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Abstract

Zero-Forcing (ZF) has been considered as one of the poltgmtatical precoding and detection method for
massive MIMO systems. One of the most important advantafyemssive MIMO is the capability of supporting a
large number of users in the same time-frequency resourbghwequires much larger dimensions of matrix
inversion for ZF than conventional multi-user MIMO systenis this case, Neumann Series (NS) has been
considered for the Matrix Inversion Approximation (MIA)etause of its suitability for massive MIMO systems and
its advantages in hardware implementation. The perforer@omplexity trade-off and the hardware implementation
of NS-based MIA in massive MIMO systems have been discudsethis paper, we analyze the effects of the

ratio of the number of massive MIMO antennas to the numbersefaion the performance of NS-based MIA.
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In addition, we derive the approximation error estimati@nnulas for different practical numbers of terms of

NS-based MIA. These results could offer useful guidelir@spractical massive MIMO systems.

. INTRODUCTION

Massive Multiple-Input Multiple-Output (MIMO) systems weefirstly introduced in([1], and have drawn
great interest form both academia and industry. In suckesysteach Base Station (BS) is equipped with
dozens to hundreds of antennas to serve tens of users innteetsae-frequency resource. Therefore, they
can achieve significantly higher spatial multiplexing gathan conventional multi-user MIMO systems,
which offers one of the most important advantages of maddidO systems, the potential capability to

offer linear capacity growth without increasing power ontaidth [1]—[4].
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It has been shown that, for massive MIMO systems where theébeuwf antennad/, e.g.,M = 128,
is much larger than the number of served usgrse.g., K = 16, [2], [4], Zero-Forcing (ZF) precoding
and detection can achieve performance very close to thenehaapacity for the downlink and uplink
respectively [[2]. As a result, ZF has been considered as értbeopotential practical precoding and
detection method for massive MIMO systems [2], [4]-[6].

For the hardware implementation of ZF, despite of the vergdanumber of)M/, the main complexity
is the inverse of & x K matrix |2], [7], [8]. Unfortunately, for massive MIMO systes, althoughk is
much smaller thard/, it is still much larger than conventional multi-user MIM@stems. As a result, in
this case, the computation of the exact inversion ofihe K matrix could result in very high complexity
[8], which may cause large processing delay so that the désnahthe channel coherence time is not
met. Due to this reason, Neumann Series (NS) has been coewbitte carry out the Matrix Inversion
Approximation (MIA), because it is well suited for massivdMD systems and it is advantageous for
hardware implementation[2],[7].][8].

Despite of the advantages, some potential applicatioresssii the NS-based MIA have also been
identified. Firstly, for a finiteM/ / K ratio, the NS may not converge, resulting the failure of tlyo@thm
[2], [7]. What M/ K ratio could offer high convergence probability is still radear. Secondly, for the NS-
based MIA to achieve good performance with quick convergetiee K’ x K matrix needs to be diagonally
dominant [8]. In order to satisfy this condition/ > K is required [[2], [8]. Similarly, what\//K ratio
could provide high probability of diagonally dominant isalnot clear. Moreover, with a larger number
of terms, the NS-based MIA offers closer performance to tteekinversion([7],[[8]. However, the larger
number of terms results in more processing cycles. Hencaeprictical hardware implementation, the
number of terms cannot be very large. Although the approttaneerror analysis was carried out and a
residual error upper bound of the NS-based MIA was derivédtf@ approximation error analysis with
high accuracy has not been derived.

In this paper, we address the three problems listed aboezifjlly, we firstly derived a\// K ratio
condition that offers high convergence probability. Them derived anothen//K ratio condition that
provides high probability for theX x K matrix to be diagonally dominant. Finally, we carry out the
approximation error analysis with high accuracy for pretnumbers of terms for the NS-based MIA in
hardware implementation.

The remainder of this paper is organized as follows. In 8adli, the basis of the NS-based MIA in



massive MIMO systems is briefly reviewed. Thé/K ratio condition that provides high convergence
probability is derived in Sectioflll. Then, anothéf/K ratio condition that offers high diagonally
dominant probability for the x K matrix is derived in Sectioh IV. In Sectidn] V, the approximat

error analysis with high accuracy for practical numbersearfms for the NS-based MIA is carried out.

Finally, after a discussion in SectignlVI, conclusions arawd in Sectior VI|.

1. BASIS OFNS-BASED MIA IN MASSIVE MIMO SYSTEMS

Consider a massive MIMO wireless system where the BS is pqdipvith M/ antennas to serv&
single-antenna users in the same time-frequency resolinea, for the uplink, thé/ x K channel matrix
is represented b¥ = [h,.x], whereh,,,, denotes the channel coefficient between #ti& antenna and
the kth user, withm =1,..., M, andk = 1,..., K. Similarly to [2], [7], [8], the analysis in this paper
assumes that thke,,;, elements are in uncorrelated Rayleigh flat fading, i.e.eppehdent and identically
distributed (i.i.d.) zero-mean unit-variance complex &aan variables. Note that, for the Time-Division
Duplexing (TDD) mode, due to the channel reciprocity, thevdiink has the same channel matiik as
the uplink, as long as the transmission duration is withi ¢hannel coherence time [1]-[6].

In order to carry out ZF precoding for the downlink or the ZFed#ion for the uplink, the pseudo-inverse

of H needs to be calculated! [2],! [4]+[6], which is written as
H' = (H"H) ™ H". @)

Let G = HY"H. Then, in [1), despite of the very large number &, e.g., 256, in massive MIMO
systems, the main complexity of the hardware implemenidias in the inversion of théd x K matrix

G [2], [7], [B]. To exploit the large spatial multiplexing ge of massive MIMO systems, although much
smaller than)M, the number ofK is much larger than conventional multi-user MIMO systems,,e
K = 16. As a result, the complexity of calculating—! may be too high for hardware implementation.
To address this issue, NS has been considered to carry oMtifydecause it is advantageous in hardware
implementation and it is suitable for massive MIMO systel2is [7], [8]. Specifically, it can be written

as

r

Gy ~ (Ix — ©G)" O, (2

n

Il
=)

where N denotes the number of terms used in the NS, @i a K x K diagonal matrix. Note that for



(2) to work, the requirement below has to be satisfied

n—oo

Note thatG is a complex central Wishart matrix because the elemenks afe i.i.d. complex Gaussian
random variables [9]. Lett = M /K. As K and M grow, as derived in_[10], the largest and the smallest

eigenvalues ofs converge respectively to

Amin (G) = M (1 - )2. (4)

As a result, if® is chosen as [2], which is

o 1
@_M(1+a)IK_M+KIK’ ©)
then,
N (OG) 5 14+ 22
14+ o
2/a
: 1— .

Therefore, the eigenvalues dfx — ©G) lie approximately in the range ¢+2/a/(1+ ), 2v/a/(1+ )]
[2], [7]. Since2\/a/(1 + «) < 1 whena > 1, the convergence of(3) is satisfied with the choice (5).
Moreover, whenx is very large2\/a/(1+ «) — 0, which means thaf{3) converges very quickly. Hence,
a small number ofV in (2) can offer close performance to the exact inverse.

Unfortunately, for finiteM and K values, the eigenvalues of the prod@®6G for a particular channel
realization can lie outside the range[ef2\/a/(1+ ), 2/a/(1+ )] [2], [7], which results in the failure
of (3). To address this issue, an attenuation faétahere0 < § < 1 was introduced in 2], sd [5) changes

to
o

@:
M+ K

Ix. (7)

However, the proper choice @fis hard to be determined. On the one handj i too large, the non-
convergence issue still exists. On the other hand,if too small, the convergence speed becomes very

slow, so the number ofV needs to be very large to offer a good MIA, increasing the &ardf the



hardware implementation.
Instead of [(¥), anothe® was applied in[[7],[[8], which achieves a better MIA [7]. Speally, G is
decomposed as

G=D+E, (8)

whereD is a diagonal matrix including the diagonal element{hfandE is a hollow matrix including

the off-diagonal elements d&. Then,® is chosen as
©=D" (9)

To achieve a good MIA with quick convergenck] (9) requirest (B is a Diagonally Dominant Matrix
(DDM) [71, [8], i.e.,
gl > > gyl ij=1,... K. (10)

G

The performance-complexity trade-off and hardware imgetation of the NS-based MIA employing (9)
have been discussed for the downlink and uplinK'in [7] andrg8pectively. In both cases, the NS-based
MIA employing (9) was considered as a promising and practieethod for massive MIMO systems. As
a result, the analysis carried out in this paper is based erchioice of [(9).

As mentioned in Sectio |, there still some issues on theieqidn of [9) for finite A/ and K values.
Firstly, it is unclear that what can offer high convergence probability. Secondly, it islaacthat whaty
can achieve high probability fa& to be diagonal dominant. Moreover, more accurate apprdiomarror

analysis for practicalV values is needed. In the next sections, the aforementi@se@s are addressed.

IIl. CONVERGENCE AND«

According to the theory of matrix power seri¢s [9], forkax K matrix B, the productB" converges
to 05 only when the spectral radius &, denoted byp(B), i.e., the maximum modulus of eigenvalues

of B, is less thanl. Then, for the choice of{9), a good MIA dfl(2) requires
p(Ix —D7'G) < 1. (11)

Since the elements & are i.i.d. zero-mean unit-variance complex Gaussian nangariables, when the

number of M is large, the diagonal elements BY approach toME{|h;.|?} = M by the law of large



numbers([1], [[2], [4]. Therefore, the diagonal matiix can be replaced by/Ix, Then, the condition
(@I) changes to
M —X(G)|<M=0<A(G) <2M. (12)

As G is a positive-definite matrix [9], its eigenvalues are alfjkr thar0 [9]. As a result,[(IR) is equivalent
to

Amax(G) < 2M. (13)

Note thatG = H"H is a complex central Wishart matrix|[9], and the distribatiof \,..(G) is
provided in [11] as
Ok (K) g

Clx (M + K)

x 1 (M; M+ K; =), (14)

P ()‘max(G) < {L')

wherez is a non-negative number. The complex multivariate gammation CI',(a) is defined as

P
Cr', (a) :Wp(p_l)/an[a—i+1], (15)

=1
where p is a positive integerg is a complex-valued number, alda| is the gamma function. The

hypergeometric functionF; (M; M + K; —z1) is

(MM A+ K —al) =YY [M[f‘f ];f]n Cx <];~”61> . (16)

k=0 =~k

The details of M],, andC,(—=2I) in (16) can be found in[11]. Based dn_(14), the probabilityd) can
be directly derived. However_(L4) includes the summatibimbnite terms in [16) which has extreme
complexity, so it cannot provide a closed-form convergermedition of [13) in terms ofv.
Fortunately, based ofl(4), the condition lofl(13) changes to
1\2
M <1 + ﬁ) < 2M. (17)

Based on[(17), a high probability convergence conditioreimts of«a is derived as

1
a> —— =~ 5.83. (18)

(vV2-1)’

With ([18), the maximum possible number &f can be found for a specific number &f to achieve a
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Fig. 1. The maximumk values for different) values that satisfy (18)

TABLE |
TYPICAL M VALUES WITH THEIR ASSOCIATED MAXIMUM VALUES OF K AND CONVERGENCE PROBABILITY VALUES
M 64 128 256 512
K 10 21 43 87

Probability of [3)| 0.999 | 0.998 | 0.995 | 0.991

very high probability of convergence fdrl(3).

Fig.[ illustrates the maximum values &f corresponding ta\/ values that vary front4 to 512 based
on the convergence condition _(18). With theKevalues, the simulated convergence probability values
of (3) based on the accurate conditionl(11) and the apprdeineondition [(1B) are shown in Figl 2.
The results indicate that they provide close probabilitthwil1) being slightly better in massive MIMO
systems with largél/. The results verify thaf (13) is an acceptable approxinmatib(11). Furthermore,
the results show that the conditidn [18) in termswafan offer high convergence probability fof (3). Table
[l summarizes the typical/ values of massive MIMO systems with their corresponding imarn values
of K and the convergence probability values [df (3). Note tha) (ks not ensure fast convergence of

(), so a more strictv condition for G being a DDM is studied in the next section.
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Fig. 2. Convergence probability values bt (3) for thevalues in Fig[lL

V. DIAGONALLY DOMINANT AND «

Let h, denote thekth column vector of the\/ x K channel matrixH. Then, h; represents thé/-
dimensional channel vector for thgh user. Hence, the elements of the x K matrix G = H'H is

calculated as

2 .
gii = ||hi||27 i=1,..., K,
gij:h?hja jzl,,K,j#Z

(19)

As mentioned in Section_lll, the diagonal elementsapproach tolM when the number ofi/ is large.

As a result, the requiremerit_(10) in Sectloh Il f@rbeing a DDM can be approximated as

A; = Z ‘Tij‘ < 1,Vr, (20)
JF#i

wherer;; is the normalized correlation coefficient betwdenandh; defined as

Ihlly ([hyll, M

Tij



Let x = |r;;|. Note that the Probability Density Function (PDF)ofvas derived in[[12] as
f(x):2(M—1)x(1—x2)M_2,0§x§1. (22)
Hence, the mean of is
1
E(x):/ xf (r)de = (M —-1)B(1.5,M — 1), (23)
0
whereB(a, b) with « andb being complex-valued numbers is the beta function defined as
1
B (a,b) = / (1~ t)b‘1 dt, R{a},R{b} > 0. (24)
0

Although (23) provides the values &f(x), since the number of is not large enoughy; in (20) can
be larger tharf K — 1)E(x). However,A; has a high probability being smaller thaR — 1)[E(z) + 6(z)]

whered(z) denotes the standard deviation:gfwhich is

5(2) = B @2) - () (25)
with
1
E(xz):/x2f(x)dx:(M—1)B(2,M—1). (26)
0
Therefore, the conditiori_ (20) can be approximated as
(K —1)[E(x)+0(2)] <1. (27)
Based on[(27), a high probability condition for tkie matrix being a DDM in terms of: is derived as
M [E (x) + 0 (x)]

CCEDto@ 41 (28)

With (28), the maximum possible number &f can be found for a specific number 8f to achieve a
very high probability forG being a DDM.

Fig.[3 shows the maximum values &f corresponding td\/ values that vary front4 to 512 based on
the diagonally dominant conditiof (28). With the&evalues, the simulated DDM probability based on
the definition [10) and the approximated conditionl (20) Hustrated in Figl 4. The results show that they
achieve close probability in massive MIMO systems with éaitd. The results verify tha{ (20) is a good
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TABLE I
TYPICAL M VALUES WITH THEIR ASSOCIATED MAXIMUM VALUES OF K AND DIAGONALLY DOMINANT PROBABILITY VALUES
M 64 128 256 012
K 6 9 12 17

Probability of [10)| 0.990 | 0.977 | 0.998 | 0.999

approximation of [(100), especially whelY is very large. Moreover, the results show that the condition
(28) in terms ofa can offer high DDM probability. Tablglll summarizes the tyali M/ values of massive
MIMO systems with their corresponding maximum valuesiofand the diagonally dominant probability
values of [(10). Note that the DDM condition_(28) is sufficidat the convergence condition (18) and

leads to quicker convergence, so it is more useful in practic

V. ERRORANALYSIS

Based on[(8) and [9), the NS-based MIA bf (2) changes to

N-1
Gy =) (-D'E)"D". (29)

n
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Note that if the convergence conditidd (3) is satisfi€d,' is the exact matrix inverse &&. However, in
practice, the number oV cannot be very large. Otherwise, it would cause excessikgebufor hardware
implementation. In this case, residual error resulted fitva NS-based MIAG ' exists. Let thek -
dimensional vectos denote the transmitted symbols for the uplink or the downliwithout loss of
generality,E(|sx|?) = 1 is assumed, withk = 1,..., K. Let Z = D~'E. Then, the Mean Square Error
(MSE) of the NS-based MIAG ' for the uplink is derived as

e =E{[(6x - 6¥') H'Hs|;

[e.e]

2
z"> (-z)"D'H"Hs

2
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B{T [ss (2V)" 27|}

(eime )

)

B{m|(z")" 2]}

=e{||2"[}}- (30)

Tr
Tr

Note that for the downlink case, the MSE result is

4 =E{[s" (G - o) HH|;}
=B {[s"2"[,}
—u{|z"|:}. @1
which is the same ag (B0). Hencey is used instead ot} and ¢3! in this section below. Sincey

can be interpreted as the power of the residual interfereficé- precoding or detection, the average

Signal-to-Interference Ratio (SIR) for each user is catmd as

K
K N

In [8], the MSEe¢y in (30) and [(31) is upper bounded as

N
OM(M +1)

en < (K2—K)\/(M_l)(M_Q)(M—B)(M—4) ’

(33)

with M > 4. Unfortunately, [(3B) is a very loose upper bound, resultm@ very loose lower bound of
~vn in (B2). In Fig.[5, the exact SIR values and the lower boundieslare compared with/ = 128 for
different K and M values. The results show substantial differences wNen 1, which cannot provide
sufficient insight for the residual error of the NS-based Mbk NV > 1. Due to this reason, we seek to
derive a more accurate approximationegf in this section below.

When M is large, becaus® can be approximated a€/ I, as mentioned in Sectidnlll, according to

(@I9) and [(211), the elements & is approximated as

(34)

J— * A~ 1 ~ J—
Zij = 2 N L”JNT’U, j=1,....K, j#i.
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Fig. 5. Comparison between the exact SIR values and the Ibaand values resulting froni (B3) withd = 128 for different K and N
values.

As a result, the PDF of = |z;;| can be approximated as {22). Then, a more accurate appriboiad
v~ can be derived based dn[22).
When N = 1, the MSEey in (30) and [(3l1) changes to

K K
a=ZIF=> Y l|ufr~K(EK-1)E@*). (35)
i=1 j=1,j7#1i
SinceE(z?) has been derived as(26), the termin (35) is rewritten as

€1 =~ K (K — 1) BQJ\/[, (36)

whereB, ), is defined as

Boa = (M —1)B(a, M —1). (37)
When N = 2, the MSEey in (30) and [(3ll) changes to

e =|2[;. (38)
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where the elements iY = Z? is

K
yi= > |wl’, i=1,...,K,
k=1,k#i
4 (39)
yii = > iy j=1,....K, j#i.
k=1 kei,j

Note that||Z?||% can be written as a summation of polynomial terms, which carmlbssified into three
categories. The first category includgs — 1) K terms of|z;;,|* with ¢ # k. The second category includes
(K —2)(K — 1)K terms of | z;.|?|za|? with i # k # [, as well as(K — 2)(K — 1)K terms of|zx|*| 21|
with i # j # k. Hence, the total number of terms for the second categayAs— 2)(K — 1) K. Finally,
the third category include€X — 3)(K — 2)(K — 1)K terms of 27, 2j,2; with i # j # k # [. Because
the elements oH are i.i.d zero-mean unit-variance complex Gaussian randgamables, based onf (34),
the elements ot;; are i.i.d. zero-mean random variables. As a result, thegesfrithe third category
are also i.i.d. zero-mean random variable. Therefore, time of the terms of the third category can be

approximated as zero. For the terms of the first categoryiméan can be calculated based (22) as
1
E(z') = / 2t f () da = Bs . (40)
0
Similarly, the mean of the terms of the second category isbeaapproximated as
E (2222) = B (22)” = B2,,. (41)
Due to [40) and[(41), the term in (38) is approximated as
e~ K(K—1)Bsy+2(K—2)(K—1)KBj,,. (42)

When N > 2, the MSEey in (30) and [(31) can be derived with the similar method appbg N = 2.

The results ofV = 3 and N = 4 are directly provided below as

es~ (K —2)(K—1)K (5K —8)Bj

+ (2K = 3) (K — 1) K B3 31 Bo w1, (43)
and

e~ (2K —3) (K — 1) KB;
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Fig. 6. Comparison between the exact and estimated SIRsalith M = 128 for different K and N values.

+ (2K —3)* (K —1)* KBy y By

+ (K —2) (K —1)?K*By . (44)

With the estimated residual error formulasi(36),] (42)-(44g estimated SIR formulas can be easily
derived according td_(32). Figl[6-8 compare the exact anidhattd SIR values for differenk and N
values, withM = 128, M = 256, and M = 512 respectively. The results show that the estimated SIR

values are very close to the exact SIR values, which verifieditgh accuracy of SIR estimation formulas

based on[(36)[(42)-(44).

VI. DISCUSSIONS

In massive MIMO systemsy is commonly considered to be very large to offer good pertoroe [2],
[4], e.g.,a > 10. Hence, the convergence conditionl(18), ice» 5.83, derived in Sectioilll is generally
satisfied for massive MIMO systems. Note that the convemggmaobability values provided in Figl 1 and
Table[], which are already close g correspond to the smalleat values that satisfy (18). Hence, the

convergence probability values for massive MIMO systenasrant lower than the values provided in Fig.
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and Tableé]l. Therefore, the convergence of NS-based MIAigsanteed so that it is a valid method for
massive MIMO systems, and its accuracy can be improved bgasmngN.

As mentioned at the end of Sectiénl lll, the convergence ¢mmdi(18) does not guarantee quick
convergence of (3). With the diagonally dominant conditf@8) derived in Sectioh IV, however, the NS-
based MIA can achieve good accuracy with quick convergereea smallV can offer a sufficiently good
MIA. Otherwise, with the saméV value, violating [(ZB) results in performance loss for the d&€oding
or detection employing the NS-based MIA. Take the simutatesults provided in |8] as examples, with
M = 128 and N = 3, the choice of K = 4 satisfying [[28) achieves close performance to the exact
inverse, while the choice ok = 12 violating (28) suffers huge performance loss. However) (B§uires
very smalla values, andv becomes smaller a¥ increases, which can be seen from Tdble IV. The strict
requirement oftx may reduce the spatial multiplexing advantage of massive®kystems, i.e., at most
K = 17 users can be served By = 512 antennas. To relieve this issue, one comprised choice iggly a
an « slightly higher than[(28) with slightly largeN of the NS-based MIA, depending on the hardware
capability.
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The SIR discussed in Sectign V reflects the performance éwor for ZF precoding or detection
employing practical NS-based MIA in massive MIMO systemBe performance error floor decides the
best performance that the ZF precoding or detection empdoyhe NS-based MIA can achieves. As
a result, withM, K, and N, the best achievable performance can be easily estimatset ban [(36),
(42)-(44). In addition, since largeN causes higher hardware implementation complexity, with i,
and the target performance, the smallest choic& dhat can offer sufficiently good performance can be

determined to relieve the complexity. Note that a revisadhfof (2) was provided in[[7] as

=z

G~y (Ix-0G)"e

Ihﬁ
Ll

PK+GK—@Gfﬂ@, (45)

~

=0

whereL is a positive integer withV = 2-. Hence,L = 1, L = 2, andL = 3 of the alternative expression
(45) correspond taV = 2, N = 4, and N = 8 of the regular expressiohl(2) respectively. As a resulthwit
the alternative expression _(45), after the choiceVof 4, the NS-based MIA with the choice df = 8
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can be quickly calculated. Therefore, if the choiceMot= 4 is not good enough based on the estimation
formula (44), the choice ofV = 8 can be directly selected based &n](45). Furthermore, nattetlie
complexity of the NS-based MIA with the choice of > 3 is considered to b&®(K?) in [8], which
loses the complexity advantage over the exact matrix ievefs)(K?). In fact, however, the NS-based
MIA can be implemented as a series of cascaded matched fltiras the complexity can be reduced to
O(K?), as discussed inJ2]. In this way, the NS-based MIA still has tomplexity advantage over the

exact inverse even with the choice bdf= 8.

VIlI. CONCLUSIONS

In this paper, three issues related to the practical agitaf the NS-based MIA in massive MIMO
systems are addressed. Firstly> 5.83 as in [18) is offered for the NS-based MIA to achieve very high
convergence probability. In other words, with the numbeB&f antennasl/, the maximum number of
served user# for the NS-based MIA to be a valid method in massive MIMO syste&an be determined.
Then, a tighter condition (28) is provided f@ to be a DDM in very high probability, resulting in a
good NS-based MIA with a small number of. This means that given the number of BS antenhgs
the maximum number of served usdtsfor the NS-based MIA to achieve good performance and quick
convergence for ZF decoding or detection cab be determiriedlly, by approximation error analysis,
residual error estimation formulas_{36]), (42)4(44) withrwdaigh accuracy are derived for practical
values, which can be applied to estimate the error floor chbyethe NS-based MIA. Thus, given the
number of BS antennad/, the number of served usefs, and the number of terms employed by the
NS-based MIAN, highly accurate estimation of the SIR caused by the NSeb88& can be obtained.
These results offer useful guidelines for practical agpian of the NS-based MIA in massive MIMO

systems.
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