Note that‖Z2‖2F can be written as a summation of polynomial terms, which can be classified into three

categories. The first category includes(K−1)K terms of|zik|4 with i 6= k. The second category includes

(K − 2)(K − 1)K terms of|zik|2|zil|2 with i 6= k 6= l, as well as(K − 2)(K − 1)K terms of|zik|2|zjk|2

with i 6= j 6= k. Hence, the total number of terms for the second category is2(K − 2)(K − 1)K. Finally,

the third category includes(K − 3)(K − 2)(K − 1)K terms ofzikz∗jkz
∗
ilzjl with i 6= j 6= k 6= l. Because

the elements ofH are i.i.d zero-mean unit-variance complex Gaussian randomvariables, based on (34),

the elements ofzij are i.i.d. zero-mean random variables. As a result, the terms of the third category

are also i.i.d. zero-mean random variable. Therefore, the sum of the terms of the third category can be

approximated as zero. For the terms of the first category, themean can be calculated based on (22) as

E
(

x4
)

=

∫ 1

0

x4f (x) dx = B3,M . (40)

Similarly, the mean of the terms of the second category is canbe approximated as

E
(

x2
1x

2
2

)

= E
(

x2
)2

= B2
2,M . (41)

Due to (40) and (41), the termǫ2 in (38) is approximated as

ǫ2 ≈ K (K − 1)B3,M + 2 (K − 2) (K − 1)KB2
2,M . (42)

WhenN > 2, the MSEǫN in (30) and (31) can be derived with the similar method applied by N = 2.

The results ofN = 3 andN = 4 are directly provided below as

ǫ3 ≈ (K − 2) (K − 1)K (5K − 8)B3
2,M

+ (2K − 3) (K − 1)KB3,MB2,M , (43)

and

ǫ4 ≈ (2K − 3) (K − 1)KB2
3,M
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Fig. 6. Comparison between the exact and estimated SIR values with M = 128 for differentK andN values.

+ (2K − 3)2 (K − 1)2KB4,MB2,M

+ (K − 2) (K − 1)2K2B4
2,M . (44)

With the estimated residual error formulas (36), (42)-(44), the estimated SIR formulas can be easily

derived according to (32). Fig. 6-8 compare the exact and estimated SIR values for differentK andN

values, withM = 128, M = 256, andM = 512 respectively. The results show that the estimated SIR

values are very close to the exact SIR values, which verifies the high accuracy of SIR estimation formulas

based on (36), (42)-(44).

VI. D ISCUSSIONS

In massive MIMO systems,α is commonly considered to be very large to offer good performance [2],

[4], e.g.,α > 10. Hence, the convergence condition (18), i.e.,α > 5.83, derived in Section III is generally

satisfied for massive MIMO systems. Note that the convergence probability values provided in Fig. 1 and

Table I, which are already close to1, correspond to the smallestα values that satisfy (18). Hence, the

convergence probability values for massive MIMO systems are not lower than the values provided in Fig.
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Fig. 7. Comparison between the exact and estimated SIR values with M = 256 for differentK andN values.

1 and Table I. Therefore, the convergence of NS-based MIA is guaranteed so that it is a valid method for

massive MIMO systems, and its accuracy can be improved by increasingN .

As mentioned at the end of Section III, the convergence condition (18) does not guarantee quick

convergence of (3). With the diagonally dominant condition(28) derived in Section IV, however, the NS-

based MIA can achieve good accuracy with quick convergence,i.e., a smallN can offer a sufficiently good

MIA. Otherwise, with the sameN value, violating (28) results in performance loss for the ZFdecoding

or detection employing the NS-based MIA. Take the simulation results provided in [8] as examples, with

M = 128 and N = 3, the choice ofK = 4 satisfying (28) achieves close performance to the exact

inverse, while the choice ofK = 12 violating (28) suffers huge performance loss. However, (28) requires

very smallα values, andα becomes smaller asM increases, which can be seen from Table IV. The strict

requirement ofα may reduce the spatial multiplexing advantage of massive MIMO systems, i.e., at most

K = 17 users can be served byM = 512 antennas. To relieve this issue, one comprised choice is to apply

an α slightly higher than (28) with slightly largerN of the NS-based MIA, depending on the hardware

capability.
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The SIR discussed in Section V reflects the performance errorfloor for ZF precoding or detection

employing practical NS-based MIA in massive MIMO systems. The performance error floor decides the

best performance that the ZF precoding or detection employing the NS-based MIA can achieves. As

a result, withM , K, andN , the best achievable performance can be easily estimated based on (36),

(42)-(44). In addition, since largerN causes higher hardware implementation complexity, withM , K,

and the target performance, the smallest choice ofN that can offer sufficiently good performance can be

determined to relieve the complexity. Note that a revised form of (2) was provided in [7] as

G
−1
N ≈

N−1
∑

n=0

(IK −ΘG)n Θ

=

L−1
∏

l=0

[

IK + (IK −ΘG)2
l
]

Θ, (45)

whereL is a positive integer withN = 2L. Hence,L = 1, L = 2, andL = 3 of the alternative expression

(45) correspond toN = 2, N = 4, andN = 8 of the regular expression (2) respectively. As a result, with

the alternative expression (45), after the choice ofN = 4, the NS-based MIA with the choice ofN = 8



18

can be quickly calculated. Therefore, if the choice ofN = 4 is not good enough based on the estimation

formula (44), the choice ofN = 8 can be directly selected based on (45). Furthermore, note that the

complexity of the NS-based MIA with the choice ofN > 3 is considered to beO(K3) in [8], which

loses the complexity advantage over the exact matrix inverse of O(K3). In fact, however, the NS-based

MIA can be implemented as a series of cascaded matched filter so that the complexity can be reduced to

O(K2), as discussed in [2]. In this way, the NS-based MIA still has the complexity advantage over the

exact inverse even with the choice ofN = 8.

VII. CONCLUSIONS

In this paper, three issues related to the practical application of the NS-based MIA in massive MIMO

systems are addressed. Firstly,α > 5.83 as in (18) is offered for the NS-based MIA to achieve very high

convergence probability. In other words, with the number ofBS antennasM , the maximum number of

served usersK for the NS-based MIA to be a valid method in massive MIMO systems can be determined.

Then, a tighter condition (28) is provided forG to be a DDM in very high probability, resulting in a

good NS-based MIA with a small number ofN . This means that given the number of BS antennasM ,

the maximum number of served usersK for the NS-based MIA to achieve good performance and quick

convergence for ZF decoding or detection cab be determined.Finally, by approximation error analysis,

residual error estimation formulas (36), (42)-(44) with very high accuracy are derived for practicalN

values, which can be applied to estimate the error floor caused by the NS-based MIA. Thus, given the

number of BS antennasM , the number of served usersK, and the number of terms employed by the

NS-based MIAN , highly accurate estimation of the SIR caused by the NS-based MIA can be obtained.

These results offer useful guidelines for practical application of the NS-based MIA in massive MIMO

systems.
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