
Energy Efficient Offloading for Competing Users on

a Shared Communication Channel

ENERGY EFFICIENT OFFLOADING FOR COMPETING USERS

ON A SHARED COMMUNICATION CHANNEL

BY

ERFAN MESKAR, B.Sc.

a thesis

submitted to the department of electrical & computer engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

c© Copyright by Erfan Meskar, December 2015

All Rights Reserved

Master of Applied Science (2015) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: Energy Efficient Offloading for Competing Users on a

Shared Communication Channel

AUTHOR: Erfan Meskar

B.Sc., (Electrical Engineering)

Amirkabir University of Technology, Tehran, Iran

SUPERVISOR: Dr. Terrence Todd

Dr. George Karakostas

NUMBER OF PAGES: xii, 50

ii

To my beloved mother

Parvaneh

Abstract

In this thesis we consider a set of mobile users that employ cloud-based computation

offloading. In computation offloading, user energy consumption can be decreased by

uploading and executing jobs on a remote server, rather than processing the jobs

locally. In order to execute jobs in the cloud however, the user uploads must occur

over a base station channel which is shared by all of the uploading users. Since the job

completion times are subject to hard deadline constraints, this restricts the feasible

set of jobs that can be remotely processed, and may constrain the users ability to

reduce energy usage. The system is modelled as a competitive game in which each

user is interested in minimizing its own energy consumption. The game is subject

to the real-time constraints imposed by the job execution deadlines, user specific

channel bit rates, and the competition over the shared communication channel. The

thesis shows that for a variety of parameters, a game where each user independently

sets its offloading decisions always has a pure Nash equilibrium, and a Gauss-Seidel

method for determining this equilibrium is introduced. Results are presented which

illustrate that the system always converges to a Nash equilibrium using the Gauss-

Seidel method. Data is also presented which show the number of Nash equilibria

that are found, the number of iterations required, and the quality of the solutions.

We find that the solutions perform well compared to a lower bound on total energy

iv

performance.

v

Acknowledgements

Foremost, I would like to express my sincere appreciation to my supervisors, Dr.

Terence Todd and Dr. George Karakostas, for their patience, encouragement and

support through my masters at McMaster University. I am truly grateful for working

under their supervision. I would also like to thank Dr. Dongmei Zhao, for her

thoughtful advice and insightful criticism through the duration of my studies.

I would like to record my warmest gratitude to my mother since her love and

endless support have made it possible for me to excel in my studies.

My kind regards to my fellow colleagues in the Wireless Networking Laboratory,

who I have had the pleasure of working with. Special thanks to my friends and

lab mates, Hadi Meshgi and Naby Nikookaran for their intellectual supports and

suggestions.

Last but not the least, I am particularly grateful to my friends in Hamilton for all

the fun and unforgettable moments we had together.

vi

Notations

Dm required CPU cycles for the mth user

Bm input bits for the mth user

vlm local energy consumption for the mth user (joules/CPU cycle)

f lm local computation power for the mth user (CPU cycles/second)

f s cloud server computation power (CPU cycles/second)

T lm local execution response time for the mth user (seconds)

El
m local execution energy consumption for the mth user (joules)

P t
m transmission power for the mth user (watts)

Pw
m waiting power for the mth user (watts)

rm channel data rate for the mth user (bps)

T off
m offloading time delay for the mth user (seconds)

Eoff
m offloading energy consumption for the mth user (joules)

T sm server execution time delay for the mth user (seconds)

T rm total remote execution response time for the mth user (seconds)

Er
m total remote execution energy consumption for the mth user (joules)

Tm total response time for the mth user (seconds)

vii

Em total energy consumption for the mth user (joules)

Tmax
m maximum tolerable response time for the mth user (seconds)

βm exclusive data uploading time for the mth user (seconds)

τm maximum tolerable data uploading time for the mth user (seconds)

Φm negative uploading time margin for the mth user (seconds)

Um mth user

n number of users

viii

Abbreviations

AP Access Point

API Application Programing Interface

EC Elastic Cloud

IaaS Infrastructure as a Service

MCC Mobile Cloud Computing

NE Nash Equilibrium

NEP Nash Equilibrium Point

NIST National Institute of Standards and Technology

PaaS Platform as a Service

QoS Quality of Service

SaaS Software as a Service

SMD Smart Mobile Device

ix

Contents

Abstract iv

Acknowledgements vi

Notations vii

Abbreviations ix

1 Introduction and Motivation 1

1.1 Cloud Computing . 3

1.2 Mobile Cloud Computing . 4

1.3 Motivation . 5

2 Literature Review 9

2.1 Architectures . 9

2.1.1 Agent-client Scheme . 10

2.1.2 Collaborative Scheme . 11

2.2 Challenges . 12

2.2.1 Network Transmission Between Cloud and Mobile Users . . . 12

2.2.2 Partitioning and Offloading between the Cloud and Mobile User 14

x

3 System Model and Problem Formulation 16

3.1 Overview . 16

3.2 System Model . 17

3.2.1 Local Processing . 19

3.2.2 Remote Processing . 20

3.3 Central Decision Making . 23

4 Selfish Decision Making 24

4.1 Overview . 24

4.2 Game Theoretic Model . 24

4.3 Nash Equilibrium Existence . 27

5 Performance Evaluation 36

5.1 System Parameters . 36

5.2 Convergence Time . 37

5.3 Offloading Ratio . 37

5.4 Energy Performance . 38

6 Conclusion 42

xi

List of Figures

2.1 Model of Mobile Cloud Computing 10

2.2 Cloudlet . 11

2.3 The General Architecture of Collaboration Scheme 12

3.1 Mobile Computation Offloading Model. nmobile users access infrastructure-

based cloud servers over a shared wireless communication channel. . 18

5.1 Convergence Time vs. Number of Users 38

5.2 Normalized Energy Cost versus Number of Users for Algorithm 2,

Gauss-Seidel Algorithm and Local Execution 40

5.3 Normalized Social Energy Consumption Over All Discovered NEs . . 41

xii

Chapter 1

Introduction and Motivation

The market of the mobile phone has expanded rapidly. With a rapid development

of embedded systems and high-speed wireless networks, mobile devices, are increas-

ingly becoming a common stuff of daily human life. By the end of 2009, there were

approximately 4.6 billion worldwide mobile cellular subscriptions; 370 times the 1990

number in less than 20 years. Nowadays, we use mobile devices to do many of our

daily jobs that we used to do on our desktops. The rapid development of embedded

systems, software, and high-speed wireless networks enables them to make calls and

send short messages and emails. Moreover, it makes them capable of sensing the

environment and making social contacts, healthcare, and mobile learning (Wei et al.,

2013). Users can interact with other devices and social community without any time

and space restriction because of the inherent mobility of the mobile devices. The

dream of Information at your fingertips anywhere, anytime has become true.

Smartphones have become the main choice of interest for computing platform for

many users. Many computational intensive applications such as natural language

translators (Balan et al., 2007; Flinn et al., 2002), speech recognizers (Balan et al.,

1

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

2007; Su and Flinn, 2005), optical character recognizers, image processors (Kristensen

and Bouvin, 2008; Porras et al., 2009), online games, and video processing (Chun and

Maniatis, 2009) are now accessible on smartphones. However, mobile devices have

some inherent deficits, such as their limited battery energy, poor computation power,

constrained storage space, and insufficient sensing capacities. These limitations have

brought many challenges in quality of service (QoS) insurance, energy management,

and security issues for mobile applications. The increase in the energy density of

smartphones batteries has not fitted the rise in the power demand of these devices,

thus, resulting in a power crisis in the smartphone technology development.

A 2005 study in 15 countries revealed that users considered longer battery lifetime

more significant than any other features such as storage capacity or cameras (Kumar

and Lu, 2010). A survey conducted in 2009 revealed that short battery life is the

most undesirable characteristic of Apple iPhone (Paczkowski, 2009).

There are four basic approaches to saving energy and extending battery lifetime

in mobile devices (Kumar and Lu, 2010). The first one is to adopt a new genera-

tion of semiconductor technology. By shrinking the size of transistors, their energy

consumption reduces. However, providing more functionality and better performance

necessitates more transistors. Consequently, power consumption may increase. The

second one is to keep the whole or individual components of the system in standby

or sleep modes to save power. Doubling the processor clock speed approximately

octuples the power consumption. Hence, to execute programs more slowly is the

third approach to saving energy. However, it may lead to users’ dissatisfaction. The

last approach that we focus on this thesis is to eliminate computation completely.

Rather than executing an application on the mobile device, computation is offloaded

2

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

to somewhere else, e.g. a cloud server, to extend mobile system battery lifetime.

1.1 Cloud Computing

Cloud computing is the new computing paradigm in which users have access to the re-

sources as a service over the internet. These resources could be ranging from physical

infrastructure resources such as memory and storage to complex processing software.

Industry and academics have widely recognized cloud computing to have the potential

to transform large parts of the information technology sector. According to ABI Re-

search, more than 240 million business customers will be leveraging cloud computing

services through mobile devices, driving revenues of $5.2billions by 2015.

Unfortunately, the definition of the term ”cloud computing” is not clear which is

not surprising when the term covers a remarkably wide area. The National Institute of

Standards and Technology (NIST) defines cloud computing as ”a model for enabling

ubiquitous, convenient, on-demand network access to a shared pool of configurable

computing resources. These resources (e.g., networks, servers, storage, applications,

and services) can be rapidly provisioned and released with minimal management effort

or service provider interaction” (Mell and Grance, 2011).

In recent years, several online file storage services have been presented for aug-

menting storage potentials of clients such as Amazon S3, Google Docs, MobileMe,

and DropBox. Moreover, Amazon web services perform computations using Elastic

Cloud Computing (EC2) to alleviate computation restriction of clients.

Cloud service providers use different models for the delivery of cloud resources;

such as Software as Service (SaaS), Infrastructure as Service (IaaS), and Platform as

a Service (PaaS). A SaaS cloud provides on-demand applications over the Internet,

3

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

such as word processing and media streaming. Google Apps, iCloud, and Microsoft

Office 365 are good examples of SaaS clouds. A prime example of PaaS cloud is

Google App Engine, where cloud computing services are provided as a computing

platform using a published Python based application programming interface (API),

and Google Inc that developers can use to develop cloud-based applications. With

IaaS, resources are leased to tenants in the form of Virtual Machines (such as Amazon

EC2, Microsoft Azure, and RackSpace Cloud).

1.2 Mobile Cloud Computing

The lack of resources on smartphones motivates the researchers in mobile comput-

ing to search for the infrastructure that can provide the needed resources for the

mobile devices (Yang et al., 2012). If a mobile user wants to use a computation

intensive application, the computation can be performed in the cloud resources pro-

vided by distant data centers, other mobile devices, and network facilities to meet

users requirements (such as QoS, security and privacy). Mobile cloud computing

(MCC) is evolving as a new computing paradigm that intends to augment resource-

constrained mobile devices, taking advantage of the abundant resources hosted by

clouds. It brings powerful resources of the cloud centers for mobile devices and appli-

cations while having low cost, high scalability, and inheriting the robustness of cloud

computing (Wei et al., 2013). Theoretically, Cloud computing can supply mobile de-

vices with inexhaustible resources. The objective of MCC is to mitigate computing

resources limitations in mobile devices by employing resources and services of con-

ventional computational clouds. Mobile devices can improve the constrained storage

space and processing capabilities by utilizing cloud storage (such as Amazon S3 and

4

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

Dropbox) and processing services (Zhang et al., 2011).

Similar to cloud computing, the definition of the term ”mobile cloud computing”

is not very clear. Aepona defines MCC as a new mobile computing paradigm whereby

the storage and the data processing are migrated from the mobile devices to resources

rich centralized computing data centers in computational clouds (Alzahrani et al.,

2014).

The processing resources on the cloud have much higher speed and larger com-

putation capability. Thus, MCC is becoming an increasingly attractive way to boost

the performance of mobile devices by offloading the tasks onto the cloud and carefully

scheduling task executions on both the mobile device and the cloud (Liu et al., 2013).

However, the task precedence requirements need to be considered to achieve seam-

less and transparent migration. Applications such as natural language processing,

object/gesture recognition, and image/video editing are good candidates for remote

cloud execution (Lin et al., 2014). Large applications can be partitioned into var-

ious tasks with task-precedence requirements, and the partition-level offloading of

computation-intensive tasks prolongs the battery operation time as well as improves

the performance by relieving the burden in CPU (Kremer et al., 2003). Hence, mobile

devices can support more sophisticated and richer applications and services.

1.3 Motivation

Most of earlier works in this area focused on energy efficiency in single-user mobile

cloud computing frameworks. In order to execute jobs in the cloud however, the user

uploads must occur over a base station channel that is shared by other uploading

users. Congestion on the channel introduces job execution latency and increases the

5

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

data uploading energy consumption. Hence, earlier frameworks may not be efficient

anymore. A few researchers addressed this problem by focusing on the joint allo-

cation of radio and computational capabilities in multiuser mobile cloud computing

(Barbarossa et al., 2013)(Sardellitti et al., 2014). These models proposed a central

decision-making unit, which determines users’ offloading decisions regarding social

utility minimization.

We consider a set of mobile users that access cloud services over a shared base

station communication channel. In our model the utility is defined as user’s energy

consumption. Unlike models proposed by Ge et al. (2012), Chen (2015) and Chen

et al. (2015) which do not refer to job deadlines, the job completion times in our model

are subject to hard deadline constraints that may vary from user to user. Users

intend to minimize their utility function (energy consumption) while not violating

their specified job completion time constraints. Time slots on the shared channel are

assigned in a round-robin fashion to the set of mobile users who decide to upload

their jobs (as opposed to those that decide to execute their job locally). Since the

channel quality may be different for each user, the achievable bit rate in a given

time slot may vary greatly between users. It is assumed that the arriving jobs have

hard deadline completion constraints. This may restrict the set of users that can

use computation offloading when job completion deadlines cannot be met. Lack

of central coordinator radically changes the problem. Selfish users compete for a

common resource (the channel) while they are trying to minimize their utility (energy

consumption). Researchers model such setting as a game (Ge et al., 2012) (Chen,

2015) (Chen et al., 2015).

Game theory is a useful framework for designing decentralized mechanisms, such

6

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

that the mobile device users in the system can self-organize into the mutually satis-

factory computation offloading decisions. Moreover, as different mobile devices are

owned by different individuals and they may pursue different interests, game theory

is a powerful tool to analyze the interactions among multiple mobile device users who

act in their own interests. Each user chooses the best strategy (local execution or

remote execution) in order to minimize its utility function. A user’s utility is a func-

tion of its own and other users’ strategies. For example, remote execution time and

offloading energy consumption will increase if more users choose remote execution

and upload their data on the shared communication channel. Consequently, a user’s

best strategy is affected by other users’ strategies. Users play the game until they

reach a stable state where no one would benefit by defecting, i.e., a Nash Equilibrium

(NE).

Users act in a decentralized environment, i.e., they are allowed to make their own

uploading decisions, without a central authority imposing such decisions, and accord-

ing to their utility and the information about the system they can obtain from a

central cloud controller/scheduler. The users play the game using the information

provided by the controller, until they reach a stable state where no one would benefit

by defecting, i.e., a Nash Equilibrium (NE). We emphasize that although the con-

troller controls the flow of system information from and to the users, it is unable to

directly impose any uploading decisions to the users, due to the decentralized decision

making setting. However, it can influence these decisions, e.g., by manipulating the

information it transmits to the users; we are going to use this ability of the controller,

in order to enforce a Nash equilibrium on the system by first computing a NE at

the controller, and then transmitting to the users the job delays that result from

7

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

the strategies in this NE. That will force all users to adopt the NE decisions (since,

according to what they see as the other users decisions, a deviation would increase

energy consumption), and will stabilize the system in one round, without having to

wait for the game to be played until a NE is reached. An important assumption we

make in order for this approach to work is the following truthfulness assumption:

the users report to the controller their actual decisions and parameter values, and

the controller reports the actual execution times corresponding to the user decisions

(either the actual or, for our case, the calculated NE ones).

The rest of the thesis is organized as follows. Chapter 2 is the related work section.

In Chapter 3 we give a detailed description of the system model and formulate the

central decision-making unit. In Chapter 4 we assume that the users are selfish and

model the system as a game. Then we prove that this game always has a pure Nash

equilibrium and propose an algorithm to find it. Performance results are given in

Chapter 5. Finally, Chapter 6 contains the conclusions of our work and possible

future research topics.

8

Chapter 2

Literature Review

2.1 Architectures

Figure 2.1 shows the three major components of the generic MCC model (i.e. SMDs,

wireless internet technology, and computational cloud). In order to access the com-

putational cloud, SMDs use various wireless network technology technologies (e.g.,

3G, LTE, or Wi-Fi) that are inherently less reliable than their wired counterparts

due to mobility requirements (Shiraz et al., 2013). Researchers have proposed var-

ious architectures for MCC, such as MobiCloud, MAUI, CloneCloud, Cloudlet, and

Hyrax to support different types of applications (Wei et al., 2013). We divide these

architectures into two main categories depending on where the users execute their

tasks and how mobile devices and the cloud can be connected.

9

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

Figure 2.1: Model of Mobile Cloud Computing

2.1.1 Agent-client Scheme

In the agent-client scheme, mobile users offload their tasks to a remote data center

in the cloud. This data center can be located in a large distant cloud center (e.g.,

Amazon and Google cloud center) or a local service infrastructure implemented near

the access point of the mobile device connection (Cloudlet).

Figure 2.1 shows a typical model of MCC system with a distant cloud (such as

MAUI (Cuervo et al., 2010) and CloneCloud (Chun and Maniatis, 2009)), where

mobile devices offload applications to the cloud via wireless networks. When clouds

finish the computation tasks, the results are transmitted back to the mobile users.

Satyanarayanan proposed Cloudlet as a local cloud implemented at the access point of

the mobile users (Satyanarayanan et al., 2009; Dinh et al., 2013). Figure 2.2 shows an

MCC system with a Cloudlet, whose computation capability is typically less powerful

than an enterprise grade cloud server. This arrangement, however, can decrease server

response time since mobile devices can connect to the nearby local cloud by using a

fast connection such as WiFi. Whenever the computation resources in the cloudlet

10

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

Figure 2.2: Cloudlet

do not satisfy user’s expectations, it can access the enterprise distant cloud servers

to utilize more powerful resources.

2.1.2 Collaborative Scheme

As in Mobile Peer-to-Peer systems and mobile grid computing, mobile devices collabo-

rate in order to utilize their free resources to run applications (such as Hyrax (Marinelli,

2009), Misco (Dou et al., 2010), and the virtual cloud (Huerta-Canepa and Lee,

2010)). The cloud server in these schemes function as the controller and scheduler for

collaboration (Guan et al., 2011). Figure 2.3 shows the general architecture of this

type of collaboration system.

In Hyrax, for example, Android smartphones can utilize data computational re-

sources on heterogeneous networks of smartphones and servers.

11

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

Figure 2.3: The General Architecture of Collaboration Scheme

2.2 Challenges

2.2.1 Network Transmission Between Cloud and Mobile Users

MCC relies on the availability of the cloud and reliable end-to-end communication.

Unfortunately, this is often influenced by uncontrollable factors, such as the inter-

mittency of wireless communications (Wu and Wolter, 2014). User mobility may

require that they handoff between basestations or access points, leading to undesir-

able behaviour (Guan et al., 2011). One of the fundamental obstacles in MCC is

excessive wireless network latency (Satyanarayanan et al., 2009). Minimizing the use

of network can significantly save energy (Dinh et al., 2013) (Baliga et al., 2011).

Network latency and limited bandwidth in the mobile network

The inherent nature of mobile devices and wireless networks raise the problem of

network latency in mobile cloud computing (Guan et al., 2011). Mobile applications

such as online gaming and speech recognition, which need to be processed in the

cloud to conserve energy (Barbera et al., 2013), are very sensitive to execution time.

12

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

Excessive network latency may prohibit the use of MCC in such mobile applications.

Hence, solutions are required to that will monitor and improve network conditions

so that energy can be saved by task offloading while guaranteeing a satisfying user

experience.

Galinina et al. (2013) proposed a power control scheme that maximizes the energy

efficiency of a mobile device transmitting on several communication channels while

ensuring the required minimum quality of service. They obtain the optimal trans-

mit power from the solution of an optimization problem that is based on Shannon’s

capacity formula.

Delayed Offloading

Recently, “delayed” offloading has been proposed to tackle the problem of temporary

WiFi network unavailability. When there is no WiFi available, traffic can be delayed

up to some chosen deadline (Mehmeti and Spyropoulos, 2013), since delay-tolerant

applications are less sensitive to network delays. In participatory sensing applications,

for example, data is uploaded from a smartphone to a back-end cloud server either

through cellular or WiFi connectivity (Ra et al., 2010). Some of the sensor data

are not time-critical, and it is possible to delay transfers until a lower energy WiFi

connection is available.

Some work has considered energy-efficient delayed offloading by monitoring the

network connectivity (e.g., 3G, WiFi) and exploring the trade of between execution

time and transmit power of different network interfaces (Shu et al., 2013). Reference

Ra et al. (2010) presented a principled approach for designing an optimal online algo-

rithm, called SALSA, for this energy-delay tradeoff using the Lyapunov optimization

13

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

framework.

Network Selection

Nowadays, mobile devices are often equipped with multiple wireless networking tech-

nologies, such as 3G/EDGE, 4G LTE, and WiFi. Selecting the best available link

can reduce energy consumption significantly since the energy-efficiency and availabil-

ity of these networks can vary significantly. Connectivity may change from place to

place, and the data transmission bandwidth (i.e. the uplink and downlink) fluctuates

due to multiple factors (such as weather, mobility, and channel fading) (Shu et al.,

2013). For these reasons, algorithms are required that choose an appropriate network

interface to minimize energy consumption.

Rahmati and Zhong (2007) proposed an online wireless network selection mecha-

nism that trades off offloading transmission efficiency on an intermittently available

WiFi network, and the energy consumption needed to search of a better WiFi connec-

tion. By monitoring the dynamics of user traffic and energy aware allocation of the

radio network resource to mobile users, Gribaudo et al. (2013) developed a framework

based on a Markovian agent formalism to minimize user energy consumption.

2.2.2 Partitioning and Offloading between the Cloud and

Mobile User

Research has proposed partitioning frameworks that divide complex applications

into components that can be offloaded separately. However, the data dependency

of these components must be considered in order to achieve a smooth application

execution (Zhu et al., 2013). This requires the estimation of the communication and

14

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

computation energy consumption (i.e. local execution energy consumption) of each

component (Kumar and Lu, 2010). Unfortunately, the problem of optimal applica-

tion partitioning is NP-complete and therefore heuristic techniques are required (Gu

et al., 2004). These methods are classified as static or dynamic partitioning. Static

partitioning cannot fit all application scenarios since it is only suitable for one specific

application (Chun and Maniatis, 2010). Dynamic partitioning, however, can addresses

various MCC environments (e.g., different device platforms, networks, and clouds),

and diverse applications and dynamic application processing loads (Zhu et al., 2013).

Kumar et. al. formulated a simple optimization problem that minimizes mobile

user energy consumption; where the partitioning decision is derived from the direct

solution of the optimization (Kumar and Lu, 2010). Cuervo et al. (2010) proposed

MAUI to maximize the energy benefits of offloading code while utilizing “managed

coding” to reduce the burden on programmers to deal with program partitioning.

Giurgiu et al. (2009) presented ALL and K-step, which are static and dynamic two-

step partitioning approaches, respectively. First, the application’s components are

modeled as a data flow graph. In the second step, an optimization algorithm finds

the optimum partitioning decision to maximize user utility.

15

Chapter 3

System Model and Problem

Formulation

3.1 Overview

In this chapter we describe the MCC system that our research is based on. Our model

is based on cloudlet system which was proposed by Satyanarayanan to eliminate the

long distance between mobile users and cloud servers. Satyanarayanan, for instance,

proposed a cloudlet system in popular public coffeehouses in which a lot of customers

use their mobile devices(such as laptop, tablet, and smartphone) everyday. By us-

ing close-by servers located at wireless access point (AP) which are at just one-hop

distance from mobile users. The closer the users are to the server, the faster they

can transmit data. Moreover, less energy is consumed on data transmission so users

decide to offloade their computation more probably.

16

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

3.2 System Model

The system considered is shown in Figure 3.1. A set of n mobile users employ cloud-

based computation offloading, where jobs may be executed either locally, or on remote

cloud servers. If remote execution is chosen, a user must upload job-specific data

which is needed to run the job on the remote server. When a set of stations choose

the remote execution option, they upload their job data through a communication

channel that is shared among the uploading users using a round robin time slot

assignment.

Assumption 1. During each visit, the scheduler employs a gated discipline: it pro-

cesses all jobs that are present at the time of the visit. Hence, we can assume that all

jobs arrive into the system simultaneously.

Assumption 2. There is an unlimited number of cloud servers.

Assumption 3. The uploading bit rates for each user may be different due to differing

radio propagation path loss values, and therefore the user data payload depends on

which user is currently transmitting.

Assumption 4. The upload bit rates are constant for the duration of a given job

contention/uploading cycle.

We are interested in the total energy needed to execute a set of n jobs, one for each

user, once the users have decided on local or remote execution during a job contention

round. If a user decides to upload, it transitions its wireless air interface from a low

power mode into the active state. The wireless communication channel is then shared

in a round-robin fashion between those users that have made upload decisions. While

17

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

Base Station

Cloud Servers

Shared Uplink Channel

2

n

1

Figure 3.1: Mobile Computation Offloading Model. n mobile users access
infrastructure-based cloud servers over a shared wireless communication channel.

a given station is participating in job uploading, its radio interface transitions between

time slots during which it is actively transmitting on the uplink, and those where it is

in an active waiting state where packet reception is enabled. More formal definitions

are given in the following development, and Table 3.1 summarizes the notation used.

User Um, for m ∈ {1, 2, . . . , n} is characterized by the tuple (Jm, Lm, Rm, T
max
m),

which contains the following information:

• Jm = (Dm, Bm), where Dm is the number of required CPU cycles in order to

execute job Jm, and Bm denotes how many bits Um needs to upload to the cloud

in order to execute the job remotely.

• Lm = (vlm, f
l
m), where vlm is the energy consumption per CPU cycle, and f lm is

the number of CPU cycles executed per second if Um decides to execute its job

locally, i.e., without uploading it to the cloud.

• Rm = (P t
m, P

w
m, rm), where P t

m and Pw
m are the wireless transmission and waiting

18

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

power consumption respectively, and rm is the wireless uplink data rate for Um.

• Tmax
m is Um’s maximum tolerable response time.

In order to simplify our notation in the following, we also define βm = Bm/rm, and

τm = Tmax
m − Dm

f lm
.

Each user Um has a decision variable am that indicates whether the user decides

to execute its task locally (am = 0) or upload it to the cloud (am = 1). On the cloud

server side, we will use f s to denote the server computation power. We emphasize

that the server computation power is not a system bottleneck, i.e., there are always

enough cloud servers to execute uploaded jobs.

The game can be imagined to be played as a sequence of iterations: During each

iteration, each user Um communicates its current decision value, am, to a cloud-

hosted controller. The controller then provides feedback to the users, indicating the

achieved response times which are attained by each. Following this, the users update

their decisions and continue on until an equilibrium is reached. Once this happens,

job uploading and processing occurs. In reality, the controller will collect the users’

parameters and will simulate the game itself; when the simulation ends at equilibrium,

it will communicate to the users the calculated equilibrium delays, so that the users

will be “forced” to decide according to the equilibrium.

3.2.1 Local Processing

In the case where user Um decides to execute its job locally, we use the simple model

described in Kumar and Lu (2010) where the local execution energy consumption El
m

19

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

Table 3.1: Table of Notation
Dm required CPU cycles
Bm input bits
vlm local energy consumption (joules/CPU cycle)
f lm local computation power (CPU cycles/second)
f s cloud server computation power (CPU cycles/second)
T lm local execution response time (seconds)
El
m local execution energy consumption (joules)

P t
m transmission power (watts)

Pw
m waiting power (watts)

rm channel data rate (bps)
T off
m offloading time delay (seconds)
Eoff
m offloading energy consumption (joules)
T sm server execution time delay (seconds)
T rm total remote execution response time (seconds)
Er
m total remote execution energy consumption (joules)

Tm total response time (seconds)
Em total energy consumption (joules)
Tmax
m maximum tolerable response time (seconds)
βm exclusive data uploading time (seconds)

τm maximum tolerable data uploading time (seconds)

Φm negative uploading time margin (seconds)

Um mth user
n number of users

and the time delay due to local computation T lm are defined as follows:

T lm =
Dm

f lm
, El

m = vlmDm.

3.2.2 Remote Processing

In the case of uploading, we describe both the wireless communication model used,

and the cloud server execution model, in terms of energy consumption and time delay.

20

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

Wireless Channel Sharing

All users share a single wireless communication channel to upload their jobs. It

is assumed that if m users decide to upload, time slots are shared in a round-robin

fashion between them. Without loss of generality, we assume that the users are sorted

so that β1 ≤ β2 ≤ · · · ≤ βn and that user Um’s upload time is given by T off
m . After

user Um finishes its data transmission, user Um+1 continues sharing the channel with

the remaining users. Assuming that the job upload times are large compared to the

time slot duration, it can easily be shown that

T off
m+1 = T off

m + (βm+1 − βm) ηm+1 (3.1)

where ηm+1 is the number of users who are still uploading after user m finishes its

data transmission, and 1/ηm+1 is the normalized per user data rate. Hence ηm+1 =∑n
i=m+1 ai, and, therefore, (3.1) implies for an uploading user Um (i.e., am = 1), that

T off
m =


(1 +

∑n
i=m+1 ai)βm if m = 1∑m−1

i=1 aiβi + (1 +
∑n

i=m+1 ai)βm if 1 < m < n∑m−1
i=1 aiβi + βm if m = n

(3.2)

Eoff
m is the energy consumption due to uploading via the wireless channel and can be

calculated as transmission power times exclusive uploading time, i.e.,

Eoff
m = P t

mβm + Pw
m(T off

m − βm) (3.3)

21

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

Cloud server execution

We assume that once a job has been uploaded to a cloud server, it starts executing

without delay, i.e., the congestion is on the shared channel, not the cloud server. The

server execution time for Um is given by

T sm =
Dm

f s
(3.4)

Then the total remote execution time and the total remote energy consumption are

given by

T rm = T off
m + T sm (3.5)

Er
m = Eoff

m = P t
mβm + Pw

m(T off
m − βm) (3.6)

and, by taking into account Um’s decision variable am, we find that its total response

time and energy consumption are given by

Tm = amT
r
m + (1− am)T lm (3.7)

Em = amE
r
m + (1− am)El

m (3.8)

Note that in this development we have assumed that other system delays, such as the

communication latency between the base station and the cloud servers, are negligible

compared to the others. However, these delays can be included in the formulation, if

desired.

22

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

3.3 Central Decision Making

In conventional mobile cloud computing, a central scheduler is used to determine

the decision variables am for all users, so that either the overall or maximum energy

consumption is minimized, ensuring that all users’ response time constraints are re-

spected. Therefore, the central scheduler solves one of the following mathematical

programs. In (OPT SUM) the central scheduler minimizes the social (total) energy

consumption:

min
{a1,a2,...,an}

n∑
m=1

Em s.t.

Tm ≤ Tmax
m , ∀m ∈ {1, . . . , n}

am ∈ {0, 1}, ∀m ∈ {1, . . . , n}

(OPT SUM)

Using (3.2), (3.6) and (3.8), the objective function of (OPT SUM) can be written as

n∑
m=1

Em =
n∑

m=1

(P t
m − Pw

m)βmam +
n∑

m=1

(1− am)vlmDm (3.9)

+
n∑

m=1

amP
w
m(

∑
i<m

aiβi + βm
∑
i>m

ai)

23

Chapter 4

Selfish Decision Making

4.1 Overview

One of the characteristics of cloud computing is the lack of a central coordinator that

can force users to upload their jobs to the cloud. Therefore, in our model we allow

the mobile users to act as selfish agents, i.e., they decide by themselves whether to

perform their computation remotely or locally, according to their own cost function.

As a result, the value of am is set by user Um itself; the role of the central scheduler

of Section 3.3 is to just provide the agents with channel information. As a result, we

adopt a game theoretic approach in order to study our setting.

4.2 Game Theoretic Model

In our model, each user wants to minimize its own energy consumption. The objective

for a user Um can be modeled as follows: Let a−m = (a1, ..., am−1, am+1, ..., an) be the

tuple of the offloading decisions by all other users except user Um; then, given a−m,

24

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

user Um would like to set its decision variable am ∈ {0, 1} to the solution of the

following:

min
am

Em s.t.

Tm(am, a−m) ≤ Tmax
m

am ∈ {0, 1}

(mOPT)

Note that (3.7) and (3.8) imply that the objective and time constraint depend on am

and a−m. Therefore, (mOPT) is an optimization problem with a non-trivial solution.

Following the classic definition of Nash equilibria, suppose that there is a vector

Ā = (ā1, . . . , ān) such that for each Um, the value ām solves (mOPT) with a−m fixed

to Ā−m. Then Ā is called a (generalized) Nash equilibrium.

In order to measure the (in)efficiency of Nash equilibria, Koutsoupias & Papadim-

itriou (Koutsoupias and Papadimitriou, 1999) introduced the notion of the Price of

Anarchy (PoA). This is defined as the ratio of the worst-case overall (social) cost of a

Nash equilibrium over the overall (centralized) optimal cost. In our experiments we

do not compute necessarily the worst-case equilibrium, but we will abuse the notation

by defining the ‘price of anarchy’ as the ratio of the cost of the reached equilibrium

over the (centralized) optimal cost. We leave the estimation of PoA in the sense

of (Koutsoupias and Papadimitriou, 1999) as an open problem.

In order to find a Nash Equilibrium (albeit not necessarily the worst-case one),

we use the classic Gauss-Seidel method (Algorithm 1). In the first step we randomly

choose A = (a1, a2, . . . , an) where ai ∈ {0, 1} as our starting point. In most cases the

starting point is not feasible (some time constraints may be violated). Then, in each

iteration, user Um is selected randomly and we solve its (mOPT) with the given a. If

the optimal solution of (mOPT) is different than the current decision value am, we

25

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

set am to the new optimal solution; otherwise, we randomly select another user and

continue. This iterative procedure continues until none of the user decision variables

change anymore, at which point the algorithm returns the Nash equilibrium.

The users compete for a common resource (the channel) while they are trying to

minimize their utility (energy consumption). They act in a decentralized environ-

ment, i.e., they are allowed to make their own uploading decisions, without a central

authority imposing such decisions, and according to their utility and the information

about the system they can obtain from a central cloud controller/scheduler. The

natural way of modelling such a setting is as a game, which the users play using the

information provided by the controller, until they reach a stable state where no one

would benefit by defecting, i.e., a Nash Equilibrium (NE). If one allows the game

dynamics to run their course by playing the game in iterations and in a distributed

way, the number of iterations may be prohibitively large, or (even worse) they may

never converge to an equilibrium. That is why we propose the replacement of this

actual playing of the game among the users with the simulation of the game by a

single machine (the controller) that can calculate the equilibrium strategies without

a single iteration of the game being played. We emphasize that although the con-

troller controls the flow of system information from and to the users, it is unable to

directly impose any uploading decisions to the users, due to the decentralized decision

making setting. However, it can influence these decisions, e.g., by manipulating the

information it transmits to the users; we are going to use this ability of the controller,

in order to enforce a Nash equilibrium on the system by first computing a NE at

the controller, and then transmitting to the users the job delays that result from

the strategies in this NE. That will force all users to adopt the NE decisions (since,

26

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

Algorithm 1 Gauss-Seidel Algorithm

1: procedure FindNashEquilibrium
2: sort users so that β1 ≤ β2 ≤ · · · ≤ βn
3: randomly pick a binary vector A = (a1, . . . , an)
4: N = {1, 2, . . . , n}
5: for k = 1→ n do
6: m← a randomly picked number from the set N .
7: xopt ← solution of (mOPT) for user Um
8: if xopt 6= am then
9: am ← xopt

10: go to line 4
11: else
12: remove m from the set N .
13: endfor
14: return A

according to what they see as the other users decisions, a deviation would increase

energy consumption), and will stabilize the system in one round, without having to

wait for the game to be played until a NE is reached.

4.3 Nash Equilibrium Existence

In general, each user Um solves (mOPT) throughout the duration of the game. If we

define

τm = Tmax
m − Dm

f s
, (4.1)

27

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

then we can rewrite (mOPT) as

min
am

amP
w
m(
P t
mβm
Pw
m

− βm + T off
m (a−m))+

+(1− am)Dmv
l
m s.t.

amT
off
m (a−m) ≤ amτm

am ∈ {0, 1}

(mOPT’)

Given Φm as follows

Φm = T off
m −min{τm,

vlmDm

Pw
m

− (
P t
m

Pw
m

− 1)
Bm

rm
} (4.2)

the optimization problem (mOPT”) would be equivalent to (mOPT’)

min
am

amΦm s.t.

am ∈ {0, 1}
(mOPT”)

We can rewrite (mOPT”) as the following two-part definition in which Φm is

defined by (4.2)

am =


1 if Φm ≤ 0

0 if Φm > 0

To prove the existence of Nash equilibrium in such a system we provide an algo-

rithm (Algorithm 2) which assures convergence to a Nash equilibrium. Obviously

this algorithm will converge in at most n iterations. We need to prove that the

convergence point is a Nash equilibrium.

Theorem 1. Algorithm 2 always converges to a Nash equilibrium.

28

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

Algorithm 2 Finding Nash equilibrium in hetrogeneous system

1: procedure FindNashEquilibrium(a1, . . . , an)
2: S ← {1, . . . , n}
3: A = 11×n
4: while max

t∈S
Φt(at, a−t) > 0 do

5: k ← arg max
t∈S

Φt(at, a−t)

6: ak ← 0
7: remove k from set S
8: return A

Proof. We claim that whenever a user leaves S, he will never be able to get back

to S (i.e., to offload) during the procedure, without violating his deadline constraint.

Moreover, at the end of the algorithm, no user in S has an incentive to prefer local

execution instead of offloading. Together, these two claims prove the theorem.

Claim 1. A user that has left S before iteration k (1 ≤ k ≤ n), will not be eligible

to get back to S (i.e., to offload) right after iteration k, without violating his deadline

constraint.

Proof of Claim 1. We will prove the claim using induction on k. For k = 1 the claim

is obviously true, since no user has left S before the current one, and the latter leaves

S in iteration 1 because of his time constraint violation. We assume that it is true

for all iterations 0 ≤ k ≤ m, and we prove it for iteration m+ 1.

Let Uρm+1 be the player examined in iteration m + 1 of the algorithm, and Uρi

(1 ≤ i ≤ m) the player removed from S in iteration i. For instance, if U10, U2, U12, U1

are removed in this order during the first four iterations, then ρ1 = 10, ρ2 = 2, ρ3 = 12

and ρ4 = 1. Due to the inductive hypothesis, none of the Ui’s (1 ≤ i ≤ m) have

entered S before iteration m+ 1. In iteration i, Uρi (1 ≤ i ≤ m+ 1) leaves S, i.e., he

changes his decision aρi to 0 (from 1) (i.e., from offloading to local execution instead).

29

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

Let ~xρi (1 ≤ i ≤ m + 1) be the decision vector which indicates that Uρi changes

back to offloading (aρi = 1) after Uρm+1 changes aρi to 0 (from 1):

~xi = (aρi = 1, aρ1 = . . . = aρi−1
= aρi+1

= . . . = 0, aρi = 1, a−{ρ1,...,ρi})

(a−W indicates the decision variables for all users who are not members of set W).

We want to prove that none of the Uρi ’s (1 ≤ i ≤ m) prefer to offload right after

iteration m+ 1, or, equivalently,

Φρi(~xρi) > 0, 1 ≤ i ≤ m (4.3)

Obviously, we already have that

Φρm+1(~xρm+1) > 0. (4.4)

We show (4.3) by induction on i, starting from i = m and going towards i = 1.

For the base case (i = m), we need to show that after the departure of Uρm+1 in

iteration m + 1, Uρm cannot return to S, or, equivalently, that Φρm(~xρm) > 0. Since

player Uρm left S at iteration m, we have (due to line 7 in the algorithm)

Φρm(~a) > Φρm+1(~a) (4.5)

where we define

~a = {aρm , aρm+1 = 1, a−{ρm,ρm+1}}.

There are two possible cases:

30

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

Case 1 - 1. ρm > ρm+1

Equation (3.2) shows that

T off
ρm(~xρm) = T off

ρm(~a)− βρm ⇒ Φρm(~xρm) = Φρm(~a)− βρm (4.6)

T off
ρm+1

(~xρm+1) = T off
ρm+1

(~a)− βρm ⇒ Φρm+1(~xρm+1) = Φρm+1(~a)− βρm (4.7)

Then equations (4.5), (4.4), (4.6), and (4.7) show that

Φρm(~xρm) > Φρm+1(~xρm+1) > 0.

Case 1 - 2. ρm < ρm+1

According to equation (3.2) we would have

T off
ρm(~xρm) = T off

ρm(~a)− βρm ⇒ Φρm(~xρm) = Φρm(~a)− βρm+1 (4.8)

T off
ρm+1

(~xρm+1) = T off
ρm+1

(~a)− βρm ⇒ Φρm+1(~xρm+1) = Φρm+1(~a)− βρm+1 (4.9)

Then equations (4.5), (4.4), (4.8), and 4.9 show that

Φρm(~xρm) > Φρm+1(~xρm+1) > 0.

Hence Uρm cannot offload right after Uρm+1 decides to execute locally in iteration

m+1. We will assume that (4.3) is true for all l ≤ i ≤ m, and we prove it for i = l−1.

There are two possible cases:

Case 2 - 1. ρl−1 < ρm+1

31

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

If we consider indices {ρl−1, . . . , ρm+1} in ascending order, then let ρz be the index

right after ρl−1, and ρmin, ρmax be the smallest and biggest index respectively, i.e.,

ρmin < · · · < ρl−1 < ρz < · · · < ρmax

Note that for the case we are considering, indices ρz, ρmin, ρmax are well defined, even

if the first one may coincide with the third. We also define the sets SL and SU as

follows:

SL = {ρj : l − 1 < j ≤ m+ 1, j 6= z, ρj < ρl−1}

SU = {ρj : l − 1 < j ≤ m+ 1, j 6= z, ρj > ρz}

Since Uρl−1
was removed from S before Uρz , we have

Φρl−1
(~a) ≥ Φρz(~a) (4.10)

where we define

~a = {a{ρl−1,ρz}∪SL∪SU
= 1, a−{ρl−1,ρz}∪SL∪SU

}.

Equation (3.2) implies that

T off
ρl−1

(~b) = T off
ρl−1

(~a)−
∑
j∈SL

βj ⇒ Φρl−1
(~b) = Φρl−1

(~a)−
∑
j∈SL

βj (4.11)

T off
ρz (~b) = T off

ρz (~a)−
∑
j∈SL

βj ⇒ Φρz(~b) = Φρz(~a)−
∑
j∈SL

βj (4.12)

32

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

where we define

~b = {aSL
= 0, a{ρl−1,ρz}∪SU

= 1, a−{ρl−1,ρz}∪SL∪SU
}.

Equations (4.10), (4.11), and (4.12) show that

Φρl−1
(~b) ≥ Φρz(~b) (4.13)

Equation (3.2) also implies that

T off
ρl−1

(~c) = T off
ρl−1

(~b)− |SU |βρl−1
⇒ Φρl−1

(~c) = Φρl−1
(~b)− |SU |βρl−1

(4.14)

T off
ρz (~c) = T off

ρz (~b)− |SU |βρz ⇒ Φρz(~c) = Φρz(~b)− |SU |βρz (4.15)

where we define

~c = {aSL∪SU
= 0, a{ρl−1,ρz} = 1, a−{ρl−1,ρz}∪SL∪SU

}.

The fact that βρl−1
≤ βρz , together with equations (4.13), (4.14), and (4.15), implies

that

Φρl−1
(~c) ≥ Φρz(~c) (4.16)

Then (3.2) implies that

T off
ρl−1

(~xρl−1
) = T off

ρl−1
(~c)− βρl−1

⇒ Φρl−1
(~xρl−1

) = Φρl−1
(~c)− βρl−1

(4.17)

T off
ρz (~xρz) = T off

ρz (~c)− βρl−1
⇒ Φρz(~xρz) = Φρz(~c)− βρl−1

(4.18)

33

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

and, therfore, from the inductive hypothesis and equations (4.16), (4.17), and (4.18),

we get that

Φρl−1
(~xρl−1

) ≥ Φρz(~xρz) ≥ 0.

Case 2 - 2. ρl−1 > ρm+1

This case can be divided into two subcases.

Subcase 1 There exists a l − 1 < z ≤ m + 1 such that ρz > ρl−1. In this case we

can use exactly the same arguments as in the previous case.

Subcase 2 For all l− 1 < y ≤ m+ 1 we have that ρy < ρl−1. If we consider indices

{ρl−1, . . . , ρm+1} in ascending order, then let ρz be the index right before ρl−1. Again,

we define SL and SU as follows:

SL = {ρj : l − 1 < j ≤ m+ 1, j 6= z, ρj < ρz}

SU = {ρj : l − 1 < j ≤ m+ 1, j 6= z, ρj > ρl−1}

Obviously by this definition we have SU = ∅ and SL = {ρj : j 6= z, l−1 < j ≤ m+1}.

Since Uρl−1
was removed before Uρz , we have

Φρl−1
(~a) ≥ Φρz(~a) (4.19)

where we define

~a = {a{ρl−1,ρz}∪SL
= 1, a−{ρl−1,ρz}∪SL

}.

34

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

Equation (3.2) implies the same equations as (4.11) and (4.12) (recall that SU = ∅ in

~b), and therefore we get that

Φρl−1
(~b) ≥ Φρz(~b). (4.20)

We also have

T off
ρl−1

(~xl−1) = T off
ρl−1

(~b)− βρz ⇒ Φρl−1
(~xl−1) = Φρl−1

(~b)− βρz (4.21)

T off
ρz (~xρz) = T off

ρz (~b)− βρz ⇒ Φρz(~xρz) = Φρz(~b)− βρz (4.22)

Equations (4.20), (4.21), and (4.22) indicate that

Φρl−1
(~xρl−1

) ≥ Φρz(~xρz) > 0.

Claim 2. At the end of algorithm 2, all users in S will offload.

Proof (of Claim 2). The algorithm terminates either with S = ∅ or because Φj ≤ 0

in line 9. In the latter case, we have Φi ≤ Φj ≤ 0 for all i ∈ S, and, therefore, no user

in S has an incentive to not offload.

Claims 1 and 2 together prove the theorem.

35

Chapter 5

Performance Evaluation

5.1 System Parameters

The Monte Carlo method was used to evaluate the efficiency of the game theoretic

model, the convergence time and the energy consumption attained at the Nash equi-

librium points (NEPs). In order to cover a wide range of scenarios, 500 random

configurations were generated and each was executed 500 times with different start-

ing decision values and random seeds. In all configurations, Dm, Bm, rm, and P t
m were

generated using a random uniform distribution. The required CPU cycles, Dm, were

chosen randomly between 1 and 10 Gcycles. Input data size, Bm, was between 0.42

to 42 Mb and the channel data rate, rm, ranged from 6.4 to 64 Mbps. Data trans-

mission power, P t
m, was between 0.75 to 1 mW. Local computation power, f lm, was

selected randomly from 0.5, 0.8 or 1 giga CPU cycles/sec and local execution power

consumption, P l
m, was chosen randomly from 20 , 22.5 and 25 mW with equal proba-

bility. Cloud server computation power, f s, was taken to be 100 giga CPU cycles/sec

and local energy consumption, vlm, was considered to be equal to P l
m/f

l
m.

36

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

5.2 Convergence Time

The convergence time of Algorithm 2 and the Gauss-Seidel algorithm was studied and

the results are shown in Figure 5.1. Algorithm 2 has order of n2 time complexity. The

two dashed lines show the maximum convergence time among all reached NEPs for

each algorithm. Algorithm 2 shows a better performance since it converges in at most

n iterations while the Gauss-Seidel algorithm convergence time is random and could

potentially loop forever. This however, was not observed in any of our experiments,

i.e., Gauss-Seidel always found a Nash equilibrium. The average convergence time of

these two algorithms is shown by solid lines. In Algorithm 2, since in each iteration

the maximum value of Φ needs to be calculated, increasing the number of users will

increase the execution time. In addition, due to the constant channel capacity, a

smaller portion of users chooses to offload in larger groups, thus Algorithm 2 needs

to iterate more to converge. As a result, the average execution time of Algorithm 2

in large groups (in our simulation results, with more than 150 users) is longer than in

the Gauss-Seidel method. However, simulation results show that the game theoretic

computation offloading mechanism scales well with the size of the problem. The social

optimum problem is NP hard and very time consuming to solve.

5.3 Offloading Ratio

Table 5.1 illustrates the average offloading ratio, which is defined as the ratio of the

number of remote executions to the number of users (n). As the number of users

increases, proportionally fewer users offload at equilibrium. This is expected since

the channel capacity is kept constant, and, therefore, the remote execution delay

37

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Users

E
xe

cu
tio

n
T

im
e

Gauss−Seidel Maximum Time
Gauss−Seidel Average Time
Algorithm 2 Maximum Time
Algorithm 2 Average Time

Figure 5.1: Convergence Time vs. Number of Users

becomes prohibitively large for an ever greater proportion of users. Consequently,

the MCC approach is more beneficial in small to moderate size groups.

5.4 Energy Performance

In Figure 5.2, three different task execution approaches were studied. In the up-

per curve, all users execute their tasks locally while in the two lower curves, Algo-

rithm 2 and the Gauss-Seidel algorithm were used to assign remote execution to some

38

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

Table 5.1: Average Offloading Ratio
n Average Offloading Ratio n Average Offloading Ratio
10 0.7084 110 0.2602
20 0.5553 120 0.2470
30 0.4717 130 0.2392
40 0.4140 140 0.2313
50 0.3772 150 0.2215
60 0.3438 160 0.2145
70 0.3221 170 0.2091
80 0.3025 180 0.2024
90 0.2871 190 0.1977
100 0.2731 200 0.1922

users. All social energy cost values were normalized according to the optimal social

cost (OPT SUM). The game theoretic approaches resulted in considerable energy

savings. The energy cost difference between these approaches decrease by increasing

the number of users since the offloading ratio becomes smaller.

Figure 5.3 shows the ratio of the total cost at equilibrium determined by Gauss-

Seidel and Algorithm 2 over the optimal social cost (OPT SUM). More specifically,

we show the ratio for the worst (total cost-wise) equilibria reached (WE/SO) and the

average over all reached equilibria (AE/SO). Our simulation shows that the PoA as de-

fined by Koutsoupias and Papadimitriou (1999) could be approximately 3. However,

proof on theoretical upper bounds for the worst-case equilibrium ratio is required.

While the cost for the worst equilibrium may be as much as 300% higher than the

social optimum, the average cost of a reached equilibrium is much closer to the social

optimum. Therefore the lack of central coordination to solve (OPT SUM) does not

result in a prohibitive increase in the total energy needed for supporting offloading.

Since the number of Nash equilibrium points increases in larger groups, the proba-

bility of hitting the worst equilibrium will decrease. As a result, in our experiments,

39

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

Figure 5.2: Normalized Energy Cost versus Number of Users for Algorithm 2, Gauss-
Seidel Algorithm and Local Execution

by increasing the number of users, the social cost of the worst equilibrium reached

was closer to the average among all reached equilibria. We leave open the question of

theoretical upper bounds for the worst-case equilibrium ratio (i.e., the PoA as defined

by Koutsoupias and Papadimitriou (1999)).

40

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

10 15 20 25 30 35 40
1

1.5

2

2.5

3

3.5

Number of Users

N
or

m
al

iz
ed

 E
ne

rg
y

C
os

t

Gauss�Seidel WE/SO
Algorithm 2 WE/SO
Gauss�Seidel AE/SO
Algorithm 2 AE/SO

Figure 5.3: Normalized Social Energy Consumption Over All Discovered NEs

41

Chapter 6

Conclusion

In this thesis we considered a system where mobile users use computation offloading,

where energy consumption is reduced by executing jobs on a remote cloud server,

rather than locally. In order to perform remote execution, a mobile user uploads the

job over a base station channel which is shared by other uploading users. The jobs are

subject to hard deadline constraints, and because the channel quality may be different

for each user, this may restrict the ability to reduce energy usage. The system was

modelled as a competitive game where users are interested in minimizing their own

energy use. The thesis showed that, a game where each user independently adjusts

its offload decisions always has a pure Nash equilibrium. Results were presented

which illustrate that the system always converges to a Nash equilibrium using the

Gauss-Seidel method. Data was also presented which shows the number of iterations

required, and the quality of the equilibria obtained, by comparing the total energy

consumed at the equilibrium achieved to the optimal total energy consumption, if

there were a central coordinator with the ability to impose uploading decisions to the

users (social cost). In particular, we found that the solutions perform well compared

42

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

to a lower bound on total energy performance.

In this thesis, we assume that the users and the controller are truthful in report-

ing data to each other. The problem of untruthful users or controller that report

misleading information is left open for future work. We may be able to increase the

fairness of the reached Nash equilibrium by manipulating the information that the

central broker sends back to the mobile users. Wei et al. (2010) proposed a method

to guarantee fairness of NEPs in their cloud computing model.

We left open the question of theoretical upper bounds for the worst-case equilib-

rium ratio (i.e., the PoA as defined by Koutsoupias and Papadimitriou (1999)) and

theoretical lower bound for the quality of the equilibria obtained from Algorithm 1.

Chen (2015) could theoretically assess the efficiency ratio of the worst-case Nash equi-

librium over the optimal centralized solution. However, the proposed upper bound

appears to be overly conservative.

The work in this thesis is based on binary offloading decisions (i.e., local execution

and entire task offloading). For future work, multiple decisions (i.e. multiple job

partitions) may be taken into account, such that users can decide what portion of the

application to offload. We can deploy the task graph model presented by Lin et al.

(2014) in order to benefit from application partitioning in out framework.

On the other hand, in the current work each mobile user has a fixed transmission

data rate when uploading data to the cloud server through wireless channels. In the

future, we can consider stochastic channel conditions in which case the transmission

rates of mobile users are no longer constant.

43

Bibliography

Alzahrani, A., Alalwan, N., and Sarrab, M. (2014). Mobile cloud computing: Advan-

tage, disadvantage and open challenge. In Proceedings of the 7th Euro American

Conference on Telematics and Information Systems, EATIS ’14, pages 21:1–21:4,

New York, NY, USA. ACM.

Balan, R. K., Gergle, D., Satyanarayanan, M., and Herbsleb, J. (2007). Simplifying

cyber foraging for mobile devices. In Proceedings of the 5th international conference

on Mobile systems, applications and services, pages 272–285. ACM.

Baliga, J., Ayre, R. W., Hinton, K., and Tucker, R. S. (2011). Green cloud computing:

Balancing energy in processing, storage, and transport. Proceedings of the IEEE,

99(1), 149–167.

Barbarossa, S., Sardellitti, S., and Di Lorenzo, P. (2013). Joint allocation of com-

putation and communication resources in multiuser mobile cloud computing. In

Signal Processing Advances in Wireless Communications (SPAWC), 2013 IEEE

14th Workshop on, pages 26–30. IEEE.

Barbera, M., Kosta, S., Mei, A., and Stefa, J. (2013). To offload or not to offload?

44

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

the bandwidth and energy costs of mobile cloud computing. In INFOCOM, 2013

Proceedings IEEE, pages 1285–1293. IEEE.

Chen, X. (2015). Decentralized computation offloading game for mobile cloud com-

puting. Parallel and Distributed Systems, IEEE Transactions on, 26(4), 974–983.

Chen, X., Jiao, L., Li, W., and Fu, X. (2015). Efficient multi-user computation

offloading for mobile-edge cloud computing. arXiv preprint arXiv:1510.00888.

Chun, B.-G. and Maniatis, P. (2009). Augmented smartphone applications through

clone cloud execution. In HotOS, volume 9, pages 8–11.

Chun, B.-G. and Maniatis, P. (2010). Dynamically partitioning applications between

weak devices and clouds. In Proceedings of the 1st ACM Workshop on Mobile Cloud

Computing & Services: Social Networks and Beyond, page 7. ACM.

Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu, S., Chandra, R.,

and Bahl, P. (2010). Maui: making smartphones last longer with code offload.

In Proceedings of the 8th international conference on Mobile systems, applications,

and services, pages 49–62. ACM.

Dinh, H. T., Lee, C., Niyato, D., and Wang, P. (2013). A survey of mobile cloud

computing: architecture, applications, and approaches. Wireless communications

and mobile computing, 13(18), 1587–1611.

Dou, A., Kalogeraki, V., Gunopulos, D., Mielikainen, T., and Tuulos, V. H. (2010).

Misco: a mapreduce framework for mobile systems. In Proceedings of the 3rd

international conference on pervasive technologies related to assistive environments,

page 32. ACM.

45

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

Flinn, J., Park, S. Y., and Satyanarayanan, M. (2002). Balancing performance, energy,

and quality in pervasive computing. In Distributed Computing Systems, 2002.

Proceedings. 22nd International Conference on, pages 217–226. IEEE.

Galinina, O., Trushanin, A., Shumilov, V., Maslennikov, R., Saffer, Z., Andreev,

S., and Koucheryavy, Y. (2013). Energy-efficient operation of a mobile user in a

multi-tier cellular network. In Analytical and Stochastic Modeling Techniques and

Applications, pages 198–213. Springer.

Ge, Y., Zhang, Y., Qiu, Q., and Lu, Y.-H. (2012). A game theoretic resource allocation

for overall energy minimization in mobile cloud computing system. In Proceedings

of the 2012 ACM/IEEE international symposium on Low power electronics and

design, pages 279–284. ACM.

Giurgiu, I., Riva, O., Juric, D., Krivulev, I., and Alonso, G. (2009). Calling the cloud:

enabling mobile phones as interfaces to cloud applications. In Middleware 2009,

pages 83–102. Springer.

Gribaudo, M., Manini, D., and Chiasserini, C. (2013). Studying mobile internet

technologies with agent based mean-field models. In Analytical and Stochastic

Modeling Techniques and Applications, pages 112–126. Springer.

Gu, X., Nahrstedt, K., Messer, A., Greenberg, I., and Milojicic, D. (2004). Adaptive

offloading for pervasive computing. Pervasive Computing, IEEE, 3(3), 66–73.

Guan, L., Ke, X., Song, M., and Song, J. (2011). A survey of research on mobile cloud

computing. In 2011 10th IEEE/ACIS International Conference on Computer and

Information Science, pages 387–392. IEEE.

46

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

Huerta-Canepa, G. and Lee, D. (2010). A virtual cloud computing provider for mobile

devices. In Proceedings of the 1st ACM Workshop on Mobile Cloud Computing &

Services: Social Networks and Beyond, page 6. ACM.

Koutsoupias, E. and Papadimitriou, C. (1999). Worst-case Equilibria. In 16th Annual

Symposium on Theoretical Aspects of Computer Science (STACS), pages 404–413.

Kremer, U., Hicks, J., and Rehg, J. (2003). A compilation framework for power and

energy management on mobile computers. In Languages and Compilers for Parallel

Computing, pages 115–131. Springer.

Kristensen, M. and Bouvin, N. (2008). Developing cyber foraging applications

for portable devices. In Portable Information Devices, 2008 and the 2008 7th

IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics.

PORTABLE-POLYTRONIC 2008. 2nd IEEE International Interdisciplinary Con-

ference on, pages 1–6.

Kumar, K. and Lu, Y.-H. (2010). Cloud computing for mobile users: Can offloading

computation save energy? Computer, 43(4), 51–56.

Lin, X., Wang, Y., Xie, Q., and Pedram, M. (2014). Energy and performance-aware

task scheduling in a mobile cloud computing environment. In Cloud Computing

(CLOUD), 2014 IEEE 7th International Conference on, pages 192–199. IEEE.

Liu, F., Shu, P., Jin, H., Ding, L., Yu, J., Niu, D., and Li, B. (2013). Gearing

resource-poor mobile devices with powerful clouds: architectures, challenges, and

applications. Wireless Communications, IEEE, 20(3), 14–22.

47

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

Marinelli, E. E. (2009). Hyrax: cloud computing on mobile devices using mapreduce.

Technical report, DTIC Document.

Mehmeti, F. and Spyropoulos, T. (2013). Performance analysis of “on-the-spot”

mobile data offloading. In Global Communications Conference (GLOBECOM),

2013 IEEE, pages 1577–1583. IEEE.

Mell, P. M. and Grance, T. (2011). Sp 800-145. the nist definition of cloud computing.

Technical report, Gaithersburg, MD, United States.

Paczkowski, J. (2009). iphone owners would like to replace battery, at&t. Technical

report.

Porras, J., Riva, O., and Kristensen, M. D. (2009). Dynamic resource management

and cyber foraging. In Middleware for Network Eccentric and Mobile Applications,

pages 349–368. Springer.

Ra, M.-R., Paek, J., Sharma, A. B., Govindan, R., Krieger, M. H., and Neely, M. J.

(2010). Energy-delay tradeoffs in smartphone applications. In Proceedings of the

8th international conference on Mobile systems, applications, and services, pages

255–270. ACM.

Rahmati, A. and Zhong, L. (2007). Context-for-wireless: context-sensitive energy-

efficient wireless data transfer. In Proceedings of the 5th international conference

on Mobile systems, applications and services, pages 165–178. ACM.

Sardellitti, S., Scutari, G., and Barbarossa, S. (2014). Distributed joint optimization

48

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

of radio and computational resources for mobile cloud computing. In Cloud Net-

working (CloudNet), 2014 IEEE 3rd International Conference on, pages 211–216.

IEEE.

Satyanarayanan, M., Bahl, P., Caceres, R., and Davies, N. (2009). The case for vm-

based cloudlets in mobile computing. Pervasive Computing, IEEE, 8(4), 14–23.

Shiraz, M., Gani, A., Khokhar, R. H., and Buyya, R. (2013). A review on distributed

application processing frameworks in smart mobile devices for mobile cloud com-

puting. Communications Surveys & Tutorials, IEEE, 15(3), 1294–1313.

Shu, P., Liu, F., Jin, H., Chen, M., Wen, F., and Qu, Y. (2013). etime: energy-efficient

transmission between cloud and mobile devices. In INFOCOM, 2013 Proceedings

IEEE, pages 195–199. IEEE.

Su, Y.-Y. and Flinn, J. (2005). Slingshot: Deploying stateful services in wireless

hotspots. In Proceedings of the 3rd International Conference on Mobile Systems,

Applications, and Services, MobiSys ’05, pages 79–92, New York, NY, USA. ACM.

Wei, G., Vasilakos, A. V., Zheng, Y., and Xiong, N. (2010). A game-theoretic method

of fair resource allocation for cloud computing services. The journal of supercom-

puting, 54(2), 252–269.

Wei, X., Fan, J., Lu, Z., and Ding, K. (2013). Application scheduling in mobile cloud

computing with load balancing. Journal of Applied Mathematics, 2013.

Wu, H. and Wolter, K. (2014). Dynamic transmission scheduling and link selection

in mobile cloud computing. In Analytical and Stochastic Modeling Techniques and

Applications, pages 61–79. Springer.

49

M.A.Sc. Thesis - Erfan Meskar McMaster - Electrical Engineering

Yang, D., Xue, G., Fang, X., and Tang, J. (2012). Crowdsourcing to smartphones:

incentive mechanism design for mobile phone sensing. In Proceedings of the 18th

annual international conference on Mobile computing and networking, pages 173–

184. ACM.

Zhang, X., Kunjithapatham, A., Jeong, S., and Gibbs, S. (2011). Towards an elastic

application model for augmenting the computing capabilities of mobile devices with

cloud computing. Mobile Networks and Applications, 16(3), 270–284.

Zhu, C., Leung, V., Hu, X., Shu, L., and Yang, L. T. (2013). A review of key

issues that concern the feasibility of mobile cloud computing. In Green Com-

puting and Communications (GreenCom), 2013 IEEE and Internet of Things

(iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Phys-

ical and Social Computing, pages 769–776. IEEE.

50

