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Abstract—In this paper the capacity of a Multiple Input
Multiple Output (MIMO) channel is considered, subject to
average power constraint, for multi-dimensional discrete input,
in the case when no channel state information is available at
the transmitter. We prove that when the constellation size grows,
the QAM constrained capacity converges to Gaussian capacity,
directly extending the AWGN result from [1]. Simulations show
that for a given constellation size, a rate close to the Gaussian
capacity can be achieved up to a certain SNR point, which
can be found efficiently by optimizing the constellation for the
equivalent orthogonal channel, obtained by the singular value
decomposition. Furthermore, lower bounds on the constrained
capacity are derived for the cases of square and tall MIMO
matrix, by optimizing the constellation for the equivalent channel,
obtained by QR decomposition.

I. INTRODUCTION

In next generation communication systems, high spectral

efficiency will be needed in order to satisfy the exponential

increase in data rate. The Multiple Input Multiple Output

(MIMO) principle with large number of transmit and receive

antennas (massive MIMO) will be a key technology to achiev-

ing this high spectral efficiency [2]. The ergodic capacity of

the MIMO channel was found in [3], and is achieved when

the input is a continuous Gaussian with variance given by

the power constraint. However, practical transceivers demand

signaling with constellations from a finite alphabet, making

the analytical calculation of the Constellation Constrained

Capacity (CCC) difficult. In [4][5] Blahut and Arimoto de-

rive an iterative algorithm for finding the capacity and the

capacity achieving input distribution on an AWGN channel.

This algorithm was later modified in [6] to cover MIMO

fading channels. However, the complexity of the algorithm

grows exponentially both with the constellation size and the

number of transmit antennas, making it impractical to calculate

the CCC beyond e.g. 2x2 64QAM transmission. In order to

cope with this problem, the authors in [6] conjecture, that

when the input is taken as a Cartesian product of 1D PAM

constellations, the Probability Mass Function (PMF) of the

discrete points factorizes into the PMFs of each dimension,

thus reducing the complexity of the optimization to 1D. As part

of [7] we proved this conjecture to be true. On the other hand,

Mutual Information (MI) is usually calculated using Monte-

Carlo estimation of the normalized likelihood functions. When

the number of receive antennas (the dimensionality of the ob-

servations) grows, the complexity still increases dramatically.

In [8] the authors derive an analytical approximation of the

MI when the input is uniformly distributed. However, it is

seen to be inaccurate at low and high SNR. In [9] a better

approximation is derived for high SNR via expansion of the

MI. Lower and upper bounds are derived in [9] [10] based on

the relation between the MI and the Minimum Mean Squared

Error. Those bounds are only valid for uniform PMF, and are

also quite inaccurate for low-to-moderate SNR. High SNR

asymptotic behavior of the MI is studied for arbitrary input

distribution in [11], where only AWGN channel is considered.

To our knowledge, the CCC of MIMO channels in the

moderate SNR region, which is where practical communi-

cation systems tend to operate, is yet to be characterized.

Furthermore, in that region the largest shaping gain can be

expected for constellations of practical size [12]. The main

contributions of this paper are as follows:

• It is proven, that as the constellation size grows, the CCC

of MIMO channels approaches the Gaussian capacity,

directly extending the AWGN result from [1]. The con-

vergence rate is also the same as in [1]. For a given

constellation size, information rates close to Gaussian

capacity can be achieved up to a certain SNR point, which

can be efficiently found by optimizing the constellation

for the equivalent orthogonal channel, obtained by the

Singular Value Decomposition (SVD).

• Lower bounds on the CCC of MIMO channels are

derived for any SNR, based on the QR decomposition

of the channel, using the diagonal elements of the upper-

triangular R matrix. The bounds hold for the cases of

square and tall MIMO matrix.

• It is shown empirically that in the low-to-mid SNR region

the CCC is the same as the capacity of the equivalent

orthogonal channel, obtained by the SVD, whereas in the

mid-to-high SNR the above-mentioned lower bound can

be used to characterize the MI.

II. CHANNEL MODEL AND CCC OF ORTHOGONAL

CHANNELS

We consider a standard MIMO channel model:

Y = HX +W, (1)

where X is M -dimensional complex random variable vector

X = [X1, X2, . . . XM ]T , which can be continuous, or discrete

taking values from the complex-valued set XM , obtained as



the Cartesian product of the basic 1D set X . This can be

a QAM, APSK, PAM etc. complex-valued set. The matrix

H represents the [NxM ] complex-valued channel, assumed

here to have full rank R = min(M,N). The N dimensional

complex AWGN W is assumed here to have unit variance and

Y is the N dimensional channel observation. The received

SNR with these assumptions is defined as SNR= Pav/M . We

assume the channel realization is known at the receiver, but not

at the transmitter. When the input is continuous, the ergodic

capacity is achieved by Gaussian input distribution and can be

found as [13]:

CG = EH

[
log2 det

(
IN +

Pav

M
HHH

)]
, (2)

where EH [·] denotes the expectation operator w.r.t. H, IN is

a [NxN ] identity matrix, (·)H means conjugate transpose and

Pav =
∑|XM |

i=1 p(xi)α|xi|2 is the average power constraint at

the transmitter. Here α is some scaling coefficient, and xi is

the i − th point in the constellation. In this paper the focus

is on finding the capacity and capacity achieving PMF when

a fixed input constellation is used and without channel state

information at the trasmitter, i.e. uniform power allocation

and no pre-coding are employed. The channel capacity when

signaling with XM and averaging among the possible channel

realizations can be expressed as [6]:

C = max
p(X),α

EH [I(X;Y |H)] =

= max
p(X),α

|XM |∑
i=1

p(xi)

(
log2

1

p(xi)
+ Ti

)
, (3)

s.t.

|XM |∑
i=1

p(xi)α|xi|2 = Pav and

|XM |∑
i=1

p(xi) = 1

where I(·; ·) is the MI and:

Ti = EH

[∫
y

p(y|xi,H) log2 p(xi|y,H)dy

]
. (4)

As mentioned before, when the order of modulation and

number of dimensions of the signal grow, maximizing (3) is

impractical even when performed offline due to the exponential

increase in the number of parameters to be optimized, and

because it involves numerically calculating the expectation

and integration in (4). We found that sufficiently accurate

calculation of the MI on e.g. 64QAM 2x2 requires more than

105 samples of the observation space, resulting in a likelihood

matrix of size [105x22·6]. Assuming larger constellations and

larger antenna arrays, e.g. 256QAM and 8x8 set-up, which is

already of interest in practical scenarios for single user MIMO

in the e.g. IEEE 802.11ac WLAN standard, the number of

samples in the output, needed for accurate estimation of the MI

grows exponentially, thus making the calculations challenging

for a standard computer.

A. Capacity of orthogonal channels

In this section we consider the CCC of orthogonal channels

(or set of parallel channels). This means that the channel

matrix can be expressed as diagonal, for which M = N = R.

For each channel realization, the likelihood is Gaussian and

factorizes as:

p(Y |X,H) =

M∏
k=1

p(Yk|Xk,Hkk), (5)

where Hkk is the element on the k − th row and k − th
column of H, and Xk is a random variable, representing the

k− th dimension of X , taking values from X . As we prove in

[7], when the input constellation is constructed as a Cartesian

product of M 1D constellations X , the capacity achieving

PMF factorizes into its marginal PMFs on each dimension.

The conditional distribution p(X|Y,H) then also factorizes as

p(X|Y,H) =
∏

k=1:M p(Xk|Yk,Hkk) [7]. The capacity can

then be expressed as:

Ĉ = max
p(X)

EH [I(X;Y |H)] =

max
p(X)

EH [H(X|H)−H(X|Y,H)] =

max
p(X)

EH

[
M∑
k=1

[H(Xk|Hkk)−H(Xk|Yk,Hkk)]

]
=

M∑
k=1

max
p(Xk)

EHkk
[I(Xk;Yk|Hkk)] , (6)

where H is the entropy function. When the channel matrix

elements are identically distributed, (6) simplifies to:

Ĉ = M max
p(Xi)

EHii
[I(Xi;Yi|Hii)] (7)

for any i ∈ [1;M ], subject to power constraint on the i − th
input P i

av = Pav/M .

III. CAPACITY OF INTERFERENCE CHANNELS

In this section the core results of the paper are derived. Let

U,S and V be the SVD components of H : H = USVH . We

assume that S is ordered, so that its first R diagonal elements

are non-zero. Let us then consider 3 different channel models:

1) Y = HX+W : one realization of the channel from (1)

2) Ŷ = SX̂ + W : the channel, obtained by the SVD,

where Ŷ = UHY and X̂ = VHX
3) Ỹ = SX + W : orthogonal channel, where S is the

diagonal channel matrix.

We denote the MI on each channel as a function of the

input distribution with I1(·), I2(·) and I3(·), respectively. Let

δ(·) denote the Dirac-delta function. We will also need the

following PDFs:

1) p1(X) =
∑

i=1:|XM | wiδxi

2) q1(X) =
∑

i=1:|XM | wiδSxi

3) p2(X) =
∑

i=1:|XM | wiδVHxi

4) q2(X) =
∑

i=1:|XM | wiδSVHxi

5) pG(X) = N (0, diag(Pav/M))
6) qG(X) = N (0,SSHdiag(Pav/M))

In the first 4 PDFs, wi ≥ 0 for all i and
∑

i=1:|XM | wi = 1.

In the last 2 PDFs, diag(Pav/M) is the covariance matrix



of the Gaussian, which is a diagonal matrix with elements

Pav/M or Sii
2Pav/M , respectively. Let p∗1 denote the optimal

PMF (or the PMF with optimal weights wi) for Channel 3),

i.e. p∗1 = argmax I3(p1(X)). Likewise, p∗2 is the PMF with

the same weights on the rotated version of the original QAM

constellation. We will need the following auxiliary theorems:

Theorem 1: For any input PDF, p1(X), the mutual in-

formation on the non-orthogonal channel is the same as

on the equivalent orthogonal channel with rotated input:

I1(p1(X)) = I2(p2(X))
Proof: Given in the Appendix.

Theorem 2: When P 1
av = P 2

av = · · · = PM
av = Pav/M , the

MI on all three channels with a continuous Gaussian input is

the same: I1(pG(X)) = I2(pG(X)) = I3(pG(X))
Proof: Given in the Appendix.

In [1] the authors prove that as the size of the constellation

grows, Shannon capacity can be approached for AWGN chan-

nels. The proof relies on the fact that the MI is continuous in

the quadratic Wasserstein space. The loss, incurring from the

discrete nature of the input is then continuous in the quadratic

Wasserstein distance W2 between the discrete PMF and the

continuous Gaussian distribution. The quadratic Wasserstein

distance between two probability measures μ and v from the

same space is defined as:

W2(μ, v) = inf
{(

EX,Y

[||X − Y ||2])1/2} , (8)

where X and Y are governed by laws μ and v respectively,

and the minimum is taken over all joint distributions of (X,Y )
[1][14]. In Section II-A we showed that the capacity of an

orthogonal channel is the sum of the capacities on each parallel

channel, and therefore:

lim
|X |→∞

I3(p∗1(X)) = I3(pG(X)). (9)

Using the above results, we state the following theorem:

Theorem 3: Consider the interference channel model

1). As the size of the constellation grows, the CCC is

lim|X |→∞ I1(p∗1(X)) = I1(pG(X))
Proof: The continuity of the MI in the W2 space result

from [1], together with the strict concavity of the MI in the

input distribution [15] mean that when SNR> 0:

lim
|X |→∞

I3(p∗1(X)) = I3(pG(X)) ⇔
lim

|X |→∞
W2(q1(X), qG(X)) = 0. (10)

When S is full rank, if for some joint PDF p(X,Y ) we have

that EX,Y

[||X − Y ||2] = 0 ⇒ ESX,SY

[||SX − SY ||2] =
ESX,SY

[||S(X − Y )||2] = 0. Then the following is true:

lim
|X |→∞

W2(q1(X), qG(X)) = 0 ⇔
lim

|X |→∞
W2(p1(X), pG(X)) = 0. (11)

The distribution pG(X) is rotationally invariant, and therefore

W2(p
∗
1(X), pG(X)) = W2(p

∗
2(X), pG(X)). Then applying

(10) we have:

lim
|X |→∞

W2(q2(X), qG(X)) = 0 ⇒
lim

|X |→∞
I2(p∗2(X)) = I3(pG(X)). (12)

By Theorems 1 and 2 we have I1(p∗1(X)) = I2(p∗2(X)) and

I3(pG(X)) = I1(pG(X)) which proves the theorem.

Consequences of Theorem 3: The main consequence is that

as the constellation size grows, Gaussian capacity can be

approached for the interference channel for any SNR> 0. This

is a direct extension of the result in [1] for AWGN channel.

However, there is also a very practical application of Theorem

3: if for a fixed constellation size the CCC of the orthogonal

channel approaches the Gaussian capacity, similar CCC can be

expected on the equivalent interference channel without pre-
coding. Using similar arguments as in [1], the rate at which

the gap to Gaussian capacity vanishes can be estimated as

O(1/|X |).
Theorems 2 and 3 are proven for one realization of the

channel. However, they can be extended to cover the ergodic

case:

Theorem 4: lim|X |→∞ maxp1(X) EH [I1(p1(X))] = CG

Proof: Let us re-define p∗1(X|Hk) =
argmax I1(p1(X)|H = Hk) as the optimal PMF for

the k − th channel realization. By Theorem 3 we have that:

lim
|X |→∞

W2(p
∗
1(X|Hk), pG(X)) = 0 (13)

for all k. The Wasserstein distance is a distance measure, and

therefore [14]:

W2(p
∗
1(X|Hk), p

∗
1(X|Hj)) ≤

W2(p
∗
1(X|Hk), pG(X)) +W2(p

∗
1(X|Hj), pG(X)). (14)

Taking the limit of large constellations, we get:

lim
|X |→∞

W2(p
∗
1(X|Hk), p

∗
1(X|Hj)) ≤

lim
|X |→∞

W2(p
∗
1(X|Hk), pG(X))+

+ lim
|X |→∞

W2(p
∗
1(X|Hj), pG(X)) = 0. (15)

The continuity of the MI means that due to the vanishing

Wasserstein distance, in the limit of infinitely large constel-

lations, if the optimal PMF on channel j achieves Gaussian

capacity, it must also achieve similar capacity on channel k:

lim
|X |→∞

I1(p∗1(X|Hk)|H = Hk) = I1(p∗1(X|Hj)|H = Hk)

= I1(pG(X)|H = Hk) (16)

for any j and k. Then for the average MI we have:

lim
|X |→∞

EH [I1(p∗1(X,Hk))− I1(pG)] = 0 (17)

for any k, which proves the theorem.



A. Lower bounds via QR decomposition

Let H = QR be the QR decomposition of H, where Q is

unitary and R is upper-triangular. A well known method for

detection of MIMO signals uses the form of R to successively

detect each layer by removing the interference from the pre-

viously detected layers - Successive Interference Cancellation

(SIC). In this section we analyze the maximum rate which

can be achieved by SIC under uniform power allocation and

i.i.d. on the elements of the channel matrix, for the case of

M ≤ N , and therefore R = M .

We introduce two more channel models - Channels 4) and

5), with MI I4(·) and I5(·), respectively:

4) Ẏ = RX +W , where Ẏ = QHY
5) Ÿ = diag(R)X +W ,

where diag(R) means the matrix with the diagonal elements

of R on its diagonal, and zeros elsewhere. Rotation does not

change the multivariate Gaussian with i.i.d. on each dimension,

and the noise distribution is therefore unchanged. Similarly to

p∗1(X), we define the optimal discrete PMF input to Channel

5) as p∗5(X) = argmax I5(p(X)).
Theorem 5: I1(p∗5(X)) ≥ I5(p∗5(X))

Proof: We express the MI on Channel 4) with input

p∗5(X) as:

I4(p∗5(X)) = H(X)−H(X|Ẏ ) =

= H(X)−H(XM |Ẏ )−
∑

i∈{1:M−1}
H(Xi|Ẏ , X{i+1:M}) ≥

≥ H(X)−H(XM |Ẏ )−
∑

i∈{1:M−1}
H(Xi|Ẏ ), (18)

where the last inequality follows from the fact, that condition-

ing does not increase the entropy. Using this argument again,

we can write:

H(XM |Ẏ ) ≤ H(XM |ẎM ) = H(XM |ŸM ), (19)

where we have also used the fact, that on the M − th layer

of Channel 4) there is no interference, and the conditional

distributions p(ẎM |XM ) and p(ŸM |XM ) for Channels 4) and

5) are the same. Consequently, for the same input p∗5(X),
p(XM |ẎM ) and p(XM |ŸM ) are also the same.

Due to the i.i.d. of the channel elements, and applying the

chain rule for entropy multiple times, for any i we have:

H(Y |XM , H) = H(Y |Xi, H) =

H(QHY |XM , H) = H(QHY |Xi, H) ⇒
H(Ẏ |XM , H) +H(XM ) = H(Ẏ |Xi, H) +H(Xi) ⇒ (20)

H(Ẏ , XM |H) = H(Ẏ , Xi|H) ⇒
H(XM |Ẏ , H) +H(Ẏ ) = H(Xi|Ẏ , H) +H(Ẏ ) ⇒

H(XM |Ẏ , H) = H(Xi|Ẏ , H) ≤
≤ H(XM |Ÿ , H) = H(Xi|Ÿi, H). (21)

Equation 20 follows from the fact, that due to the i.i.d. of the

channel elements the marginal distributions on each dimension

of X are identical. In (21) we have used that by definition,

Channel 5) is orthogonal. Inserting (21) in (18) we have:

I4(p∗5(X)) ≥ H(X)−
∑

i∈{1:M}
H(Xi|Ẏ ) ≥

= H(X)−
∑

i∈{1:M}
H(Xi|Ÿi) = I5(p∗5(X)). (22)

Similarly to Theorem 1, we have that I4(p∗5(X)) =
I1(p∗5(X)), which proves the theorem.

We have arrived at a lower bound for the channel capacity.

The MI I5(p(X)) can be easily optimized and calculated, in a

manner, similar to I3(p(X)), since the channel is orthogonal.

We only need the elements on the diagonal of the R matrix.

Even though Theorem 5 was proven for p5(X)∗, it actually

follows for any p(X), for which the dimensions of X are i.i.d.,

e.g. the uniform PMF.

In the case of continuous Gaussian input with uniform

power allocation, the proof of Theorem 5 can be simplified.

We can notice that the outputs of Channels 4) and 5) in that

case are Gaussians, with respective covariance matrices:

Σ̇ = Cov
[
Ẏ
]
=

Pav

M
RRH +ΣW (23)

Σ̈ = Cov
[
Ÿ
]
=

Pav

M
diag(R)diag(R)H +ΣW , (24)

where ΣW is the diagonal covariance matrix of the noise. It

is then trivial to show that:

det Σ̇ ≥ det Σ̈ ⇒ I4(pG(X)) ≥ I5(pG(X)), (25)

with equality if SNR = ∞.

B. Discussion of the theorems in Section III

The main implication of the theorems in this section is

that while the ergodic Gaussian capacity of the orthogonal

channels, obtained from the SVD of each channel realization

can be approached with a finite size constellation, it can be

expected that the ergodic Gaussian capacity of the interference

channel is also approached with the same constellation, having

the same PMF. As discussed in Section II-A, the CCC and

the capacity achieving PMF of the orthogonal channel are

easily calculated by the Blahut-Arimoto algorithm, taking Hii

in (7) to have the distribution of the singular values of the

MIMO matrix. For large MIMO it is shown in [16] that the

singular values distribution of Gaussian distributed channel

matrix coefficients follows a quarter-quadratic law, which can

be used to generate singular values for the 1D optimization.

For small matrices the SVD is simple to calculate, and the

distribution can be accurately approximated by Monte Carlo

methods. When calculating the QR decomposition based lower

bounds, the distribution of the elements on the diagonal of

the R matrix is needed. Even though this distribution is not

known, similar approach can be taken - draw matrices H from

their known distribution, perform the QR decomposition on

each H, and use the diagonal elements of R instead of Hii

when maximizing (7).



As we mentioned in the introduction, complex-valued input

sets are the focus here. When X is the popular QAM set, which

is a product of two real-valued PAM sets, the reduction in

complexity is relevant further down to the PAM set. Theorems

4 and 5 can then be used without loss of generality. Equation

(7) becomes Ĉ = 2M maxp(Xi) EĤii

[
I(Xi;Yi|Ĥii)

]
, where

Ĥ is the real-valued equivalent of H, and each dimension of

the input is taken from the corresponding PAM set. This is the

model we consider in the following sections.

C. Some near-optimal input PMFs

Since we will exclusively use orthogonal channels to ap-

proximate the capacity in (3), it is worth examining the

implications the distribution of the singular values has on the

optimal PMF of X . Figure 1 depicts the optimal 8PAM compo-

nent PMFs, i.e. p(X) = argmaxES11

[
I(X1; Ŷ1|S11)

]
, for

transmission of different rank R = M = N at the same aver-

age SNR, for which EH [I3(p∗1(X))] ≈ CG. It is interesting

to see how the shape of the optimal PMF changes when we

increase the rank. This can be contributed to the fact, that

the distribution of the singular values broadens. The AWGN

channel can be considered as MIMO with zero variance of

the singular values. The optimal input PMF on the AWGN

channel therefore approaches the continuous Gaussian for this

SNR. On the scalar fading channel, the singular values are

Rayleigh distributed. As the rank of transmission grows, the

distribution of singular values approaches the broader quarter-

circular law. The optimal PMF in that case must account for

broader range of SNR. It is well known, and can also be seen

in [6], that uniform PMF approaches capacity at low and high

SNR. The optimal PMF is therefore pushed to uniform when

the rank of transmission increases. In Fig. 2, the histogram

of the elements on the diagonal of the R matrix is shown.

We see that it is narrower than the distribution of the singular

values. We will use this fact in the next section to analyze the

rates, achieved on the orthogonal Channels 3) and 5).

IV. NUMERICAL CALCULATION OF CAPACITY

In this section we provide Monte Carlo based calculation

of the capacity for various channels. In Fig. 3, the ergodic

capacity for the 2x2 i.i.d. MIMO Rayleigh fading channel,

i.e. EH [I3(pG(X))] is shown, together with the 64QAM

CCC, i.e. maxEH [I1(p(X))], the capacity of the SVD based

orthogonal channel, i.e. maxEH [I3(p(X))], and the QR

decomposition based lower bound - maxEH [I5(p(X))]. We

directly see the region, where the limits in Theorem 4 are

approached: up to around SNR= 10dB. As the SNR increases,

the gap to capacity also increases due to the limited size of the

constellation. As shown in [10], when the input to an ortho-

gonal channel is discrete, orthogonal inputs can be suboptimal.

In Fig. 3 this effect can be seen, as maxEH [I1(p1(X))] =
maxEH [I2(p2(X))] > maxEH [I3(p1(X))], or a rotated

version of the original QAM performs better on the orthogonal

channel. The QR based lower bound in the low SNR is seen

as a worse approximation than the SVD based capacity. In this
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the R matrix for MIMO of different rank

regime the noise is the limiting factor, and the inequality in

(25) becomes more and more strict. In the moderate to high

SNR we see that the lower bound becomes tighter, and exceeds

the SVD based channel capacity. This is due to the distribution

of the diagonal elements of the R matrix (see Fig. 2). Tighter

distribution means that the optimal PMF does not need to

account for high and low instantaneous SNR, where uniform

PMF is optimal, i.e. the channel is more stable. The SVD based

channel on the other hand has optimal PMF, which must be

robust to deep fades and vanishing fades. It is therefore pushed

to uniform PMF, resulting in lower average MI.

In Fig. 4, the SVD based channel capacity for a 8x8

setup is given, together with the QR decomposition based

lower bounds. For SNR < 10, 16, and 24dB for 64, 256

and 1024 QAM, respectively, the SVD based capacity is

approaching Gaussian capacity, and we can therefore expect

that in those SNR regions, maxEH [I1(p1(X))] is also close

to the Gaussian capacity. As before, the QR based lower

bounds are worse at low SNR, but become better at moderate

to high SNR. The envelope of the two curves - the SVD and

QR based capacities - can therefore serve as an approximation

to the CCC of the MIMO channel for the entire SNR region.

V. FUTURE WORK

As mentioned before, in this paper lower bounds are derived

only for the case of M ≤ N . When M > R, the last layer
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Fig. 4. Capacity curves for i.i.d. Rayleigh fading 8x8 MIMO channel

of Channel 4) will no longer be interference free, which was

a necessary condition for stating (19). An interesting area for

future research is to provide non-trivial lower bounds for the

case of M > R.

VI. CONCLUSION

In this paper the capacity of a MIMO channel with discrete

input was considered in the case when no channel knowledge

at the transmitter is available. It was proven that as the con-

stellation size grows, the capacity of the interference channel

converges to the capacity of the equivalent orthogonal channel,

obtained by the SVD, and consequently approaches Gaussian

capacity. Simulations showed that values close to that rate can

be achieved up to a certain SNR point for QAM constellations

of a given size. Using the Blahut-Arimoto algorithm, the

capacity of the orthogonal channel can be easily calculated,

and the SNR threshold can be obtained, together with the

capacity achieving PMFs for each SNR point. These PMFs can

then be used on the ergodic interference channel, and similar

capacity can be expected up to the SNR threshold. Lower

bounds on the constellation constrained capacity were also

derived for MIMO channels with square or tall matrix, using

the capacity of the QR decomposition based channel. The

envelope of the SVD based approximation and the QR based

lower bounds can then be used to estimate the constellation

constrained capacity for the entire SNR region.

VII. APPENDIX

A. Proof of Theorem I

Since U is a rotation matrix, we have:

H(Ŷ |·) = H(UŶ |·)− log2 |detU| = H(UŶ |·) = H(Y |·).
Similarly H(X|·) = H(X̂|·). Then it is clear that:

I(X;Y |H) = I(X̂;Y |H) = I(Y ; X̂|H) = I(Ŷ ; X̂|H).

B. Proof of Theorem II

The distribution pG(X) is rotationally in-

variant, i.e. X ≡ VHX ⇒ I2(pG(X)) =
I3(pG(X)) and by Theorem 1 I2(pG(X)) = I1(pG(X)).
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