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Abstract—In this paper, we address the problem of optimal
power allocation at the relay in two-hop secure communica-
tions. In order to solve the challenging issue of short-distance
interception in secure communications, the benefit of large-scale
MIMO (LS-MIMO) relaying techniques is exploited to improve
the secrecy performance significantly, even in the case without
eavesdropper channel state information (CSI). The focus ofthis
paper is on the analysis and design of optimal power allocation
for the relay, so as to maximize the secrecy outage capacity.We
reveal the condition that the secrecy outage capacity is positive,
prove that there is one and only one optimal power, and present
an optimal power allocation scheme. Moreover, the asymptotic
characteristics of the secrecy outage capacity is carried out to
provide some clear insights for secrecy performance optimiza-
tion. Finally, simulation results validate the effectiveness of the
proposed scheme.

I. I NTRODUCTION

Wireless security is always a critical issue due to the
open nature of the wireless channel. Traditionally, high-layer
encryption techniques are adopted to guarantee secure commu-
nications. However, information-theoretic study shows that the
originally harmful factors of wireless channels, such as fading,
noise and interference, can be used to realize wireless security,
namely physical layer security [1] [2], then the complicated
encryption can be partially replaced, especially in mobile
communications.

It has been proved repeatedly that the secrecy performance
is determined by the rate difference between the legitimate
channel and the eavesdropper channel [3] [4]. To improve
the secrecy performance, multi-antenna relaying techniques
are commonly used in physical layer security [5]. On the one
hand, the use of the relay shortens the access distance, and thus
increases the legitimate channel rate. On the other hand, multi-
antenna techniques can be applied to impair the interception
signal. The beamforming schemes at the MIMO relay based
on global channel state information (CSI) for amplify-and-
forward (AF) and decode-and-forward (DF) relaying systems
were presented in [6] and [7], respectively. Note that the beam
design in secure communications requires both legitimate
and eavesdropper CSI [8]. However, it is usually difficult to
obtain eavesdropper CSI due to the well hidden property of
the eavesdropper. In this context, the beam is not optimal,

and thus the secrecy performance is degraded. To solve it,
a joint jamming and beamforming scheme at the relay in
the case without eavesdropper CSI was proposed in [9]. The
relay transmits the artificial noise signal in the null space
of the legitimate channel together with the forward signal,
so the quality of the interception signal is weakened. This
scheme improves the secrecy performance at the cost of power
efficiency.

Recently, LS-MIMO relaying techniques are introduced into
secure communications to improve the secrecy performance
[10]. It is found that even without eavesdropper CSI, LS-
MIMO techniques can produce a high-resolution spatial beam,
then the information leakage to the eavesdropper is quite small.
More importantly, the secrecy performance can be enhanced
by simply adding the antennas. Thus, the challenging issue
of short-distance interception in secure communications can
be well solved. Note that in two-hop secure systems, the
transmit power at the relay has a great impact on the secrecy
performance, since the power will affect the signal quality
at the destination and the eavesdropper simultaneously. An
optimal power allocation scheme for a multi-carrier two-hop
single-antenna relaying network was given by maximizing the
sum secrecy rate in [11]. However, the power allocation for
a multi-antenna relay, especially an LS-MIMO relay, is still
an open issue. In this paper, we focus on power allocation
for secure two-hop LS-MIMO relaying systems under very
practical assumptions, i.e., no eavesdropper CSI and imperfect
legitimate CSI. The contributions of this paper are three-fold:

1) We reveal the relation between the secrecy outage ca-
pacity and the defined relative distance-dependent path
loss, and then give the condition that the secrecy outage
capacity is positive.

2) We prove that there is one and only one optimal power
at the relay, and propose an optimal power allocation
scheme.

3) We present several clear insights for secrecy perfor-
mance optimization through asymptotic analysis.

The rest of this paper is organized as follows. We first
give an overview of the secure LS-MIMO relaying system
in Section II, and then analyze and design an optimal power
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allocation scheme for the relay in Section III. In Section IV, we
present some simulation results to validate the effectiveness of
the proposed scheme. Finally, we conclude the whole paper
in Section V.

II. SYSTEM MODEL
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Fig. 1. An overview of a secure LS-MIMO relaying system.

Consider a time division duplex (TDD) two-hop LS-MIMO
relaying system, as shown in Fig.1. It consists of one source,
one destination and one passive eavesdropper, equipped with
a single antenna each, and one relay withNR antennas. It
is worth pointing out thatNR is quite large in this LS-
MIMO relaying system, i.e.NR = 100 or larger. In addition,
it is assumed that the distance between the source and the
destination is so long that it is impossible to transmit the
information from the source to the destination directly. The
whole system works in a half-duplex mode, which means that
a complete transmission requires two time slots. Specifically,
in the first time slot, the source sends the signal to the relay,
and then the relay forwards the post-processing signal to the
destination during the second time slot. We assume that the
eavesdropper is far away from the source and close to the relay,
since it thought the signal comes from the relay. Then, the
eavesdropper only monitors the transmission from the relay
to the destination. Note that this is a common assumption
in previous related literatures, because it is difficult forthe
eavesdropper to monitor both the source and the relay.

We use
√
αS,RhS,R,

√
αR,DhR,D and

√
αR,EhR,E to rep-

resent the channels from the source to the relay, the relay to
the destination, and the relay to the eavesdropper respectively,
whereαS,R, αR,D andαR,E are the distance-dependent path
losses andhS,R, hR,D, and hR,E are channel small scale
fading vectors with independent and identically distributed
(i.i.d.) zero mean and unit variance complex Gaussian entries.
It is assumed that the channels remain constant during a time
slot and fade independently over slots. Thus, the received
signal at the relay in the first time slot can be expressed as

yR =
√

PSαS,RhS,Rs+ nR, (1)

wheres is the normalized Gaussian distributed transmit signal,
PS is the transmit power at the source,nR is the additive
Gaussian white noise with zero mean and unit variance at the
relay.

Then, the relay adopts an amplify-and-forward (AF) relay-
ing protocol to forward the received signal. Due to the low
complexity and good performance in LS-MIMO systems, we
combine maximum ratio combination (MRC) and maximum
ratio transmission (MRT) at the relay to process the received
signal. We further assume that the relay has perfect CSI
abouthS,R by channel estimation and gets partial CSI about
hR,D due to channel reciprocity in TDD systems. The relation
between the estimated CSÎhR,D and the real CSIhR,D is
given by

hR,D =
√
ρĥR,D +

√

1− ρe, (2)

where e is the error noise vector with i.i.d. zero mean and
unit variance complex Gaussian entries, and is independent
of ĥR,D. ρ, scaling from0 to 1, is the correlation coefficient
betweenĥR,D and hR,D. Then, the normalized signal to be
transmitted at the relay can be expressed as

rAF = FyR, (3)

whereF is the processing matrix, which is given by

F =
ĥR,D

‖ĥR,D‖
1

√

PSαS,R‖hS,R‖2 + 1

hH
S,R

‖hS,R‖
. (4)

Thus, the received signals at the destination and the eaves-
dropper are given by

yD =
√

PRαR,DhH
R,DrAF + nD, (5)

and

yE =
√

PRαR,EhH
R,E rAF + nE , (6)

respectively, wherePR is the transmit power of the relay,nD

andnE are the additive Gaussian white noises with zero mean
and unit variance at the destination and the eavesdropper.

Since there is no knowledge of the eavesdropper channel at
the source and the relay, it is impossible to provide a steady
secrecy rate over all realizations of the fading channels. In
this paper, we take the secrecy outage capacityCSOC as
the performance metric, which is defined as the maximum
available rate under the condition that the outage probability
that the real transmission rate surpasses the secrecy rate is
equal to a given valueε, namely

Pr(CSOC > CD − CE) = ε, (7)

whereCD and CE are the legitimate and the eavesdropper
channel rates, respectively.

Note thatCSOC is not an decreasing function ofPR, since
bothCD andCE increase asPR adds. Then, it makes sense
to select an optimalPR. The focus of this paper is on the
optimal power allocation at the relay, so as to maximize the
secrecy outage capacity for a given outage probability.



III. O PTIMAL POWER ALLOCATION

In this section, we first analyze the condition that the
secrecy outage capacity is positive, prove the existence of
one and only one optimal power, and then design an optimal
power allocation scheme for the relay. Finally, we present the
asymptotic characteristics of the secrecy outage capacity.

Note that accurate performance analysis is the basis of
power allocation. Prior to designing the optimal power alloca-
tion scheme, we first reveal the relation between the secrecy
outage capacity and the transmit power. Based on the received
signals in (3) and (4), the signal-to-noise ratio (SNR) at the
destination and the eavesdropper can be expressed as

γD =
PSPRαS,RαR,D|hH

R,DĥR,D|2‖hS,R‖2

PRαR,D|hH
R,DĥR,D|2 + ‖ĥR,D‖2(PSαS,R‖hS,R‖2 + 1)

,

(8)
and

γE =
PSPRαS,RαR,E |hH

R,E ĥR,D|2‖hS,R‖2

PRαR,E |hH
R,E ĥR,D|2 + ‖ĥR,D‖2(PSαS,R‖hS,R‖2 + 1)

.

(9)
Then, the legitimate and the eavesdropper channel rates are
given byCD = W log2(1 + γD) andCE = W log2(1 + γE)
respectively, whereW is a half of the spectral bandwidth,
since a complete transmission requires two time slots. Thus,
for the secrecy outage capacity, we have the follow lemma:

Lemma 1: For a given outage probability byε, the
secrecy outage capacity of an LS-MIMO relaying
system with imperfect CSI can be expressed as
CSOC = W log2

(

1 +
PSPRαS,RαR,DρN2

R

PRαR,DρNR+PSαS,RNR+1

)

−
W log2

(

1 +
PSPRαS,RαR,ENR ln ε

PRαR,E ln ε−PSαS,RNR
− 1
)

.
Proof: The secrecy outage capacity can be obtained based

on (7) by making use of the property of channel hardening in
LS-MIMO systems [12]. We omit the proof, and the detail can
be referred to our previous work [10].

A. Positiveness

It is worth pointing out that the secrecy outage capacity may
be negative or zero from a pure mathematical view. Therefore,
it makes sense to find the condition that the positive secrecy
outage capacity exists.

Let ραR,DNR = A, −αR,E ln ε = A · rgl, PSαS,RNR =

B, whererl =
−αR,E ln ε

ραR,DNR
is defined as the relative distance-

dependent path loss. Then, the secrecy outage capacity can be
rewritten as

CSOC = W log2

(

1 +
PRAB

PRA+B + 1

)

−W log2

(

1 +
PRABrl

PRArl +B + 1

)

. (10)

Observing the secrecy outage capacity in (10), we get the
following theorem:

Theorem 1: If and only if 0 < rl < 1, the secrecy outage
capacity in an LS-MIMO relaying system in presence of
imperfect CSI is positive.

Proof: Please refer to Appendix I.

Remarks: It is known that from Theorem 1,0 < rl < 1 is a
precondition for power allocation in such an LS-MIMO relay-
ing system. Given channel conditions and outage probability,
there is a constraint on the minimum number of antennas at
the relay in order to fulfill0 < rl < 1. Then, we have the
following proposition:

Proposition 1: The number of antennasNR at the relay must
be greater than−αR,E ln ε

ραR,D
.

Note that even with a stringent requirement on the outage
probability, −αR,E ln ε

ραR,D
can be always met by adding the anten-

nas, which is an advantage of an LS-MIMO relaying system.
In what follows, we only consider the case of0 < rl < 1.

B. Existence and Uniqueness

As shown in (10), the secrecy outage capacity is not an
increasing function ofPR. Then, there may be an optimal
power for the relay in the sense of maximizing the secrecy
outage capacity. In this subsection, we aim to prove that the
optimal power exists and is unique.

Prior to seeking the optimal power, we first check two
extreme cases ofPR. On the one hand, ifPR is large enough,
the termsB + 1 in (10) is negligible, so the secrecy outage
capacity is reduced asCSOC = W log2

(

1 + PRAB
PRA

)

−
W log2

(

1 + PRABrl
PRArl

)

= 0. In other words, whenPR is
very large, the SNRs at the destination and the eavesdropper
asymptotically approach the same value. Thus, the secrecy
outage capacity becomes zero. On the other hand, when
PR tends to zero, the secrecy outage capacity is equal to
CSOC = W log2

(

1 + 0
B+1

)

−W log2

(

1 + 0
B+1

)

= 0. Un-
der this situation, both the rates of legitimate and eavesdropper
channels tend to zero, and thus the secrecy outage capacity is
also zero.

According to Theorem 1, the secrecy outage probability is
positive when0 < rl < 1, so the maximum secrecy outage
capacity must appear at mediumPR regime. Then, we get the
following theorem:

Theorem 2: From the perspective of maximizing the secrecy
outage capacity, the optimal power at the relay in an LS-
MIMO relaying system exists and is unique, once the relative
distance-dependent path lossrl is less than 1.

Proof: Please refer to Appendix II.

C. Optimal Power Allocation

From Theorem 2, it is known that as long as0 < rl < 1,
there is always a unique optimal power. In other words, if
the relay applies the optimal power, the LS-MIMO relaying
system gets the maximum secrecy outage capacity. Then, we
have the following theorem:

Theorem 3: When the relay uses the powerP ⋆
R =

√

PSαS,RNR+1
−αR,EραR,DNR ln ε

, the LS-MIMO relaying system gets
the maximum secrecy outage capacity, which is given

by Cmax
SOC = W log2



1 +
PSαS,RNR

1+

√

−αR,E ln ε

ραR,DNR
(1+PSαS,RNR)



 −



W log2



1 +
PSαS,RNR

1+

√

−ραR,DNR
αR,E ln ε

(1+PSαS,RNR)



.

Proof: Substituting the optimal powerPR in (14) into
CSOC in (10), we can derive the maximum secrecy outage
capacity.

Remarks: The optimal power at the relayP ⋆
R is an in-

creasing function of source transmit powerPS , source-relay
path lossαS,R and outage probabilityε, and is a decreasing
function of CSI accuracyρ, relay-destination path lossαR,D

and relay-eavesdropper path lossαR,D. In addition, due to
rl =

−αR,E ln ε

ραR,DNR
< 1, the maximum secrecy outage capacity is

an increasing function ofPS , αS,R, αR,D, ε, NR andρ, and
is a decreasing function ofαR,E .

D. Asymptotic Characteristic

As analyzed above, the optimal power at the relayP ⋆
R is

an increasing function of the power at the sourcePS . Next,
we carry out asymptotic analysis toPS and get the following
theorem:

Theorem 4: At the low PS regime, the optimal powerP ⋆
R

and the maximum secrecy outage capacityCmax
SOC tend to zero.

In the highPS region, the maximum secrecy outage capacity
will be saturated and is independent ofPS .

Proof: Please refer to Appendix III.
As PS approaches zero, the source does not transmit any

information to the relay in the first slot, so the maximum
secrecy outage capacity tends to zero. WhilePS is sufficiently
large, the forward noise at the relay is also amplified, and thus
the secrecy outage capacity is saturated and is independentof
PS andPR.

IV. SIMULATION RESULTS

To examine the effectiveness of the proposed optimal power
allocation scheme for the AF LS-MIMO relaying system, we
present several simulation results in the following scenarios:
we setNR = 100, W = 10KHz, ρ = 0.9 and ε = 0.01. We
assume that the relay is in the middle of the source and the
destination. For convenience, we normalize the pass loss as
αS,R = αR,D = 1 and useαS,E to denote the relative path
loss. Specifically,αR,E > 1 means the eavesdropper is closer
to the relay than the destination. We use SNRS = 10 log10 PS

and SNRR = 10 log10 PR to represent the transmit signal-
to-noise ratio (SNR) in dB at the source and the relay,
respectively.

First, we show the impact ofrl on the secrecy outage
capacity with SNRR = 20dB. As seen in Fig.2, the positive
secrecy outage capacity exists only when0 < rl < 1, which
confirms the claims in Theorem 1. Given arl, the secrecy
outage capacity increases gradually asPS adds. However,
the performance loss by reducingPS from 30dB to 20dB is
smaller than that by reducingPS from 20dB to 10dB. This
is because in the largePS region, the secrecy outage capacity
tends to be saturated.

Second, we validate the existence and uniqueness of the
optimal powerP ⋆

R. As showed in Fig.3, the secrecy outage
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Fig. 2. Secrecy outage capacity with different relative distance-dependent
path losses.
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capacity approaches zero both whenPS tends to zero and
infinity, and the unique optimal power associated to the maxi-
mum secrecy outage capacity appears in the medium region of
PS . Furthermore, it is found that bothP ⋆

R andCmax
SOC improves

asPS increases, which confirms our theoretical claims again.
Then, we testify the accuracy of the theoretical expression

of the maximum secrecy outage capacity with SNRS = 10dB.
As seen in Fig.4, the theorem results are well consistent with
the simulations in the wholeαR,E region with different outage
probability requirements, which proves the high accuracy of
the derived performance expression. As claimed above, given
an outage probability bound byε, as αR,E increases, the
maximum outage secrecy capacity decreases. This is because
the interception capability of the eavesdropper enhances when
the interception distance becomes small. What’s more, given
a αR,E , the maximum secrecy outage capacity increases with
the increase ofε.

Next, we show the performance gain of the proposed
optimal power allocation scheme compared with a fixed power
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allocation scheme with SNRS = 10dB. It is worth pointing out
the fixed scheme uses a fixed powerPR = 20dB regardless
of channel conditions and system parameters. As seen in
Fig.5, the optimal power allocation scheme performs better
than the fixed scheme. Even with a largeαR,E , such as
αR,E = 4, namely short-distance interception, the optimal
scheme can still achieve a high performance gain, which
proves the effectiveness of the proposed scheme.

Finally, we show the effect ofPS on the maximum secrecy
outage capacity. As seen in Fig.6, whenPS tends to zero,
the maximum secrecy outage capacity with differentαR,E

approaches zero. In the largePS region, the maximum secrecy
outage capacity will be saturated for a givenε, which proves
the Theorem 3 again. Consistent with our theoretical analysis,
the performance ceiling is an decreasing function ofαR,E .

V. CONCLUSION

This paper focus on the optimal power allocation for a
secure AF LS-MIMO relaying system with imperfect CSI.
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We present the condition that the secrecy outage capacity is
positive, prove the existence and uniqueness of the optimal
power at the relay, and propose an optimal power allocation
scheme. Moreover, we reveal the asymptotic characteristics of
the maximum secrecy outage capacity in cases of low and high
source transmit powers.

APPENDIX A
PROOF OFTHEOREM 1

To get the condition that the secrecy outage capacity is
positive, we first rewrite (10) as

CSOC = W log2

(

1 +
PRAB

PRA+B + 1

)

−W log2

(

1 +
PRAB

PRA+ B+1
rl

)

. (11)

Examining (11), it is found that if and only if0 < rl < 1, the
secrecy outage capacity is positive. According to the definition
of the relative distance-dependent path lossrl =

−αR,E ln ε

ραR,DNR
,

0 < rl < 1 is equivalent to the following condition:

NR >
−αR,E ln ε

ραR,D

. (12)

In other words, only whenNR >
−αR,E ln ε

ραR,D
, the secrecy

outage capacity is positive. Therefore, we get Theorem 1 and
Proposition 1.

APPENDIX B
PROOF OFTHEOREM 2

At first, we take derivative of (10) with respect toPR, which
is given by (13) at the top of the next page. LetC′

soc = 0, we
get two solutions

PR =
1

Arl

√

rl(B + 1), (14)

and

PR = − 1

Arl

√

rl(B + 1). (15)



C
′

soc =
W

ln 2
B(1 +B)

(

A

(PRA+B + 1)2 + PRAB(PRA+B + 1)
− Arl

(PRArl +B + 1)2 + PRABrl(PRArl +B + 1)

)

.

(13)

ConsideringPR > 0, (14) is the unique optimal solution
in this case. What’s more, whenPR < 1

Arl

√

rl(B + 1), we
haveC′

soc > 0. Otherwise, ifPR > 1
Arl

√

rl(B + 1), we have
C′

soc < 0. Specifically,CSOC improves asPR increases in the
region from0 to 1

Arl

√

rl(B + 1), while CSOC decreases as
PR increases in the region from1

Arl

√

rl(B + 1) to infinity.
Only whenPR = 1

Arl

√

rl(B + 1), the secrecy outage capacity
achieves the maximum value. In other words, the optimal
solution exists and is unique. Hence, we get the Theorem 2.

APPENDIX C
PROOF OFTHEOREM 4

According to Theorem 3, the maximum secrecy outage
capacity can be expressed as

Cmax
SOC = W log2

(

1 +

√

rl(B + 1)B
√

rl(B + 1) + rl(B + 1)

)

−W log2

(

1 +

√

rl(B + 1)B
√

rl(B + 1) + (B + 1)

)

,

= W log2



1 +
1

1
B
+
√

rl(
1
B
+ 1

B2 )





−W log2



1 +
1

1
B
+
√

1
rl
( 1
B
+ 1

B2 )



 . (16)

Intuitively, B tends to zero asPS approaches zero. Then,
1

1

B
+
√

rl(
1

B
+ 1

B2
)

and 1
1

B
+
√

1

rl
( 1

B
+ 1

B2
)

in (16) becomes zero.

Thus, we haveCmax
SOC = 0. On the other hand, ifPS is large

enough,B is also very large. Therefore, the maximum secrecy
outage capacity is transformed as

Cmax
SOC = W log2

(

1 +

√

rl(B + 1)B
√

rl(B + 1) + rl(B + 1)

)

−W log2

(

1 +

√

rl(B + 1)B
√

rl(B + 1) + (B + 1)

)

,

= W log2

(

1 +
B

1 +
√

rl(B + 1)

)

−W log2



1 +
B

1 +
√

B+1
rl



 ,

≈ W log2

(

1 +
B

√

rl(B + 1)

)

−W log2



1 +
B

√

B+1
rl



 (17)

≈ W log2

(

1 +
B√
rlB

)

−W log2



1 +
B
√

B
rl



 (18)

= W log2

(

1 +

√

B

rl

)

−W log2

(

1 +
√

rlB
)

,

= W log2





√

B
rl√

rlB



 ,

= W log2

(

1

rl

)

. (19)

= W log2

(

ραR,DNR

−αR,E ln ε

)

, (20)

where (17) and (18) hold true because whenB is big enough,
the constant term“1” is negligible. Hence, we get the Theorem
3.
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