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Abstract—This paper studied the fundamental modeling defect
existing in Poisson-distributed cellular networks in which all base
stations form a homogeneous Poisson point process (PPP) of
intensity λB and all users form another independent PPP of
intensity λU. The modeling defect, hardly discovered in prior
works, is the void cell issue that stems from the independence
between the distributions of users and BSs and “user-centric” cell
association, and it could give rise to very inaccurate analytical
results. We showed that the void probability of a cell under
generalized random cell association is always bounded above
zero and its theoretical lower bound isexp

(

−

λU

λB

)

that can be
achieved by large association weighting. An accurate expression
of the void probability of a cell was derived and simulation results
validated its correctness. We also showed that the associated BSs
are essentially no longer a PPP such that modeling them as a
PPP to facilitate the analysis of interference-related performance
metrics may detach from reality if the BS intensity is not
significantly large if compared with the user intensity.

I. I NTRODUCTION

Due to the stunning increase of mobile data traffic in cellular
networks, deploying more and different types of base stations
(BSs) in cellular networks tends to be an effective means of
boosting network coverage and capacity. In recent years, mod-
eling and analysis in heterogeneous cellular networks (Het-
Nets) have gained lots of research attention since traditional
and simple cellular modeling and analysis cannot correctly
and accurately characterize the distribution feature of HetNets
[1]–[3]. Stochastic geometry has been shown to be a powerful
mathematical tool for modeling the random distribution of BSs
since it makes the mathematical analysis of some network
performance metrics, such as coverage probability and average
rate, much more tractable, and it even leads to closed-form
results in some cases [4] [5].

In the framework of stochastic geometry for cellular net-
works, users are modeled as an independent Poisson point
process (PPP) in addition to the PPPs formed by all BSs [5]
[6]. Usually, “user-centric” cell association is adopted in the
network, i.e., every user tries to associate with its best service
BS via some cell association schemes. For example, if all users
are looking for a BS that is able to provide the long-term
strongest signal power, they will associate with their nearest
BS if they completely eliminate fading and/or shadowing
effects on their channels. Such nearest cell association is
a popular scheme frequently adopted in many prior works
since the distribution of the distance between a user and its
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Fig. 1. An illustration example of void cells in a cellular network. BSs and
users are two independent PPPs and the cells of BSs are created by Voronoi
tessellation. The intensity ratio of users to base stationsis 2.

associated BS can be easily found, and most importantly the
cells of all macro BSs that consist of the entire network
plane can be characterized by Voronoi tessellation and thusthe
average number of users in a cell can be accurately estimated
by either simulated or theoretical computation if the cell of a
BS is Voronoi-tessellated [7] [8].

A. Motivation and Prior Work

User-centric cell association has an intrinsic defect that
gives rise to an unreasonable modeling phenomenon in
Poisson-distributed cellular networks. Namely, it could make
BSs not associated by any users in the network, which seldom
happens in reality especially for macro BSs. This void cell
(BS) phenomenon is illustrated in Fig. 1 for the case of
Voronoi-tessellated cells. Users can be imaged to be dropped
on the plane consisting of the cells so that void cells very likely
exist in the network if the user intensity is not significantly
larger than the BS intensity. For example, consider there are
n users uniformly distributed in a unit-area network which
is tessellated byn equal-sized cells of BSs, and thus the
probability of having a void cell is

(

1− 1
n

)n
that is close

to e−1 ≈ 0.367 asn is very large. This shows that the void
cell issue cannot be ignored in a cellular network whose BS
intensity is more or less equal to the user intensity, such as
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hyper-dense small cell networks.
Despite the important phenomenon of void cells, there are

very few works that study and model the effect of void cells,
and almost all prior works on cell association in Poisson
cellular networks overlook this problem [3], [5], [6], [9]–[11].
Without modeling the effect of void cells, the analyses of
network performance metrics, e.g. coverage probability and
average rate, are certainly underestimated since the void BSs
do not contribute any interference. Although references [12]
[13] do consider the void cell impact on their models, the
void probability of a cell they found is only valid for nearest
cell association, and the associated BSs are still viewed as
a homogeneous PPP in these two works, which is certainly
questionable due to the correlation between the associatedBSs.

B. Contributions

In this paper, our goal is to delve the fundamental corre-
lation between cell association and void cell probability.To
make the model simple, only a single tier of BSs that form
a homogeneous PPP of intensityλB is considered and users
form another independent PPP of intensityλU. A random cell
association (RCA) scheme was proposed to cover several cell
association schemes, such as nearest cell association, strongest
received power association, etc.. Our first contribution isto
theoretically show that the achievable lower bound on the
void probability of a cell isexp

(

−λU

λB

)

. An accurate closed-
form result of the void probability was derived under the RCA
scheme for a more practical channel model that characterizes
path loss as well as the composite effect of Nakagami-m
fading and log-normal shadowing. According to the derived
void probability, we can gain some insights on how the void
probability is affected by channel impairments and how its
theoretical lower bound is achieved by RCA. Finally, we
discovered and numerically verified that the associated BSs
are essentially not a PPP and modeling them as a PPP could
give rise to fairly inaccurate analysis especially in HetNets and
small cell networks deployed with high BS intensity.

II. SYSTEM MODEL AND PRELIMINARIES

Consider an infinitely large wireless cellular network on
the planeR

2 in which all base stations form a marked
homogeneous PPPΦB of intensityλB given by

ΦB ,

{

(Bi, Vi, Hi, Ci) : Bi ∈ R
2, Vi ∈ {0, 1}, Hi ∈ R+,

Ci ⊂ R
2, ∀i ∈ N++

}

, (1)

whereBi denotes theith nearest BS inΦB to the origin and
its location, the cell ofBi is represented byCi and it contains
all potentialusers serviced by BSBi

1, Vi is a void cell index
that indicates whether or not at least one user is in the cell of
Bi, i.e., whetherCi ∩ ΦU = ∅ is true or not –Vi is equal to
one if Ci∩ΦU 6= ∅, otherwise zero,Hi is used to characterize

1The cell of a base station and its statistical properties canbe characterized
once the cell tessellation algorithm (e.g., Voronoi tessellation for a PPP) over
the plane is designated.

the downlink channel power gain fromBi to its service user.
In addition, throughout this paper we assume all cells are
disjoint, i.e. Ci ∩ Cj = ∅ for all i 6= j and

⋃∞
i=1 Ci ⊆ R

2.
Transmit powers of all BSs are the same and all users form
another independent homogeneous Poisson point processΦU

of intensityλU.
To characterize the statistical behavior of downlink channel

power gains in a much general form, we assume that allHi’s
are i.i.d. random variables whose probability density function
(pdf) characterizes the composite effect of Nakagami-m fading
and log-normal shadowing and is given as follows [14]

fH(h) =
mmhm−1

Γ(m)
√
2πσ2

∫ ∞

0+
x−(m+1) exp

(

− mh

x

− (lnx− µ)2

2σ2

)

dx, (2)

whereΓ(x) =
∫∞

0 tx−1e−tdt is the gamma function,µ andσ2

are the mean and variance of log-normal shadowing, respec-
tively. Thus,Hi is essentially a gamma-log-normal random
variable. Note that the mean ofHi is exp

(

µ+ σ2

2

)

. Without
loss of generality, the following downlink analysis will be
based on a typical (reference) userU0 located at the origin.
Each user associates with a base station inΦB by using random
cell association (RCA). In a givenΦB, the RCA scheme
associates userU0 with base stationB∗

0 by the following rule

B∗
0 = arg sup

Bi∈ΦB

(

WiHi‖Bi‖−α
)

, (3)

whereWi’s are the i.i.d. random weightings for BS association
and‖Bi‖ denotes the Euclidean distance betweenBi and the
origin. RCA can cover several BS association schemes. For
example, if the channel state informationHi is availableWi

can be assigned asWi = H−1
i , RCA reduces to the popular

nearestBS association. If all the weightings of RCA are the
same constant, RCA is essentially the association scheme of
strongest received power, which is suitable for non-stationary
users that cannot acquire the mean received power, e.g., they
are moving very fast. RCA is a user-centric scheme, i.e., it is
able to make every user associate with certain base station.In
other words, no users are blocked out of the network.

Although user-centric cell association ensures no blocked
users in the network, it cannot, as we will show later, guarantee
that every BS is associated with at least one user, i.e., the
probability that a cell/BS is not associated with any users,
called the void probability of a cell, is always bounded above
zero. Since users are a homogeneous PPP of intensityλU, the
void probability of a cell in the network can be written as

p∅ = P[Vi = 0] =

∫

R+

e−λUxfν(Ci)(x)dx, (4)

whereν(A) is the Lebesgue measure of the bounded Borel
setA ⊂ R

2 and fZ(z) is the pdf of random variableZ. In
order to explicitly calculatep∅, one has to knowfν(Ci)(x) for
the RCA scheme. The pdf of the cell area of a BS depends
on the adopted cell association scheme and can be accurately
characterized by the conservation property of a homogeneous



PPP introduced in the following subsection. The accurate pdf
of the cell for RCA will be derived in Section III.

A. Random Conservation Property of a PPP

In this subsection, we introduce the random conservation
property of a PPP, which specifies how the intensity of a PPP
is changed after all points of the PPP are transformed by i.i.d.
random mapping matrices. The random conservation property
is specified in the following theorem.

Theorem 1 (Random Conservation Property of a PPP). Sup-
poseΦ̂ is an independently marked PPP of intensity measure
Λ̂ on R

d′

, which can be expressed as follows

Φ̂ , {(Xi,Ti) : Xi ∈ R
d′

,Ti ∈ R
d×d′

, ∀i ∈ N++}, (5)

whereXi denotes nodei and its location andTi : R
d′ → R

d

is the non-singular mapping matrix (operator) of nodeXi. For
all i 6= j, Ti andTj are (element-wise) i.i.d.. Let̂Φ† be the
mapped point process onRd generated by using the random
mapping matrix of each point in̂Φ, i.e., it is defined as

Φ̂† , {X†
i , Ti(Xi) : Xi ∈ Φ̂,Ti ∈ R

d×d′

, ∀i ∈ N++}.
(6)

ThenΦ̂† is also a PPP and for any bounded Borel setA ⊂ R
d

its intensity measurêΛ† is given by

Λ̂†(A) = Λ̂(A′)E

[

1
√

det (TTT)

]

(7)

if νd′(A′) = νd(A), whereA′ ⊂ R
d′

is also a bounded Borel
set andTT is the transpose ofT. If Φ̂ is homogeneous and has
an intensityλ̂, Φ̂† is also homogeneous and has the following
intensity

λ̂† = λ̂E

[

1
√

det(TTT)

]

. (8)

Proof: See Appendix A.

Remark 1. Theorem 1 is a generalization of the conservation
property in [7] [15]. In a special case ofd = d′ = 2, all
points inΦ̂† are mapped from their corresponding points in a
homogeneous PPP̂Φ by scaling them with random variables
T . In this case,Ti is equal to diag(T, T ) and thusλ̂† is equal
to λ̂E[1/T 2].

The random conservation property can significantly reduce
the complexity of analyzing the statistics of some performance
metrics induced by a PPP, especially a homogeneous PPP
with i.i.d. marks. For instance, the RCA scheme in (3) can
be further simplified as

‖B∗
0‖

d
= (WH)

1
α

(

inf
B†

i
∈Φ†

B

‖B†
i ‖
)

, (9)

where
d
= stands for equivalence in distribution,B†

i ,

(WiHi)
− 1

αBi, Φ
†
B

is a homogeneous PPP of intensityλ†
B
=

λBE

[

(WH)
2
α

]

based on (8) in Theorem 1. Hence, for the
typical userU0 with RCA, its serving distance can be statis-
tically instead found by using the transformed new PPPΦ†

B
.

In other words, the random conservation property can make
RCA reduce to nearest BS association, which significantly
simplifies the analysis of the performance metric of RCA,
such as the coverage/outage probability of RCA, since many
existing results of nearest BS association can be applied inthis
context by simply modifying them with an updated intensity
of the BSs.

III. V OID PROBABILITY OF A CELL UNDER RCA

As pointed out in the previous section, any “user-centric”
association scheme cannot guarantee that there is at least one
user in each cell, i.e., a void cell could exist in the network.
This phenomenon can be intuitively interpreted by using a
Poisson-Dirichlet (Voronoi) tessellation for a PPP of BSs.
Suppose the Voronoi tessellation is used to determine the cell
of each BS inΦB and all users adopt the nearest BS associ-
ation scheme to connect with their serving BS. This nearest
associating process can be viewed as the process of dropping
all users inΦU on the large plane consisting of the Voronoi-
tessellated cells formed byΦB. Under this circumstance, the
probability mass function (pmf) of the number of users in a
cell of ΦB can be expressed as

pn , P[ΦU(C) = n] = E

[

(λUν(C))n
n!

e−λUν(C)

]

, (10)

where C denotes a Voronoi cell of a BS inΦB, ΦU(C)
represents either the user set in cellC or the number of users
in cell C, andν(C) is the Lebesgue measure ofC.

Unfortunately, the theoretical result ofpn in (10) is un-
known since the pdf of a Voronoi cell area is still an open
problem [7]. However, it can be accurately approximated by
using a Gamma distribution with some particular parameters
[7], [16]. Reference [16] suggests the following Gamma dis-
tribution for fν(C)(x):

fν(C)(x) =
(ζλBx)

ζ

Γ(ζ)x
e−ζλBx, (11)

where Γ(x) =
∫∞

0
tx−1e−tdt is the Gamma function and

ζ = 7
2 can achieve an accurate pdf of a Voronoi cell area.

Substituting (11) into (10) yields the following result:

pn =
λn
U

n!

(ζλB)
ζ

Γ(ζ)

∫ ∞

0

xn+ζ−1e−(ζλB+λU)xdx

=
1

n!

Γ(n+ ζ)

Γ(ζ)

λn
U
(ζλB)

ζ

(ζλB + λU)(n+ζ)
. (12)

Hence, the pmf of the number of users in a cell for nearest BS
association has a closed-form expression. The void probability
of a cell, p∅, can be found bypn with the case ofn = 0.
Namely,

p∅ =

(

1 +
λU

ζλB

)−ζ

(13)

and this indicates that the intensity of the non-associatedBSs
is λBp∅ that is not negligible especially whenλU/λB is small.
Most importantly,the results in(11) and (12) are no longer
accurate for all non-nearest BS association schemes since



users do not necessarily associate with their nearest BS, such
as the RCA scheme mentioned in Section II. However, an
accurate void probability of a BS under the RCA scheme can
be derived as shown in the following.

Although the pdf of a Voronori cell is unknown, its mean
can be shown to be1/λ if the Voronori cell is created by a
homogeneous PPP of intensityλ [7]. As a result, the lower
bound onpn in (10) for n = 0 is given by

p∅ = E

[

e−λUν(C)
]

≥ exp

(

−λU

λB

)

(14)

due to Jensen’s inequality. This lower bound on the void
probability reveals three crucial implications: (i) the void
probability of a cell is always bounded above zero such that
there could be a certain number of void BSs in the cellular
network, (ii) nearest BS association cannot achieve this lower
bound since its void probability in (13) is always larger than
the lower bound. (iii) From an energy-saving point of view,
the lower bound represents the maximum percentage of all
consumed energy in the network that can be saved. Later, we
will theoretically show that,this lower bound can be achieved
by RCA.

To derive an accurate void probability of a cell under the
RCA scheme, we approach this problem from a fundamental
connectivity point of view and derive the bounds onp∅ as
shown in the following theorem.

Theorem 2. If all users inΦU adopt the RCA scheme defined
in (3) to associate with a BSΦB defined in(1), the bounds on
the void probability of a cell inΦB are given by

(

1 +
λU

ζ†λB

)−ζ†

≥ p∅ ≥ exp

(

−λU

λB

)

, (15)

whereζ† , E

[

(WH)
2
α

]

E

[

(WH)−
2
α

]

.

Proof: See Appendix B.

Remark 2. According to the proof of Theorem 2, the associ-
ation events of different BSs could be correlated such that the
resulting process of associated BSs is no longer a PPP even
though its intensity is(1− p∅)λB.

The lower bound onp∅ is derived while considering the
complete independence exists between the non-associated
events of a BS, whereas the upper bound is obtained by
approaching the opposite case, i.e., all non-associated events
of a BS are caused by the farthest user in its cell and thus
they are highly correlated. Accordingly, it is reasonable to
conjecture that the upper bound is tightly close to the lower
bound provided that the cross-correlations between all non-
associated events are significantly weakened. On the other
hand, mathematically we have the following

lim
ζ†→∞

p∅ = exp

(

−λU

λB

)

(16)

since the upper bound approaches to the lower bound
exp(−λU/λB) as ζ† goes to infinity and thus the bounds

in (15) are very tight asζ† becomes large. This intuitively
reveals that largeζ† will “de-correlate” all non-associated
events, which is an important observation since it indicates
that the theoretical minimum value ofp∅ is exp

(

−λU

λB

)

and

it can be achieved by the large2α -fractional moment ofWH .

For example, ifW = 1, p∅ = exp
(

−λU

λB

)

can be achieved
if channels have high shadowing power. This implies that the
void probability is reduced when more users join the network
under a given BS intensity. In other words, when the network
has a large user population the efficacy of reducingp∅ by using
large ζ† is apparently undermined such that the performance
of RCA is similar to that of nearest BS association in this
case.

Although the bounds onp∅ are characterized, an accurate
result of p∅ is still needed since it can help us understand
how many cells per unit area are void. The following theorem
renders an accurate closed-form expression ofp∅ under RCA.

Theorem 3. If RCA is adopted, the void probability of a cell
can be accurately characterized by

p∅ =

(

1 +
λU

ρλB

)−ρ

, (17)

whereρ = 7
2E

[

(WH)
2
α

]

E

[

(WH)−
2
α

]

= 7
2ζ

†.

Proof: Since(1 + x/b)−b ≥ (1 + x/a)−a for a > b and
ρ > ζ†, we know

(

1 +
λU

λBζ†

)−ζ†

>

(

1 +
λU

ρλB

)−ρ

and thusp∅ in (17) is between the bounds in (15). Also, for
nearest BS association the void probability of a BS withζ = 7

2
in (13) is very accurate. Therefore, we can conclude thatp∅
with ρ = 7

2ζ
† is an accurate void probability of a BS for the

RCA scheme since suchρ reduces to7
2 as RCA reduces to

nearest BS association (i.e.,Wi = H−1
i for all i).

According to Remark 2 and Theorem 3, a couple of impor-
tant observations can be summarized as follows.

• For a cellular network with the conditionλU

λB

≫ 1,
modeling the associated BSs as a homogeneous PPP of
intensity(1−p∅)λB is still acceptable since it just slightly
looses accuracy in analysis. Hence, a cellular network
with only macro BSs is hardly affected by the void cell
problem, but (hyper-dense) small cell and heterogeneous
networks usually would suffer the void cell problem.

• Largeζ† can considerably reduce the void probability of
a cell. In other words, if the association weightingWi is
designed such that users favor a BS with large channel
power the void cell problem can be quietly mitigated.

IV. SIMULATION RESULTS

The accurate result of the void probability of a cell has been
shown in (17). To verify its correctness, we simulate it for the
two cases of RCA, i.e., nearest BS association (Wi = H−1

i )
and strongest received power association (Wi = 1) for all i.
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p∅ = (1 + λU/ρλB)
−ρ, ρ = 7π

4 exp( 4σ 2

α2 ), m = 1 , α = 4 ,σ2 = 4 dB

p∅ = (1 + λU/ρλB)
−ρ, ρ ≈

7
2 exp(

4σ 2

α2 ), m = 10, α = 4, σ2 = 8 dB

p∅ = (1 + λU/ζλB)
−ζ, ζ = 7

2

Simulated p∅ (Rayleigh Fading, Shadowing with µ = 0, σ2 = 4dB)

Simulated p∅ (Nakagami-10, Shadowing with µ = 0, σ2 = 8dB)

Lower bound, p∅ = exp(−λU/λB)

Fig. 2. The void probability of a cell for the two cases of RCA:nearest BS
association (Wi = H−1

i
) and strongest received power associationWi = 1.

The path loss exponentα for simulation is4 andλU = 370 users/km2.

For nearest BS association,ρ in (17) is 7
2 , while for strongest

received power association we have

ρ =
7

2
E

[

H
2
α

]

E

[

H− 2
α

]

=
7Γ(m+ 2

α )Γ(m− 2
α )

2[Γ(m)]2
e

(

4σ2

α2

)

.

(18)
Fig. 2 shows the simulation results of the void probability for
the two cell association cases. As expected, the void probabil-
ity of the nearest BS association scheme is no longer accurate
if users associate with their BS with the strongest received
power. For example, whenλU

λB
≈ 2, the void probabilities

for the nearest BS association and strongest received power
association schemes with Rayleigh fading and8-dB shadowing
are 0.2 and 0.14, respectively. The lower bound on the void
probability is around 0.135. The void probability given in (17)
indeed accurately coincides with the simulated result and is
much closer to the lower bound. Also, simulation results and
(18) both indicate thatshadowing can significantly reduce the
void probability whereas fading just slightly reduces it.

Next, we simulate how RCA and the void cell problem
impact the coverage probability of a user. The coverage
probability of the typical userU0 can be written as

pcov = P [SIR0 ≥ β] , (19)

where SIR0 is the signal-to-interference ratio (SIR) evaluated
atU0 andβ is the SIR threshold for successful decoding. The
simulation results for nearest BS and strongest received power
association schemes are shown in Figs. 3 and 4, respectively.
As shown in the two figures, the case without considering the
void cell problem seriously underestimates the real coverage
probability in the region ofλU

λB
≤ 1. Modeling the associated

BSs as a PPP of intensity(1−p∅)λB can attain a more accurate
coverage probability, but still not very accurate in the region of
λU

λB
≤ 1. Note that the coverage probability without considering

the void cell problem in Fig. 3 does not depend on the BS
intensity, which has been claimed in [5]. However, in fact the
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pcov without considering void cells
pcov with associated BSs modeled by a PPP of intensity (1 − p∅)λB

pcov with real associated BSs (which are not a PPP).

Fig. 3. The coverage probability of a user for the nearest BS association
scheme (Wi = 1/Hi). The network parameters for simulation areα = 4,
µ = 0, σ2

= 4dB, β = 0.8, m = 1 andλU = 370 users/km2.
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pcov without considering void cells
pcov with associated BSs modeled by a PPP of intensity λB(1 − p∅)
pcov with real associated BSs (which is not a PPP)

Fig. 4. The coverage probability of a user for the strongest received power
association scheme (Wi = 1). The network parameters for simulation are
α = 4, µ = 0, σ2 = 4dB, β = 0.8, m = 1 andλU = 370 users/km2 .

coverage probability is indeed affected by the BS intensity
since the void probability issue is counted in the model and it
is a function of the BS intensity.

V. CONCLUDING REMARKS

The fundamental relationship between random cell associa-
tion and void cell probability is exploited in this paper, which
is an important issue yet overlooked in almost all prior works.
Random cell association that can cover several cell association
schemes was proposed, and the accurate result of the void
probability of a cell is derived and its correctness was verified
by simulation. Both theoretical and simulation results suggest
that the void cell problem should be considered and properly
deal with for cellular networks with smallλU/λB. In order
to easily characterize the void probability under RCA, only
one tier of BSs is considered in this paper. Our future work
will consider an HetNet with more tiers of BSs and focus on
finding the accurate closed-form result of the void probability
of a cell in any tier of the HetNet.



APPENDIX

A. Proof of Theorem 1

The following proof essentially generalizes the proof of
Lemma 1 in [15]. First, we define the void probability ofΦ̂∩A′

for any bounded Borel setA′ ⊂ R
d′

as the probability that
Φ̂(A′) is equal to zero wherêΦ(A′) denotes the number of
nodes inΦ̂ enclosed inA′. That is,

P

[

Φ̂(A′) = 0
]

= exp

(

−
∫

A′

Λ̂(dX ′)

)

becausêΦ is a PPP. LetAi = Ti(A′) whereAi ⊂ R
d is a

bounded Borel set and the probability that nodeX†
i in Φ̂† is

enclosed inAi is

P

[

X†
i ∈ Ai

]

= P [Ti(Xi) ∈ Ai] = P
[

T
T
i Ti(Xi) ∈ T

T
i (Ai)

]

= P
[

Xi ∈ (TT
i Ti)

−1(A′)
]

,

where (TT
i Ti)

−1(A′) ,
∫

A′(T
T
i Ti)

−1(dX). By definition,
Λ̂†(A) is the average of̂Φ†(A) and it can be calculated by
applying the Campbell theorem as shown in the following:

Λ̂†(A) =

∫

A

Λ̂†(dX†) = E





∑

X†
i
∈Φ̂†

1

(

X†
i ∈ Φ̂† ∩ Ai

)





= E





∑

Xi∈Φ̂

1

(

Xi ∈ Φ̂ ∩ (TT
i Ti)

−1(A′)
)





= E

[

∫

(TTT)−1(A′)

P

[

X ∈ Φ̂
]

νd′(dX)

]

(a)
= E

[

1
√

det(TTT)

]

∫

Rd′
P

[

X ∈ Φ̂ ∩ A′
]

νd(dX
′)

= E

[

1
√

det(TTT)

]

∫

A′

Λ̂(dX ′)

where(a) follows from the Jacobian determinant of two vol-

umes. Thus,̂Λ†(A) = E

[

1√
det(TTT)

]

Λ̂(A′) and it follows

that

P

[

Φ̂(A′) = 0
]

= exp



−E

[

1
√

det(TTT)

]−1
∫

A′

Λ̂†(dX†)





= P

[

Φ̂†(A) = 0
]

sinceνd(A) = νd′(A′). Since the void probability of a point
process completely characterizes the statistics of the process,
Φ̂† is also a PPP.

If Φ̂ is homogeneous, then its intensity measure isΛ̂(A′) =
λ̂νd′(A′) and thus the result in above can be further simplified

to Λ̂†(A) = λ̂E
[

√

det((TTT)−1)
]

νd(A) and it does not

depend on the location of any node in̂Φ†. As a result,Φ̂† is
a homogeneous PPP with the intensity given in (8).

B. Proof of Theorem 2

Suppose each user in cellCl ⊂ R
2 of BSBl has its own cell

association region which is also a bounded Borel set onR
2.

For example, the cell association region of userUj is denoted
by Aj and all cell association regions contain BSBl. Since
all users inCi adopt the RCA scheme, the probability that BS
Bl is not associated by userUj ∈ Cl can be expressed as

P[Ej ] = lim
ν(Aj)→∞

P

[

WlHl‖Uj −Bl‖−α

< sup
Bi∈ΦB∩Aj\Bl

{

WiHi‖Uj −Bi‖−α
}

]

,

whereEj denotes the event that userUj is not associated with
BS Bl as its association region goes to infinity. According
to Theorem 1,ΦB can be statistically mapped to another
homogeneous PPPΦ†

B
of intensity λ†

B
= λBE[(WH)

2
α ]

and Φ†
B
(Aj) is a Poisson random variable with parameter

λ†
B
ν(Aj). Thus, it follows that

P [Ej ] = lim
ν(Aj)→∞

P

[

‖U †
j −B†

l ‖−α < sup
B†

i
∈Φ†

B
∩Aj\B

†

l

{

‖U †
j −B†

i ‖−α
}

]

= P

[

D†
j > D†∗

j

]

,

whereU †
j = (WlHl)

− 1
αUj , D†

j is the distance from userU †
j

to BS B†
l , D†∗

j is the distance fromUj to its nearest BS in
Φ†

B
. The void probabilityp∅ can be found by calculating the

following

p∅ = E







P





ΦU(Cl)
⋂

j=0

Ej
∣

∣

∣

∣

ΦU(Cl)











Due to the complicate correlation effects between all events
Ej ’s, it is analytically intractable to solve the exact resultof
p∅. However, the bounds onp∅ can be characterized in closed-
form.

First, the lower bound onp∅ can be found as follows. For
a givenΦU(Cl) we know the following inequality

P





ΦU(Cl)
⋂

j=0

Ej
∣

∣

∣

∣

ΦU(Cl)



 ≥
ΦU(Cl)
∏

j=0

P[Ej],

which is obtained by consideringP[Ej |Ei] ≥ P[Ej] for
Ai ∩ Aj 6= ∅. Since the number of users inCl is a Poisson
random variable with parameterλUν(Cl), i.e., P[ΦU(Cl) =

n] = (λUν(Cl))
n

n! e−λUν(Cl), the lower bound onp∅ can be given
by

p∅ ≥ E







ΦU(Cl)
∏

j=0

P[Ej ]







=

∞
∑

n=0





n
∏

j=0

P[Ej]





(λUν(Cl))n
eλUν(Cl)n!

.

(20)

According to the Slivnyak theorem [7], the statistic property
evaluated at any point in a homogeneous PPP is the same such



thatP[Ej] is the same asP[E0] evaluated at userU0 (the origin)
for all j. Accordingly, (20) can be simplified as

p∅ ≥ exp (−λUν(Cl)(1− P[E0])) (21)

and P [E0] = P

[

D†
0 > D†∗

0

]

in which D†∗
0 is the distance

from the origin to the nearest BS inΦ†
B
. The pdf ofD†∗

0 is
fD†∗

0
(x) = 2πζ†λBx exp(−πζ†λBx

2) [8], wherebyP[E0] is
simplified as

P[E0] = 1− E

[

exp
(

−πζ†λB(D
†
0)

2
)]

. (22)

Since all users inCl are uniformly distributed, we can know
fD†

0
(r) = 2πrζ†

ν(Cl)
and thus we can calculateP[E0] in closed-

form as

P[E0] = 1−
∫

√

ν(Cl)

π

0

exp
(

−πζ†λBr
2
) 2πrζ†

ν(Cl)
dr

= 1− 1− exp(−ζ†λBν(Cl))
λBν(Cl)

.

Apparently,P[E0] ≥ 1− 1
λBν(Cl)

. Then substituting it into (21)
gives us the lower bound in (15).

Next, the upper bound onp∅ can be obtained as follows.
The probability that userUj does not associate with BSBl is
upper-bounded by

P[Ej] ≤ lim
ν(Aj)→∞

P

[

WlHl inf
Uj∈Cl

{‖Uj −Bl‖−α} <

sup
Bi∈ΦB∩Aj\Bl

WiHi‖Uj −Bi‖−α

]

,

which is acquired by considering the farthest user of BSBl

in cell Cl. According to Slivnyak’s theorem and Theorem 1,
the upper bound onp∅ for a givenΦU(Cl) can be written as

P





ΦU(Cl)
⋂

j=0

Ej
∣

∣

∣

∣

ΦU(Cl)



 ≤
(

P

[

R†
l ≥ D†∗

0

])ΦU(Cl)

,

where R†
l denotes the distance from BSB†

l to its farthest
user in C†

l = (WH)−
1
α Cl. Let Φ†

U
(C†

l ) , {U †
j ∈ C†

l :

(WjHj)
− 1

αUj, Uj ∈ Cl} and for givenΦU(Cl) we have

P

[

R†
l ≥ D†∗

0

]

= P

[

(R†
l )

2 ≥ (D†∗
0 )2

]

(a)
= P



(WlHl)
− 2

α

Φ†

U
(C†

l
)

∑

j=1

R2
0,j ≥ (D†∗

0 )2





≤ E







Φ†

U
(C†

l
)

∏

j=1

P

[

(WlHl)
− 2

αR2
0,j ≥ (D†∗

0 )2
]







=
(

1− exp
(

−πλ†
B
E

[

(WlHl)
− 2

α

]

R2
0

))E[Φ†

U
(C†

l
)]

(b)

≤
(

1− λU

λU + E[(WH)−
2
α ]λ†

B

)ΦU(Cl)/ζ
†

(c)

≤
(

1 +
λU

ζ†λB

)−ζ†/ΦU(Cl)

where (a) follows from that fact that{(R†
l )

2, l =
1, 2, · · · } is an one-dimensional Poisson process of inten-
sity λUE[(WH)

2
α ] and thus(R†

l )
2 is equal to the sum of

ΦU(Cl) i.i.d. (WH)−
2
αR2

0 [17], (b) is due to first applying
Jensen’s inequality on the term(WH)−

2
α and then calculat-

ing the expectation regardingR2
0, and (c) is obtained from

(1 − x)n ≤ (1 − x)1/n for x ∈ [0, 1] and n > 0 and
E[ΦU(C†

l )] = ΦU(Cl)/ζ†. Therefore, we have

P





ΦU(Cl)
⋂

j=0

Ej
∣

∣

∣

∣

ΦU(Cl)



 ≤
(

1 +
λU

ζ†λB

)−ζ†

for any givenΦU(Cl) and the upper bound in (15) follows.
This completes the proof.
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