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Energy harvesting technology is essential for enabling green, sustain-

able and autonomous wireless networks. In this report, a large-scale wireless

network with energy harvesting transmitters is considered, where a group of

transmitters forms a cluster to cooperatively serve a desired user in the pres-

ence of co-channel interference and noise. Using stochastic geometry, simple

closed-form expressions are derived to characterize the outage performance at

the user as a function of important parameters such as the energy harvesting

rate, the energy buffer size and the cluster size for a given cluster geome-

try. The analysis is further extended to characterize the mean delay due to

transmission failure. The developed framework is flexible in that it allows the

in-cluster transmitters to have possibly different energy harvesting capabili-

ties. The analytical expressions are first validated using simulations and then

used for investigating the impact of different parameters such as cluster and

v



buffer size on outage performance. The results suggest that substantial out-

age performance can in fact be extracted with a relatively small energy buffer.

Moreover, the utility of having a large energy buffer increases with the cluster

size as well as with the energy harvesting rate.
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Chapter 1

Introduction

Advancing energy harvesting technology is essential for enabling a green,

sustainable and autonomous wireless network. A wireless device equipped with

energy harvesting capability may extract energy from natural or man-made

sources such as solar radiations, wind, radio frequency signals, indoor lighting,

etc. [22]. For cellular systems, energy harvesting could help reduce the operat-

ing expenditures for the cell-sites, as well as facilitate cell-site deployment [7].

Energy harvesting is also closely related to the emerging concept of Internet of

Things, which entails an all-pervasive network consisting of everyday objects

such as machines, buildings, vehicles, etc [26]. These everyday objects are

embedded with low-power wireless sensors that can communicate with other

devices such as a control unit. Energy harvesting seems particularly attrac-

tive for such scenarios as it can potentially enhance the battery lifetimes while

reducing the network maintenance [19, 22].

The main challenge in realizing a self-powered wireless device is two-

fold. The first challenge concerns the physical layer, where we need low-power,

low-cost and high-efficiency energy conversion circuits. To this end, the semi-

conductor community has been continually working to advance the state-of-
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the-art in energy harvesting devices (see [19, 23] and references therein). The

second challenge is related to the communication layer. Due to limited en-

ergy storage capacity and depending on the type of harvesting, the energy

availability at the device varies over time. Thus, in a self-powered device, not

only the data but the energy arrivals could also be bursty. This calls for a

rethinking of conventional communication protocols. In this regard, several

papers have proposed optimal transmission policies assuming causal or non-

causal knowledge about energy arrivals for different setups (see [9, 22] for a

comprehensive review). For example, a point-point link [12, 18], an interfer-

ence channel [21], and a broadcast channel [27] have been considered. While

prior research has mostly investigated isolated setups, some recent studies have

adopted a stochastic geometry approach to deal with the network-level dynam-

ics in large non-cooperative wireless networks powered by energy harvesting

[7, 13, 16, 24].

By modeling wireless networks in a stochastic geometry framework,

tractable analytical expression can be developed to get general performance

insights, thus obviating the need of exhaustive simulations [11]. For this rea-

son, stochastic geometry is emerging as a popular tool for analyzing a variety

of setups ranging from ad hoc, to cognitive and cellular networks. Using

metrics such as outage probability, transmission capacity and delay, several

studies have characterized the performance of an ad hoc network [3, 8, 25].

Similar analysis has been applied to single and multi-tier cellular networks

under different assumptions about cell association, scheduling and power con-
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trol [2, 6, 8]. Existing models have also been extended to study the benefits of

multi-cell cooperation [1, 4, 15, 17, 20]. None of this work, however, considered

energy harvesting nodes.

In this report, a large self-powered wireless network is considered where

all the transmitters access the medium following a random-access protocol. To

reap the benefits of cooperation, they are grouped into clusters such that all

the in-cluster transmitters jointly serve a common receiver, which is subjected

to interference from out-of-cluster nodes. To the best of our knowledge, the

performance of such a cooperative self-powered wireless network in a stochastic

geometry framework, has not been analyzed. Using stochastic geometry, we

derive simple closed-form expressions that characterize the system performance

as a function of system parameters (e.g., energy harvesting rate) and cluster

geometry, amid interference and noise. The developed framework is flexible

in that it allows the in-cluster transmitters to have possibly different energy

harvesting capabilities. This analytical model is validated using numerical

simulations. The analysis is also extended to characterize the mean delay

at the receiver due to transmission failure. In addition, we also investigate

the impact of energy harvesting rate and energy buffer size on the outage

performance. Our findings suggest that (a) substantial outage performance

can in fact be extracted with a relatively small energy buffer size (typically

less than 10 in the considered setup); and (b) the utility of having a large

energy buffer increases with the cluster size as well as the energy harvesting

rate.
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A brief overview of stochastic geometry-based work on energy harvest-

ing is in order. The spatial throughput of a large-scale self-powered ad hoc

network has been studied [13, 24]. In [13], the network model consists of a

large number of energy harvesting transmitters, where each transmitter has

a dedicated receiver located a fixed distance away. Leveraging tools from

stochastic geometry and random walk theory, spatial throughput was derived

by optimizing over the transmission power. For a similar setup, [24] derived

the transmission capacity for a random access network by optimizing over the

medium access probability. Self-powered heterogeneous cellular networks have

been considered in [7]. In [7], base-station availability (i.e., the fraction of the

time it can remain ON) was analytically characterized using tools from random

walk theory and stochastic geometry. The work in [7, 13, 24], however, does

not consider any node cooperation or joint transmission at the physical layer.

In contrast, we consider a large-scale network where clusters of self-powered

nodes jointly serve a desired user, and provide a tractable framework to char-

acterize the system performance as a function of energy harvesting capability

and other network parameters.

In another line of work, stochastic geometry has also been used for

modeling cognitive networks with opportunistic energy harvesting [16]. The

study of large-scale networks with wireless power transfer and simultaneous

wireless information and power transfer is yet another related area with con-

siderable research activity (see [14, 22] and references therein). In this report,

however, we limit ourselves to a conventional energy harvesting system and
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leave the topic of joint information and power transfer for future work.
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Chapter 2

System Model

In this chapter, the system model is described in detail beginning with

the energy harvesting model. The model parameters are summarized in Table

2.1 for convenience.

2.1 Energy Harvesting Model

We consider a large wireless network consisting of transmitters or ac-

cess points (APs) that are equipped with energy harvesting modules. None

of the transmitters are privy to non-causal information about energy arrivals,

which is assumed to be random and independent across nodes. Without loss

of generality, we now describe the energy harvesting model for a typical trans-

mitter equipped with an energy buffer of size S ∈ N. The energy arrives at the

buffer with rate ρ following an independent and identically distributed (IID)

Bernoulli process, i.e., with probability ρ, one unit of energy arrives at the

buffer in time-slot t, while 1 − ρ is the probability that no energy arrives at

the buffer in that slot. A node may choose to transmit with fixed power P if

it has sufficient energy in the buffer. No power control is assumed, therefore

each transmission depletes the buffer of P units of energy. The energy arrivals
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are modeled using a birth-death Markov process (cf. Fig. 1) along the lines of

[13, 24].

0 1 S-1 S2

1-ρ ε  ε  ε  

ρ µ µ µ 

1-pch (1-ρ)

pch (1-ρ)pch (1-ρ)pch (1-ρ) pch (1-ρ)

. . .

Figure 2.1: Finite-state birth-death Markov chain for an energy buffer of size
S with µ = ρ(1− pch) and ε = ρpch + (1− ρ)(1− pch).

For medium access, we consider slotted ALOHA protocol where in each

time-slot, a node (having sufficient energy) accesses the medium with prob-

ability pch independently of other nodes. Let pS = Pr{AS(t) ≥ P}, where

AS(t) denotes the state (i.e., energy level) of the buffer at time t. Here, pS

denotes the probability that a node has requisite amount of energy available

in the buffer of size S. We now define ptr, the transmission probability of an

arbitrary node, and express it as a function of system parameters.

Lemma 2.1.1. For energy arrivals with rate ρ > 0, finite energy buffer of size

S ∈ N, and channel access probability pch > 0, we have ptr = pchpS in steady

state, where

pS =



ρ
ρ+pch−ρpch

S = 1

ρ
pch

(
1−
(
ρ(1−pch)
pch(1−ρ)

)S)

1− ρ
pch

(
ρ(1−pch)
pch(1−ρ)

)S S > 1, ρ 6= pch

S
S+1−ρ S > 1, ρ = pch.

(2.1)

for the case P = 1.
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Proof. It results from solving the balance equations for the Markov chain

shown in Fig. 2.1 (e.g., see [13]). �

Note that 0 < ptr ≤ pch since lim
ρ→1

ptr = pch, where ρ = 1 corresponds

to the case when the node is powered by conventional power sources. Fur-

thermore, we consider pch to be fixed throughout the network. Therefore, the

transmission probability of a node varies as a function of the energy harvesting

rate and buffer size. In other words, the higher the ptr of an AP, the more

superior the energy harvesting capability (i.e., harvesting rate and/or buffer

size). Note that Lemma 1 has been specialized for the case P = 1 for simplic-

ity. For other values of P , we can similarly solve the balance equations of the

corresponding Markov chain to calculate pS.

2.2 Network Model

In our setup, a cluster of K cooperating APs jointly serve a desired

user over the same time-frequency resource block. It is assumed that each

user is served by the K closest APs. The AP locations are drawn from a

homogeneous Poisson point process (PPP) of intensity λ, which we denote

as Φ , {di, i ∈ N}. Similarly, the user locations are modeled using another

PPP Φu of intensity λu, which is assumed to be independent of Φ. We further

assume that the AP density is sufficiently high relative to the user density

such that with a high probability, no two users share the same set of closest

APs. Due to concurrent transmissions, the receiver is subjected to co-channel
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interference from the out-of-cluster APs. We assume that all out-of-cluster APs

contribute to interference. In general, we expect such a network to consist of

nodes with different physical parameters (e.g., energy harvesting capability)

and random locations (e.g., due to mobility or unplanned deployments). To

model this heterogeneous network interference, we consider M additional tiers

of nodes, where the nodes in tier m are located according to a homogeneous

PPP Φm , {di,m, i ∈ N} of intensity λm, independently of other tiers1. Note

that each class of nodes may differ in terms of energy harvesting rate ρm, energy

buffer size Sm, and transmit power Pm
2, etc. All the nodes are assumed to

be equipped with a single antenna. Leveraging Slivnyak’s theorem [11], we

consider a typical user located at origin, and characterize the performance in

the presence of co-channel interference and noise.

2.3 Signal Model

All the nodes are assumed to employ orthogonal frequency division

multiple access (OFDMA) for communication. We consider a transmission

scheme where a group of K cooperating APs jointly transmit the same data

to a given user over the same time-frequency resource block. Given the chal-

lenges associated with channel acquisition, none of the transmitting APs are

1For compactness, we also introduce an alternative notation for the nodes in AP tier Φ.
Specifically, the subscript 0 is sometimes used while referring to the quantities of nodes in
the AP tier, i.e., Φ0 = Φ, λ0 = λ, etc.

2Without loss of generality, we assume the transmit power of the AP tier to be normalized
to unity. Therefore, Pm also corresponds to the normalized transmit power of tier m, where
the normalization is with respect to the actual transmit power of the AP tier.
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Table 2.1: Model Parameters

Notation Description

K cluster size
η path-loss exponent
pch channel access probability

ptr , 1− qtr transmission probability
ρ energy harvesting rate
S energy buffer size
Φ;λ (or Φ0, λ0) PPP with intensity λ (also denoted as λ0)

modeling AP locations.
{ptr,i}Ki=1 transmission probabilities of K in-cluster

APs in Φ.
ptr,o transmission probability of out-of-cluster

APs in Φ.
Φm;λm
(1 ≤ m ≤M)

PPP with intensity λm modeling node lo-
cations in tier m.

p
(m)
tr

(1 ≤ m ≤M)
transmission probability of nodes in Φm.

Pm
(1 ≤ m ≤M)

transmit power of nodes in Φm.

assumed to have any instantaneous channel knowledge. The considered joint

transmission scheme is simple as it does not require joint encoding at the co-

operating transmitters. To further reduce the coordination overhead, we do

not assume any tight synchronization among the in-cluster APs. The user,

however, is required to know the composite downlink channel from the in-

cluster transmitters for coherent detection. The signals transmitted by the

cooperating APs superimpose non-coherently at the receiver, resulting in a
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received power boost. Moreover, interference seen by the user is treated as

noise for the purpose of decoding. The channel model is described next. We

define Hi to be the channel power gain for the link from AP i in Φ to the

given user. We consider a rich scattering environment where all the links ex-

perience IID narrowband Rayleigh fading such that Hi ∼ exp(1). With such a

non-coherent joint transmission scheme (see [20, Appendix A] for details), the

signal-to-interference-plus-noise ratio (SINR) at the user can be expressed as3

γ ,

K∑
i=1

1id
−η
i Hi

I + σ2
(2.2)

where the indicator function 1i models the uncertainty due to bursty energy

arrivals at the transmitter such that Pr{1i = 1} = ptr,i and Pr{1i = 0} =

1− ptr,i , qtr,i for the in-cluster APs (i.e., 1 ≤ i ≤ K), η denotes the pathloss

exponent, while σ2 gives the variance of the receiver noise, which we assume

to be zero-mean circularly symmetric complex Gaussian. Moreover, I denotes

the aggregate interference power observed at the receiver. It can be expressed

as

I = I0 +
M∑
m=1

Im

=
∞∑

i=K+1

1id
−η
i Hi︸ ︷︷ ︸

intrinsic

+
M∑
m=1

∑
di,m∈Φm

1i,mPmd
−η
i,mHi,m︸ ︷︷ ︸

extrinsic

. (2.3)

3For tractability, it is assumed that the signals transmitted by the interfering APs su-
perimpose non-coherently at the receiver, which would typically be the case.
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where the first term I0 accounts for the (in-network or intrinsic) interference

from the out-of-cluster APs belonging to Φ. Here, Pr{1i = 1} = ptr,o while

Pr{1i = 0} = 1− ptr,o , qtr,o for all the out-of-cluster APs (i.e., i > K). The

second term
M∑
m=1

Im models the (out-of-network or extrinsic) interference from

the nodes belonging to the M interfering tiers {Φm}Mm=1. Note that for the

interfering tiers, we use a slightly modified notation by including i,m in the

subscript to denote a node i that belongs to the interfering tier Φm. As done

for the AP tier Φ, we can similarly define Pr{1i,m = 1} = p
(m)
tr for the nodes

in tier m. The assumptions about the channel model are as explained for the

AP tier Φ, i.e., Hi,m ∼ exp(1).

Notation. Table 2.1 summarizes the notation introduced in this section. We

adopt the following notation for the transmission probabilities of the nodes

belonging to tier Φ. For i = 1, · · · , K, we define ptr,i , 1 − qtr,i to be the

transmission probability of the ith in-cluster AP belonging to Φ, whereas ptr,o

gives the transmission probability of all other (i.e., out-of-cluster) APs in Φ.

Similarly, for m = 1, · · · ,M we define p
(m)
tr , 1 − q

(m)
tr to be the transmis-

sion probability of the nodes belonging to the interfering tier Φm. The above

notation allows both the in-cluster and out-of-cluster nodes to have different

transmission probabilities. This is in line with the considered model, where we

have allowed the nodes to have possibly different energy harvesting capabili-

ties. For ease of exposition, we define Ξ =
[
qtr,i, · · · , qtr,K , qtr,o, q

(1)
tr , · · · , q

(M)
tr

]
,

which depends on the energy harvesting parameters (i.e., energy harvesting

12



rate and energy buffer size). We also define

Q =
K∏
i=1

qtr,i. (2.4)

For the APs (in Φ) belonging to a cluster of size K, we define ωi = di
dK

such that {ωi}Ki=1 denotes a set of normalized distances. This set is assumed

to be arranged in ascending order, i.e., d1 refers to the closest serving AP

while dK refers to the AP located farthest away from the user. We also define

Ω = {ωη1 , · · · , ω
η
K}, Ω̂ = { ωη1

qtr,1
, · · · , ωηK

qtr,K
} and

αi(Ω) = (−1)i
+∑[(

K

K − i

)
Ω

]
(2.5)

where
+∑

[·] gives the sum of the elements of the set that it operates on. With

a slight abuse of notation,
(
K
K−i

)
Ω

is defined to be the set of all products of

the elements of Ω taken K − i at a time. The summation in (2.5) is taken

over the elements of the set
(
K
K−i

)
Ω

. Similarly, the definition of αi(Ω̂) follows

from (2.5) with the set Ω now replaced by Ω̂. For the intensity parameters,

we define Λ = [λ0, · · · , λm] (recall that λ0 = λ gives the intensity of the PPP

Φ0 = Φ).
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Chapter 3

Stochastic Geometry Analysis

In this chapter, closed-form expressions are provided for the coverage

probability and mean delay at a typical user using tools from stochastic ge-

ometry.

3.1 Coverage Analysis

The following theorem gives a closed-form expressions for the comple-

mentary cumulative distribution function (CCDF) of γ (or equivalently the

coverage probability) at a receiver, as a function of network parameters and

cluster geometry.

Theorem 3.1.1. For a cluster of size K, the CCDF of γ, F̄γ (K, θ) = Pr{γ >

θ}, can be expressed in terms of the interference intensity parameters (Λ),

noise power (σ2), energy harvesting parameters (Ξ) and cluster geometry
(
{di}Ki=1

)
as

F̄γ(K, θ) = Q

K∑
j=1


K−1∑
i=0

(
αi(Ω̂)− αi(Ω)

)
(ωηj )i

ωηj

(
K∏
l 6=j
ωηl − ω

η
j

)
∆j(θ) (3.1)

14



where

∆j(θ) = e−d
η
j θσ

2

e−πptr,oλd
2
KF(ωηj θ,η)Ψj (M) (3.2)

with

Ψj (M) =
M∏
m=1

e−πp
(m)
tr λmdj

2(θPm)
2
η Γ(1+ 2

η )Γ(1− 2
η ) (3.3)

and

F (U, V ) =
2U

V − 2
2F1

(
1, 1− 2

V
, 2− 2

V
,−U

)
(3.4)

where 2F1(·) is the Gauss hypergeometric function.

Proof. See Appendix A. �

Remark 3.1.1. Note that Theorem 3.1.1 allows the in-cluster APs to have

possibly different energy harvesting rates and/or energy buffer sizes, and is

therefore useful for getting general insights about the performance when the

cluster consists of heterogeneous APs. Similarly, the multi-tier approach allows

us to capture the heterogeneity in out-of-cluster nodes. Furthermore, all the

interfering APs can be assumed to have the maximum harvesting rate/buffer

size in order to get a lower bound on performance.

Some special cases of Theorem 3.1.1 are listed below.

• θ → 0. In the low-outage regime, the performance is dominated by

the energy harvesting parameters and the cluster size. In particular, as

15



θ → 0 in (3.1), we get lim
θ→0

F̄γ(K, θ) = 1 − Q, where Q defines a limit

on the performance and infact represents the exact outage probability in

the asymptotic regime. This observation also holds for Theorem 3.1.2.

• {qtr,i}Ki=1 = qtr,o , qtr. When all the APs in Φ have identical energy har-

vesting capabilities, i.e., qtr,i = qtr,o , qtr, the CCDF in (3.1) simplifies

to

F̄γ(K, θ) =
K∑
j=1


K−1∑
i=0

αi(Ω)
(
qtr

i − qtr
K
)

(ωηj )i

ωηj

(
K∏
l 6=j
ωηl − ω

η
j

)
∆j(θ) (3.5)

where ∆j(θ) is given by (3.2).

Note that Theorem 3.1.1 can be used for analyzing cooperative setups in the

presence of interference and noise, for a given cluster geometry. For a network

consisting of homogeneous APs, we provide a more general result in terms of

normalized distances by unconditioning w.r.t. dK .

Theorem 3.1.2. In the interference-limited regime (σ2 → 0), the CCDF of

γ, F̄ ′γ(K, θ), can be expressed as a function of cluster size K, interference

intensity parameters Λ and energy harvesting parameters Ξ for a normalized
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cluster geometry {ωi}Ki=1 as 1

F̄ ′γ(K, θ) =
K∑
j=1


K−1∑
i=0

αi(Ω)
(
qtr

i − qtrK
)

(ωηj )i

ωηj

(
K∏
l 6=j
ωηl − ω

η
j

)
$j (θ) (3.6)

where

$j (θ) =
(
1 + F

(
ωηj θ, η

)
+ Υj (M)

)−K
(3.7)

and

Υj (M) = ωj
2θ

2
ηΓ

(
1 +

2

η

)
Γ

(
1− 2

η

) M∑
m=1

p̃
(m)
tr λ̃mPm

2
η (3.8)

with p̃
(m)
tr =

p
(m)
tr

ptr
and λ̃m = λ̃m

λ
.

Proof. See Appendix B. �

Remark 3.1.2. For the case with no extrinsic interference, i.e., with the M

interfering tiers turned off, the CCDF expression in Theorem 3.1.2 is inde-

pendent of the AP intensity λ. This is because the probability of finding the

closest AP around the receiver increases with λ, but so does the interference

such that the two effects cancel out.

Remark 3.1.3. With the M interfering tiers now turned on, the CCDF expres-

sion in Theorem 3.1.2 is no longer independent of the intensity parameters

1Here, the superscript ′ is used in F̄ ′γ(K, θ) to differentiate it from the earlier notation

F̄γ(K, θ) used for Theorem 1.
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Λ. In this case, increasing the AP intensity λ (or more generally the effec-

tive intensity ptrλ) helps dilute the intensity of the interfering tiers. This is

supported by (3.8) where the term inside the summation vanishes as λ is in-

creased. This neutralizes the harmful term Υj (M), which captures the effect

of extrinsic interference. This is in contrast to the previous case where the AP

intensity λ played no role.

Some more special cases are postulated below assuming the M tiers to

be turned off.

• ptr → 1. It is worth noting that without energy harvesting and a random

medium access protocol, i.e., as ptr → 1 in (3.6), and further assuming

the M interfering tiers to be turned off, we can retrieve the expression

for the CCDF of γ in a traditionally powered cooperative network as

given in [15], which Theorem 3.1.2 generalizes.

• K = 1. For the non-cooperative case, the expression in (3.6) simplifies

to F̄ ′γ(1, θ) = (1− qtr)(1 + F(θ, η))−1. Furthermore, with qtr = 0, we can

retrieve the CCDF expression for the signal-to-interference ratio (SIR)

in a traditionally powered non-cooperative network as given in [2].

This shows that our analytical framework is fairly general with the traditional

cooperative and non-cooperative networks as special cases.
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3.2 Delay Characterization

In this section, we characterize the mean delay seen by a successful

packet reception at the typical user as a function of network parameters and

cluster geometry. We use T to denote the number of successive transmission

attempts (or time-slots) before a packet is successfully received at the typical

user. A successful packet reception in an attempt i is denoted by Ei, whereas

Ēi denotes the corresponding outage event. To characterize the delay, consider

Pr{T = n} = Pr{Ē1, · · · , Ēn−1,En}

= Pr{γ1 ≤ θ, · · · , γn−1 ≤ θ, γn > θ}

= Pr{γn > θ}
n−1∏
i=1

(1− Pr{γi > θ}) (3.9)

where γi denotes the SINR observed in time-slot i, as given in (2.2). The last

equation follows due to the IID assumption on fading, and by further assuming

the PPP realizations to be independent across slots, which would be the case in

a highly mobile environment. Note that if the interferer locations are assumed

to be static, the average delay would be higher due to correlated interference

as noted in [5] (therefore, in the considered setup, E [T ] can be interpreted as

a lower bound on the actual mean delay). Furthermore, the term Pr{γi > θ}

is independent of i, and is given by Theorem 3.1.1 (or Theorem 3.1.2). Under

these assumptions, T can be treated as a geometric random variable with

parameter Pr{γ > θ}. Therefore, the mean of T can be expressed as

E [T ] =
1

F̄γ (K, θ)
(3.10)
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where F̄γ (K, θ) is given by (3.1). Similarly we can express the variance of T

as

Var [T ] =
Fγ (K, θ)

F̄γ (K, θ)
2 . (3.11)

Similarly, by replacing F̄γ (K, θ) with F̄ ′γ (K, θ) using (3.6), we can extend the

above result to the scenario discussed in Theorem 3.1.2.
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Chapter 4

Simulation Results

In this chapter, we validate the analytical model using numerical sim-

ulations. Moreover, we also investigate the impact of several parameters on

outage performance.

4.1 Coverage Results

We first consider the case with heterogeneous in-cluster APs, and plot

F̄γ (K, θ), the CCDF of γ, for various values of K in Fig. 4.1. The analytical

(anlt) CCDF is based on Theorem 3.1.1, while the simulated (sim) curve is

obtained by Monte Carlo simulations for the given set of parameters. The

analytical model is validated since there is a complete agreement between an-

alytical and simulation results. Moreover, we can also observe that the SINR

distribution at the receiver improves with K due to an additional transmit di-

versity gain. Also, the outage performance is limited by the energy harvesting

capabilities as the CCDF converges to 1−Q in the low-outage regime (θ → 0)

for any given cluster.

We now consider the case discussed in Theorem 3.1.2, where the APs

have identical energy harvesting capabilities. In Fig. 3, we plot F̄ ′γ(K, θ), the
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Figure 4.1: CCDF of γ for various values of K given pch = 0.7, λ = 0.1, σ2 =
0.01, η = 4 and {di}4

i=1 ={2, 3, 4, 5}. The plot is obtained for a single interfering

tier M = 1 with λ1 = 0.01, p
(1)
tr = 0.53 and P1 = 2. Energy harvesting

parameters for the AP tier are {ρi}4
i=1 = {0.4, 0.45, 0.5, 0.55}, ρo = 0.55 and

S = 2. Simulation (sim) results agree with the analytical (anlt) results based
on Theorem 3.1.1.

CCDF of γ with the absolute in-cluster distances averaged out. The plot in Fig.

4.2a is obtained with the interfering tiers turned off. Note that the intensity

parameter is not specified as the performance is independent of λ for this case.

It can be seen that there is a complete match between the analytical curve

based on Theorem 3.1.2 and the simulated CCDF obtained via Monte Carlo

simulations. A complete match between analytical and simulation results can

also be observed in Fig. 4.2b, which is obtained with the interfering tiers

turned on.
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Figure 4.2: (a) CCDF of γ in the interference-limited regime for K ∈ {1, 2}
with the M tiers turned off (i.e., intrinsic interference only). The plot includes
the analytical (anlt) curve based on Theorem 3.1.2 as well as the simulated
(sim) CCDF of γ. The simulation parameters are ω1 = 1 for K = 1 and
{ωi}2

i=1 = {0.5, 1} for K = 2, pch = 0.8 and η = 4. The energy harvesting
parameters are ρ = 0.75 and S = 2 for all APs. (b) For the same parameters,
CCDF of γ now plotted when both intrinsic and extrinsic interference are
present. Other parameters include M = 1, P1 = 2, and p

(1)
tr = 0.5. Unlike (a)

which is independent of intensity, (b) is obtained for λ = 0.1 and λ1 = 0.05.
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4.2 Delay Results

Having validated the model, we plot the average delay E [T ] experienced

by a typical packet against the outage threshold θ for the interference-limited

case addressed in Theorem 3.1.2 (Fig. 4.3a). Note that this result does not

correspond to a particular realization of the in-cluster AP locations. Rather, it

is averaged over all AP realizations that share the same in-cluster geometry. In

this example, we consider the case when the neighboring APs are equidistant,

i.e., {ωi}Ki=1 = { i
K
}Ki=1 for a given K. In Fig. 4.3b, the coefficient of variation

of T (given by

√
Var[T ]

E[T ]
) is also plotted. The coefficient of variation is relatively

small in the medium-low outage regime, particularly for large K. This suggests

that the average delay is representative of the actual T seen by most packets.

Similar plots can also be obtained for the setup addressed in Theorem 3.1.1.

As demonstrated above, the considered framework can be used to get

general performance insights for a large class of self-powered wireless networks.

We next study how the energy harvesting parameters impact the outage per-

formance.
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Figure 4.3: (a) Plots the mean delay E [T ] vs. outage threshold θ in the
interference-limited regime for cluster size K ∈ {1, 2, 3, 4} with the in-cluster
geometry {ωi}Ki=1 = { i

K
}, channel access probability pch = 0.8 and path loss

exponent η = 4. The energy harvesting parameters are ρ = 0.75 and S = 2

for all APs. (b) Plots the coefficient of variation

√
Var[T ]

E[T ]
∈ (0, 1) for the delay

metric. A lower coefficient of variation indicates that the corresponding mean
delay is more representative of the delay seen by most packets.
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Figure 4.4: Impact of energy buffer size S on asymptotic outage probability
Q for various values of K at fixed ρ = 0.75 and pch = 0.8.

4.3 Impact of energy buffer size on performance

In Fig. 4.4, the asymptotic outage probability Q1 is plotted against the

energy buffer size S (in log scale) for various values of the cluster size K. It

can be seen that outage can be considerably reduced by increasing the buffer

size until a limit, beyond which the curves tend to flatten out. It appears

that appreciable performance gains can be extracted with a relatively small

buffer size. Moreover, the benefits of having a high-capacity buffer tends to

increase with the cluster size as depicted by the increasing steepness of the

1It is possible to particularize the analysis for a given outage threshold θ. However, to
get general performance insights, we use Q, which also defines a lower limit on the outage
probability given the energy harvesting parameters.
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slopes (when S is small) as K is increased. This interplay between cluster

and buffer size also suggests that the extent of cooperation could influence the

design of energy harvesting devices, even though the energy harvesting process

is assumed to be independent across the cooperating APs. In addition, we can

also observe that the outage is reduced by roughly an order of magnitude with

every addition in the cluster size.

4.4 Impact of energy harvesting rate on performance

In Fig. 4.5, the asymptotic outage probability Q is plotted against the

energy harvesting rate ρ for various values of energy buffer size S. It can

be seen that outage reduces with the increase in energy harvesting rate at

the transmitters. Moreover, using a larger energy buffer brings about further

reduction in outage due to enhanced energy availability at the transmitters.

Furthermore, the gains from using a larger buffer size are more evident at rel-

atively high energy harvesting rates. Fig. 4.5 also corroborates the previous

observation (cf. Fig. 4.4) that substantial performance can be extracted by

using a relatively small buffer size. For example, S = 10 suffices for this setup.

In addition, if the energy harvesting rate ρ exceeds the channel access prob-

ability pch, and the buffer size is allowed to increase, the outage performance

limit becomes independent of the energy harvesting rate ρ. This is because

under these conditions, the energy harvesting system tends to behave like a

traditionally powered system.
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Figure 4.5: Impact of energy harvesting rate ρ on asymptotic outage probabil-
ity Q for various values of energy buffer size S at fixed pch = 0.8. The curves
are plotted for cluster size K ∈ {1, 3, 6}.
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Chapter 5

Conclusion

We have derived closed-form expressions to characterize the outage per-

formance at a receiver, in a self-powered clustered wireless network, in the

presence of interference and noise. The developed framework is applicable to a

general class of networks, with the traditional cooperative and non-cooperative

networks as special cases. It can be used to get general performance insights

even when the in-cluster nodes have different energy harvesting capabilities.

Moreover, we have also investigated the impact of in-cluster energy harvesting

parameters on performance. Simulation results reveal that the outage perfor-

mance improves with the buffer size and the energy harvesting rate. Further-

more, most performance gains can be extracted using a relatively small buffer

size, with the improvement becoming more pronounced for large clusters.
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Appendix A

Proof of Theorem 1

Using (2.2), we have F̄γ (K, θ) = Pr{γ > θ} = E [Pr {SK > θdηK (I + σ2)}]

where SK =
K∑
i=1

1iĤi and Ĥi = Hiω
−η
i . To proceed further, we first find the

CCDF of SK , where SK is a sum of K independent random variables. Note

that Ĥi is exponentially distributed with mean ω−ηi , whereas the indicator

function follows a Bernoulli distribution with mean ptr,i, independent of Ĥi.

Using the result from Theorem C.1.1 (Appendix C), the CCDF of SK can be

expressed as (x ≥ 0)

F̄Sk (x) = Q
K∑
j=1


K−1∑
i=0

(
αi(Ω̂)− αi(Ω)

)
(ωηj )i

ωηj

(
K∏
l 6=j
ωηl − ω

η
j

)
 e−ω

η
j x (A.1)

Conditioning on the aggregate interference power I, we can write F̄γ|I (K, θ) =

F̄SK (θdηK(I + σ2)). Using (A.1), and unconditioning w.r.t. I, we can express

F̄γ (K, θ) (for θ ≥ 0) as

F̄γ(K, θ) = Q

K∑
j=1


K−1∑
i=0

(
αi(Ω̂)− αi(Ω)

)
(ωηj )i

ωηj

(
K∏
l 6=j
ωηl − ω

η
j

)
E

[
e−ω

η
j d
η
Kθ(I+σ2)

]
(A.2)
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where the expectation in (A.2) is over the aggregate interference power I, i.e.,

over both fading and interferer locations. We next find the expectation of

the term E
[
e−dj

ηθ(I+σ2)
]

= e−dj
ηθσ2E

[
e−dj

ηθI
]
. Since the PPPs {Φm}Mm=0 are

assumed to be independent, we have

E
[
e−dj

ηθI
]

= E
[
e−d

η
j θI0
] M∏
m=1

E
[
e−d

η
j θIm

]
(A.3)

where the first term (withm = 0) corresponds to intrinsic interference, whereas

the remaining terms (m ≥ 1) correspond to extrinsic interference. The expec-

tation in (A.3) can be evaluated using the Laplace transform of Im, which we

denote by LIm(s) = E
[
e−sIm

]
.

LIm(s) = E

e−s
( ∑
di∈Φm\B(gm)

Pm1iHid
−η
i

)
(a)
= E

 ∏
di∈Φ̂m\B(gm)

E
[
e−sPmHid

−η
i

]
(b)
= E

 ∏
di∈Φ̂m\B(gm)

1

1 + sPmd
−η
i


= exp

(
−2πλ̂m

∫ ∞
gm

x

1 + s−1Pm
−1xη

dx

)
(A.4)

where B(gm) denotes a disc of radius gm centered at origin, and is used to

model an interference-free guard zone around the user w.r.t. tier m. The

inner expectation in (a) is over fading power while the outer expectation is

over the PPP Φm of intensity λm outside B(gm). Next, we exploit the property

of independent thinning of a PPP to deal with the transmission indicator
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and consider a (thinned) PPP Φ̂m with effective density λ̂m = p
(m)
tr λm for

1 ≤ m ≤ M and λ̂m = ptr,oλm for m = 0. As the fading is i.i.d. across

links and from further conditioning over the location, we obtain (b). The last

equation follows by invoking the probability generating functional (PGFL) [11]

of the PPP and further algebraic manipulations. With additional algebraic

steps, (A.4) can be expressed in terms of hypergeometric function, which with

s = dηjθ, gives

LIm(s)|s=dηj θ = exp

(
−πλ̂mg2

mF

(
dηj
gηm
Pmθ, η

))
(A.5)

where F(·, ·) is given by (3.4). To compute the expectation of the term in

(A.3) arising due to out-of-cluster APs in Φ0, we set g0 = dK . This is because

the cluster is assumed to consist of the K closest nodes and interference is

due to the nodes located outside this protection zone. For the interfering

tiers {Φm}Mm=1, however, we have not assumed any protection zone around

the receiver. With no interference-free protection zone (i.e., gm → 0), LIm(s)

further simplifies to

LIm(s)|s=dηj θ = exp
(
−πλ̂mdj2Γ(1 + 2/η)Γ(1− 2/η)(Pmθ)

2/η
)

(A.6)

where Γ(·) is the Gamma function [11]. Evaluating the expectation in (A.2)

using (A.5), (A.6), and further substituting P0 = 1, λ̂0 = ptr,oλ0, λ̂m = p
(m)
tr λm

and dj = ωjdK , we obtain the result in Theorem 1. �
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Appendix B

Proof of Theorem 2

We begin the proof along the lines of [15] by leveraging a known result

on PPP distance distribution. As shown in [10], the distance dK , between a

typical user and its Kth closest AP, follows a generalized Gamma distribution,

i.e.,

fdK (r) = 2(rΓ(K))−1(ptrλπr
2)
K
e−ptrλπr2

(B.1)

where Γ(K) is the Gamma function. Plugging σ2 = 0 in (3.2), and taking

expectation w.r.t. dK , we have

E [∆j(θ)] =∫
r>0

e−πptrλr2F(ωηj θ,η)
M∏
m=1

e−πp
(m)
tr λmωj

2(Pmθ)
2
η Γ(1+ 2

η )Γ(1− 2
η ) 2(ptrλπr

2)
K
e−ptrλπr2

rΓ(K)
dr

=

∞∫
0

e−υυK−1

Γ(K)

(
1 + F

(
ωηj θ, η

)
+ ωj2θ

2
ηΓ
(

1 + 2
η

)
Γ
(

1− 2
η

) M∑
m=1

p̃
(m)
tr λ̃mPm

2
η

)K dυ

=
1(

1 + F
(
ωηj θ, η

)
+ ωj2θ

2
ηΓ
(

1 + 2
η

)
Γ
(

1− 2
η

) M∑
m=1

p̃
(m)
tr λ̃mPm

2
η

)K (B.2)
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where the last equation is obtained by using a dummy variable

υ = πr2

(
ptrλ

(
1 + F

(
ωηj θ, η

))
+ ωj

2θ
2
ηΓ

(
1 +

2

η

)
Γ

(
1− 2

η

) M∑
m=1

p̃
(m)
tr λ̃mPm

2
η

)
(B.3)

for integration, and then applying the definition of the Gamma function Γ(K) =
∞∫
0

e−xxK−1dx. By taking expectation of (3.5) w.r.t. dK , and using (B.2), we

recover the expression in Theorem 2. �
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Appendix C

Sum of Bernoulli-weighted Exponentials

This appendix is self-contained in terms of the notation used. Moreover,

the variables used stating the results in this appendix should not be confused

with those introduced elsewhere in this report.

C.1 Main Result

Consider a sum of K independent bernoulli-weighted exponential ran-

dom variables
(
{εi}Ki=1

)
such that SK =

K∑
i=1

εi with εi , ziGi. Here, zi ∼

Bern(pi), pi , 1 − qi and independent across i. Note that we do not require

{zi}Ki=1 to have distinct means. Independently of {zi}Ki=1, we define indepen-

dent random variables {Gi}ki=1 such that Gi ∼ exp(λi), Λ , [λ1, · · · , λK ], and

Λ has τ unique entries1. Note that 1 ≤ τ ≤ K, where τ = 1 when λi are equal

and τ = K when λi are distinct. We further define {δi}τi=1 to be the set of all

unique elements of Λ, where δi has multiplicity ri in Λ. For ease of exposition,

we hereby define Λ̂ ,
[
λ1

q1
, · · · , λK

qK

]
and Q ,

K∏
i=1

qi.

Theorem C.1.1. For SK, a sum of K independent bernoulli-weighted expo-

1Strictly speaking, Λ is a multiset as it may have duplicate elements. For cleaner expo-
sition, however, we call Λ (and other multisets) a set.
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nential random variables (as defined above), the CCDF F c
SK

(θ) = Pr{SK > θ}

(for θ ≥ 0) is given by

F c
SK

(θ) = Q

τ∑
u=1

ru∑
v=1

(
K−1∑
m=0

(
αm(Λ̂)− αm(Λ)

)
Υm(ru, v)

)
Q(v, δux)

δu
v (C.1)

where

Υm(ru, v) = (−1)ru−v
∑

∑τ
i=1 ni=ru−v

(
m

nu

)
δu
m−nu

τ∏
j 6=u

(
rj + nj − 1

nj

)
(δj − δu)−(rj+nj).

(C.2)

The summation in (C.2) is taken over all possible combinations of non-negative

integer indices n1, · · · , nτ that add up to ru−v. Moreover, Q(a, b) = 1
Γ(a)

∞∫
b

ta−1e−tdt

denotes the regularized upper incomplete Gamma function. Furthermore,

αi(Λ) , (−1)iCK−iΛ (C.3)

and

CK−iΛ ,
+∑[(

K

K − i

)
Λ

]
(C.4)

where
+∑

[·] returns the sum of the elements of the set that it operates on.

With a slight abuse of notation,
(
K
K−i

)
Λ

is defined to be the set of all products

of the elements of Λ taken K− i at a time2. The summation in (C.4) is taken

over the elements of the set
(
K
K−i

)
Λ

and C0
Λ is defined to be 1. Similarly, the

definitions of αi(Λ̂) , (−1)iCK−i
Λ̂

and CK−i
Λ̂
,

+∑
[
(
K
K−i

)
Λ̂
], respectively, follow

from (C.3), (C.4) with the set Λ now replaced by Λ̂.

2The set
(
K
K−i

)
Λ

has cardinality
(
K
K−i

)
.
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We now give an example to further clarify the notation. For K = 3

and Λ = [λ1, λ2, λ3], we have
(

3
1

)
Λ

= [λ1, λ2, λ3],
(

3
2

)
Λ

= [λ1λ2, λ2λ3, λ3λ1] and(
3
3

)
Λ

= [λ1λ2λ3].

C.2 Proof

The following lemma will be used in the proof of Theorem C.1.1.

Lemma C.2.1. For a set Ω = (ω1, · · · , ωK) consisting of elements which are

not all zero, and a variable x, we have the following relation

K∏
i=1

(ωi − x) =
K∑
i=0

(−1)iC
(K−i)
Ω xi (C.5)

where C0
Ω , 1.

Proof. The above expression can be verified by expanding both sides in vari-

able x. The proof is omitted for brevity. �

We now find the characteristic function Φεi(jt) of εi = ziGi.

Φεi(jt) =

∞∫
−∞

ejtγfεi(ε)dε = qi + pi
λi

λi − jt
(C.6)

where (C.6) follows by modeling the mixed distribution as fεi(ε) = qiI(ε=0) +

piλie
−λiεI(ε>0), where I(·) = 1 when the condition in the subscript is true and

is zero otherwise. We next find the characteristic function of SK .

ΦSK (jt)
(a)
=

K∏
i=1

λi − qijt
λi − jt

=

(
K∏
k=1

qk

)
K∏
i=1

λiq
−1
i − jt
λi − jt
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(b)
=

Q
K∑
m=0

αm(Λ̂)ym

K∑
i=0

αi(Λ)yi

(c)
= Q

1 +

K−1∑
m=0

(αm(Λ̂)− αm(Λ))ym

K∏
i=1

(λi − y)


(d)
= Q

(
1 +

τ∑
u=1

ru∑
v=1

Υm(ru, v)

(δu − y)v

)
(C.7)

where (a) follows from the property that the characteristic function of a sum of

mutually independent random variables equals the product of individual char-

acteristic functions. (b) results by substituting y = jt and applying Lemma

C.2.1 to the numerator and the denominator in (a). Adding and subtracting

Q
K∑
i=0

αi(Λ)yi from the numerator in (b), and using αK(Λ̂) = αK(Λ), we ob-

tain an expression with a proper fraction in (c). Finally, the partial fraction

expansion method is used to obtain the result in (d), where

Υm(ru, v) =
(−1)a

a!

∂a

∂ya

[
ym

τ∏
i 6=u

(δi − y)−ri
]∣∣∣∣
y=δu

(C.8)

with a = ru−v. Evaluating (C.8) results in (C.2). Applying inverse transform

formula on (C.7) gives the probability density function, which upon integra-

tion, yields the CCDF of SK as given in (C.1).
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