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Abstract—Approximate expressions for the spatial correlation we make a small angle approximation to derive correlation
of cylindrical and uniform rectangular arrays (URA) are der ived expressions.
using measured distributions of angles of departure (AOD) dr The contributions of this paper are as follows:
both the azimuth and zenith domains. We examine massive )
multiple-input-multiple-output (MIMO) convergence prop erties o We derive approximations for the spatial correlation of

of the correlated channels by considering a number of con- a URA and cylindrical antenna arrays using measured
vergence metrics. The per-user matched filter (MF) signald- probability density functions (PDFs) of the AOD in both
interference-plus-noise ratio (SINR) performance and cowver- azimuth and zenith domains
gence rate, to respective limiting values, of the two anterm o . C
topologies is also explored. o We show, via simulation, the impact of antenna array
topologies on the convergence rate of the channel to
|. INTRODUCTION massive MIMO channel properties. This is shown via a

number of channel convergence metrics.

We show, via simulation, the impact of antenna array

topologies on performance and rate of convergence, to
respective limiting values, of matched filter (MF) per-user

In order to meet demands for increased system capacity with,
limited spectral resources, there is a broad consensushilat
can only be achieved via a large increase in system degrees

of freedom (d.o.f.)[[L]4[8]. Consequently, massive muip signal-to-interference-plus-noise ratio (SINR).
input-multiple-output (MIMO) systems are being invest&& | \ye show that antenna arrays introduce a correlation struc-
[4-[6], where the number of antennas are scaled up by at 1 e which does not vary between topology. As a result,
least an order of magnitude relative to current base station . .<cive MIMO convergence metrics do not show any
(BS) deployments. In the case of massive MIMO, fast-fading  gensitivity to antenna topology, but do show sensitivity

effectively averages oul[7}H[9], simplifying system anal to the presence of correlation - which destroys the onset
sis. Practical implementation of large numbers of antennas ¢ massive MIMO properties.

required for massive MIMO, typically in confined antenna

array dimensions, _howev_er, results in reduced inter-eféme Il. SYSTEM MODEL
spacing adversely impacting system performance by way of o

spatial correlation [10]. Spatial correlation models fareless A. System Description

systems are thus essential for accurate theoretical peaftze e consider a multi-user (MU) massive MIMO downlink

analysis and guarantees. (DL) system with M transmit antennas jointly serving a
An approximate spatial correlation model is presented {6tal of K single-antenna users. We assume time division

[11] for clustered MIMO channels, deriving closed-form (CFduplex (TDD) operation with uplink (UL) pilots enabling the

expressions for a uniform linear array (ULA) and a unifornfransmitter to estimate the DL channel. Thé x K channel
circular array (UCA). This model however does not commatrix, H, is given by [14]

sider the zenith domain, necessary for accurate perforenanc N
analysis. A correlation matrix is derived ih_|12] which con- H = R¢ Hiig, (1)

siders both the azimuth and zenith domains, from which \”hereH-- is the M x K independent and identically dis-
is shown that the correlation matrix can be written as t lid

fbuted (i.i.d.) channel matrix witdA(0, 1) entries, account-
Kronecker product of each domains correlation matrix. ( ) N(O,1) '

. ﬁg for small-scale Rayleigh fading, arid; is the M x M
propose to. extend the worI§s 0f]12] to massive MIMO anten %atial correlation matrix. We consider a cross-polariged
topologles. namely for unn‘orm rgctangular_array .(URA) an ol) antenna configuration, with the spatial correlatiortrira
cylindrical antenna arrays, while incorporating Third @eat modeled via[[14]
tion Partnership Project (3GPP) three-dimensional (3Dpaar
macro cell (UMa) environment measured distributions| [13].

With the likelihood of smaller cell sizes and increased-afe where theM x M matrix R is the co-polarized (co-pol) spatial

sight (LOS) propagation for next generation wireless syste correlation matrix,® represents the Hadamard product and

Rt = Xpol @ R, (2)
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Fig. 1: (a) Cluster Model. (b) Channel Model Geometry.
@ (b)

Fig. 2: (a) URA. (b) Cylindrical Array.
Xpol is the M x M x-pol matrix given by

Xpol = 1p1/2 ® L}S \?} , (3) product of anA-element ULA in thez dimension and &3-
element UCA on ther, y plane.
wherel,;/, is a % % % matrix of onesg denotes the cross- The correlation coefficient between thth anda’th antenna
correlation between the two antenna elements in the x-pBithe zenith domain can then by given by [11]
configuration and» represents the Kronecker product. _
’ P P Rouan = [ 19050080l a0)dn0, (9

B. Channel Model where ©,(Af) is the zenith domain phase shift of tlgh

We consider a clustered channel model, shown in Figdre Batennas AOD with respect to a reference anteprg(A6)
where we show the zenith AOD offsehd, of the wavefront is the zenith domain AOD offset PDF relative to the mean
relative to the mean zenith AOD of the clustér, In this zenith AOD of the cluster. Likewise, the correlation coeéfitt
scenario, the linear antenna array is located on shaxis. between thebth and b'th antenna element in the azimuth
Similarly, if the antenna array was positioned on thexis, domain is
FigurdTh Woulq describe the offset azimuth AQR, relative R P (A6,00) -0, (Ap,20)
to the mean azimuth AOD of the clustér, The channel model o (b,b')
geometry is clarified in Figure_1b. * Das(AG)pas(AO)dAGIAY, (6)

When large numbers of antennas are present, antenna _ _ _ _
topologies should exploit,y and > dimensions. In Section Where ®;,(A¢, Af) is the azimuth domain phase shift of
M we derive spatial correlation approximations for theot the bth antennas AOD with respect to a reference antenna,
antenna array topologies: URA and cylindrical, depicted ins(A¢) is the azimuth AOD offset PDF relative to the
Figures[2h and 2b, respectively. In Figlird 2a, the URA fgean azimuth angle of the cluster. Note, we assume the
geometrica”y positioned on thg’z p|ane, where adjacentaZimUth and zenith AOD offset PDF are independent, i.e.,
antennas are separated by wavelengths on the: axis Pas.a0(A¢, A0) =pag(Ad)pag(AD).
and d; wavelengths on the axis. Adjacent antennas of the We model the azimuth and zenith offset AOD PDFs from
Cy|indrica| array, in Figurab, are Separated by a d|sm measured values -descrlbed by 3G [13] ThUS, the azimuth
of d; wavelengths on the axis and located at a radius ofAOD offset, relative to the mean AOD, is modeled as a

p wavelengths from cylinder center, with respect to the \Wrapped Gaussian PDF, given by [13]

plane. 0 _ (A¢+227ri)2
For both antenna topologies, we express the spatial corfe- (Ad) = m . S e as A¢ € [—m, )
lation as the Kronecker product of the azimuth and zenith ¢ 0 T otherwise ’
domain correlations [12] @
R =R, @ Ry, (4) Whereon, is the standard deviation (SD) df¢. Similarly,

) . ) o ) the zenith AOD offset, relative to the mean AOD, is modeled
and derive the corresponding correlation coefficientspetle py 5 | aplacian PDF, given by [13]
dently in Sectiori 1ll. Thus, we consider the URA correlation

matrix as the Kronecker product of atrelement ULA in the
z dimension (zenith domain) and A-element ULA on the
x,y plane (azimuth domain), wherk®l = A x B. Likewise,
we consider the cylindrical array correlation as the Krd®ec where oag is the SD of Af and x = 1/(1 — e V27/720)

ol
pAe(Ao) — \/iUAee A0 AV ES [.—7T,7T) ’ (8)
0 otherwise
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. 7 2A6
C. Convergence Metrics = glkdi(a—a)cos(®) { 4 e_‘{“}‘} . (16)
V200

In order to study the effects of antenna topology on thghere F,, denotes the Fourier transform evaluatedwat=
convergence of massive MIMO properties, we consider tm@ll(a — a’)sin(#). Solving the Fourier transform if_(L6), we
convergence metrics used [0 [8]. We evaluate the conveegemgve the approximation of the correlation coefficient foe th
of W = ﬁHTH* by examining a number of well known zenith domain of a URA as
properties ofW and a deviation matrifs = W — I, where
Ix is the K x K identity matrix. Letting A1, Ao,..., Ak Ry(a,a1) = 5
denote the eigenvalues 8V, we consider:\ range, Mean 1+ 252[kdy (a — a’) sin(6)]?
Absolute Deviation (MAD) and Diagonal Dominance, defined
respectively as

normalizes the PDF. X

raikd (a—a’) cos()

(17)

We now consider the correlation in the azimuth domain.

A range= Amad W) — Amin(W), ) The azimuth domain phase shift of the departing wavefront
1 o from thebth antenna element, relative to a reference antenna,
MAD (E) = K2 Z By, (10) can be expressed s [15]
i=1,j=1
ZK W.. D, (Ap, Ab) = kdabcos(p + Ag) sin(f + AB). (18)
Diagonal Dominance- ——==1 —~ . (11) , , , .
Doict 2je1jzi | Wil We can then use a first-order Taylor series expansion, while
These metrics will be evaluated via simulation for a numbgrssum|ngA¢ ~ 0, to express[(18) as
of system scenarios in Sectibn] V. cos(p+A¢) sin(0+A0) ~ sin(0+A0) [cos(¢p) — A¢sin(ep)].
(19)

Since bothpas(A¢) andpag(Af) are zero outside the range
[-7,m), the integration can be taken ovieroo, +oc]. From

We now derive approximations for the spatial correlatiogg)’ the correlation coefficient between two antenna eldsnen

i :
of URA and cylindrical array topologies. In each case, forandb is then given by
simplicity we assume no antenna mechanical downtilt. As per

IIl. METHODOLOGY

- : R by A > ejkdg (b—b") sin(0+A0) cos(¢)
(@), we express the spatial correlation as the Kroneckehmio $(6:6) .
of the azimuth and zenith domain correlations, and deriee th
corresponding correlation coefficients independently. > ) "ok .
p g P Y « |:/ e*]de(b*b ) sin(6+A0) s1n(¢)A¢pA¢(A¢)dA¢
A. Uniform Rectangular Array (URA) X pag(AQ)dAS. (20)

We first consider the correlation in the zenith domary, Considering the integral with respect4gp, embedded ir{(20),
of the URA, depicted in Figule 2a and geometrically desctibd/e have
in Sectio I-B. The zenith domain phase shift of the departi % kda(b—b') sin(6+-20) sin(¢) Ad ADVdA
wavefront from thesth antenna element, relative to a reference /___ € Pag(Ap)dAg
antenna, can be expressed|as [15]

_ /OO g dkda(b—b') sin(9+20) sin(6) A
—o0

04 (A0) = kdya cos(6 + AF), (12)
00 _ (Ag+2mi)?
wherek is the wavenumber. The angle [n]12) can be expanded % Z #e e dA$ (21)
with a first-order Taylor series, while assumidg =~ 0, to e TAGV 2T
give oo 1 _ (Agtami)?
cos(6 + AG) ~ cos(d) — Afsin(6). 13) =F., —— e As 3, 22
s( ) ~ cos(6) — Afsin(6) (13) {_Zm T } (22)

Sincepag(Af) is zero outside the rande-w, ), the PDFs

integration can be taken ovér oo, +oc]. From [B) we then where the Fourier transform if_(22) is evaluateduat=
have kda(b — V') sin(f + Af)sin(¢). Evaluating the Fourier trans-

s form, one obtains
R@(a,a’) ~ / ejkdl(afa')[cos(e)fAGsin(G)]pAe(Ao)dAe

Ry ~ gikda (=) sin(6) cos(¢) K
(14) ’ V20,0
_ gikdi(a—a’) cos(0) /Oo e—ikdi(a—a’) sin(6) A0 X Z 672(1:;27”1) [oapkdz (b—b) sin(6) sin(¢)]*



. —b’) cos sin 2 2 1
x F,, { ez lraekta0mt)cosOsm@P (0" (23) [cos(¢—¢b)— T aniheke(b = ¥)sin’(6 - é1)sin(9)]

where steps fronl(22) t¢_(23) are given in the Appendix and (29)
the Fourier transform if(23) is evaluated at andR, is given in (7).

_{ Ci— 22 for AG>0

[eaN]

Ci+ Y2 for AO<O

oA\

, (24) IV. NUMERICAL RESULTS

We consider the convergence metrics, described in Section

where [T=C] in order to determine how many antennas are required fo
C; = jkda(b — b') cos(8) obsgrvable massive MIMO properties in a spatial_ly coreglat
environment. System parameters are presented in Tlable I.
X |cos(p) — ——=—0i4kda(b — b')sin?(¢)sin(h)| . (25)

{ j+2mi 8 Parameter Value
Evaluating the Fourier transform ip_(23), we have the approx Frequency (GHz) 2.6
imation of the correlation coefficient for the azimuth domai X-pol parametery/s 0.1
of a URA as Azimuth AOD offset PDFpag(A¢) Wrapped Gaussian

Roap() ~ K oikda (b= sin(8) cos(9) Zenith AOD offset PDFpag(A6) Laplacian
’ V206 AOD cluster mean{¢, 8} (log,,([°])) 0.7

AOD offset SD,{oag,0n0} (100,4([°])) -0.3

oo
-1 kda (b—b') sin(6) sin(¢)]”
X Z e2(i—j2xi) [UA¢ 2
1=—00

TABLE I: System Parameters

—w?

% e%[aAd)de(bfb/)cos(ﬂ) sin(d))]z’ (26)

A. Convergence Properties
with w given in [24). The spatial correlation approximation
for the URA is then as pef)4), witRy andR, given in [1T)
and [28) respectively. 1

0.9r

B. Cylindrical Array

0.8

Similar to the analysis for URA, the spatial correlation o
a cylindrical array, shown in Figufe Rb, can be broken dow
into the Kronecker product of the azimuth and zenith domair
described in Sectidn1[AB. The zenith domain phase shifhef t
ath antenna elemen€,(A60), and the correlation coefficient 0al
between antennasanda’, Ry (a, a’), are identical to the URA
case and are thus given i {12) afd](17) respectively. In t
azimuth domain, the phase shift of th#h antenna element, 02r
relative to a reference antenna is given byl [15] 0.1r

M=50,URA
= = = M=50,URA Approx
= M=50,Cylindrical

0.7

0.6
= = = M=50,Cylindrical Approx
= M=100,URA

= = = M=100,URA Approx
M=100,Cylindrical

= = = M=100,Cylindrical Approx
M=200,URA

M=200,URA Approx
M=200,Cylindrical

= = = M=200,Cylindrical Approx

0.5

CDF Value

0.3

Py (Ag, Ab) = kpbcos((¢ — ¢u) + Ag) sin(0 + Al), (27) % 5 10 15 20 25 %0
A range
where¢ — ¢, is the angle between the incident ray projecteu Fig. 3: A range CDF for% —a=10

onto thez,y plane and theéth antenna, relative to the the
circle center. Note that the azimuth domain phase shift1) (2
is analogous td_(18), with = dy and¢ — ¢, = ¢. Therefore,
the spatial correlation approximation for the cylindrieatay
is given in [4), where

In Figure[3, we show the cumulative distribution function
(CDF) of the A range, given in[{9), for varyingV/. The
eigenvalues oW are generated using, given in [1), where
the simulated CDFs are generated from instantaneous array

R0y ~ R aikp(b=b')sin(6) cos(¢—dy) factors, while the approximations are generated frbm ). |
’ V200 is seen that as we increase the number of transmit antennas,
oo . .
" Z R [oapkp(b—b') sin(6) sin(é—éy)]? M, the med|f_;1n value of the range CDF increases, rat_her.
than converging to an equal eigenvalued channel, which is

i=—00

observed in[[8] and shown in][7] for an i.i.d. channel. This is
due to an increase in the dominant eigenvalud\afresulting
from such a narrow angle spread. From Fidure 3, we see that
wherew is given in [Z4), with for all values of M, our derived expressions approximate the
) , spatial correlation well. Thus, we use the approximatiars f
Ci = jkp(b —b") cos(6) x all results following.

2

—w

—2 [aAd)kp(bfb/) cos(6) sin(d)—d)b)]2
X @T—j2ni , (28)




o7 off-diagonals converge to aon-zeromean, dominating the

P diagonal elements. On the other hand, for fixgd the sum
06l - miid.a=25 : of the diagonal elements increase by a greater proportam th
e e s e URAG=10 [ the off-diagonal elements a&/ is increased, resulting in a
05f - = ~URAG=25 more diagonally dominant i.i.dW. In the correlated case
Cylindrical,a=10 the diagonal dominance converges quickly to small non-zero
= = = Cylindrical,a=25
@ % value.
2 Considering Figureg1d.]4 ard 5, we conclude that while
0.3r -

for i.i.d. channels, the massive MIMO metrics converge for
a very large numbers of antennas, desirable massive MIMO

properties are degraded with spatial correlation preseitih (
small angle spreads).

B. Convergence Properties of MF Precoder
oz e s e 891 We now explore the impact of massive MIMO antenna
Fig. 4: MAD(E) vs K, with % — =10 and25 topologies on MF SINR performance and convergence to

limiting values. The MF SINR of théth user is given by

£%hh;|?

In Figure[4 we plot the average of MAB{, given in [10), SINR; = 1+ o3k hWThihTh*
versus K for a« = 10 and 25. We observe very different Koy cej=1,j#i =i 7
behaviour between the correlated and i.i.d. scenarioshén twhere pq is the DL transmit signal to noise ratio (SNR);
i.i.d. case, MADE) converges slowly to zero for increasingdenotes theth column of H, and~y = tr((H"H*)/K is the
K, with a quicker convergence rate for largerNote that the power normalization factor.
average MADE) value is plotted in Figurigl4 and the only way
for this to converge to zero is for alV matrices to be close
to Ix. Hence, only in the i.i.d. case does ea® become R

close tolx as K increases. \ —iid.
=-© =URA

, (30)

Cylindrical ™

| - = =K Fixed = 10, i.id.
i = B =K Fixed = 10, URA
\ = = =K Fixed = 10, Cylindrical
1 = = =K=Maq, i.id.
1 = © =K=M/a, URA
= = =K=M/a, Cylindrical
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% 20 40 0 8 100 120 140 160 180 200 In Figure[® we plot the expected value 6f¥30). It can be

M

observed that there is a huge reductionESINR;] perfor-
mance by introducing correlation of which antenna topology

has almost no effect on. The MF SINR for an i.i.d. scenario
Figure[$ shows the diagonal dominancéWft (size K x K) rapidly converges to its limiting value, whereas in a cated

given in [I1), as a function of the number of transmit antsnnaase,E[SINR;] converges to limiting values fod/ > 200.
M. We see that the correlated scenario Isamilar trends We conclude that linear precoders are highly sub-optimal fo

as the i.i.d. case. As with the results i [8] féf = X, massive MIMO systems in spatially correlated environments
the diagonal dominance decays. This follows as the numheith small angle spreads.
of off-diagonals, which grow at a rate K2, increase the

denominator of[(I1) at a faster rate than the numerator. In V. CONCLUSION

the correlated scenario, the diagonal dominance appreacheln this paper we develop approximations for the spatial
zero much faster than the i.i.d. case. Here, while the dialgocorrelation of URA and cylindrical antenna arrays, from a 3D
elements converge to a mean of 1, the large number afannel model. Using derived approximations, we show that

Fig. 5: Diagonal Dominance v&/, with K fixed andK = %



large spatial correlation, due to small angle spread, o\str [2] B. Li and P. Liang, “Small cell in-band wireless backhanl massive
the convergence of massive MIMO properties with increasing MIMO systems: A cooperation of next-generation techniguBsll Labs

number of antennas. Furthermore, the impact of massi\{gl
MIMO antenna topology considered is shown to be negligible.

MF SINR performance and convergence rate is explored for
the two antenna topologies, showing the detrimental effiéct
correlation, with respect to an i.i.d. channel. It shoulchbéed

that if we increased inter-element spacings of the antenrn@
arrays relative to the angle spread, we would see a decrease i
correlation and the convergence metrics would approach th&

i.i.d. case. We leave this to future work.

VI. FUTURE WORK

In the future, we aim at deriving correlation matrices
for various antenna topologies which do not rely on smaIIIS]
angle distributions. Also, we aim to incorporate the efeaft
mutual coupling, due to the proximity of antennas as elealri
components, important for the analysis of large antenreyarr
Furthermore, an investigation into how the various antenna
spacing parameters influence the correlation for the aater#f]
topologies will give insight into the structure of the cdat@n

matrices and how to carefully design an antenna array.

APPENDIX
From [22), we have
[e'e] %) .
qu(b,b’) ~ / ejkdz(bfb ) sin(0+A0) cos(¢) Z @327
o i=—00

X [O’A¢]€d2 (b—b") sin(0+A0) Sin(¢)]2pA9(A9)dA9 (31)

%‘/ ejkdg(b—b’)[sin(@)-i—AOCos(G)]cos(d)) Z em

X [oaokda (=¥ [sin(6)+ A0 cos(6)]sin(@)]* ) (AG)IAG

oo
_ gikda (b—b) sin(6) cos(¢) Z eIz
i=—00

x[oapkda(b—b") sin(8) sin(¢)]” /OO gikda (b—b) cos(0)

X [c08(¢) — 5= 0 A pkid2 (b—b') sin” (¢) sin(0)] A0 %

82(1:7],127”) [G’A(ﬁde(b*b,) cos(0) sin(¢)]2 (Aﬁ)sze (Ao)dAe (32)

:ejkdg(bfb’)sin(e)cos(qb)L emjﬁ
V200 i;m
x[r s kdz (b—b) sin(6) sin(¢)]? /OO gikda (b—b) cos(9)

— 00

x [cos(6)— s oA o k2 (b—b) sin® (¢) sin(6)]| A0 | o= Uf@ |AG)|

. EXT=ToT [0A¢kd2(b7b’)cos(9)sin(¢)]2(A0)2dA9’ (33)

where a Taylor series expansion is used to obfaih (32).
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