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On the Capacity of Vector Gaussian Channels With
Bounded Inputs

Borzoo Rassouli and Bruno Clerckx

Abstract—The capacity of a deterministic multiple-input
multiple-output (MIMO) channel under the peak and average
power constraints is investigated. For the identity channematrix,
the approach of Shamai et al. is generalized to the higher dien-
sion settings to derive the necessary and sufficient conditis for
the optimal input probability density function. This appro ach
prevents the usage of the identity theorem of the holomorplai
functions of several complex variables which seems to failni
the multi-dimensional scenarios. It is proved that the supprt of
the capacity-achieving distribution is a finite set of hyperspheres
with mutual independent phases and amplitude in the spherial
domain. Subsequently, it is shown that when the average powe
constraint is relaxed, if the number of antennas is large enagh,
the capacity has a closed form solution and constant amplie
signaling at the peak power achieves it. Moreover, it will be
observed that in a discrete-time memoryless Gaussian chagh
the average power constrained capacity, which results froma
Gaussian input distribution, can be closely obtained by anriput
where the support of its magnitude is a discrete finite set. Fially,
we investigate some upper and lower bounds for the capacityfo
the non-identity channel matrix and evaluate their performance
as a function of the condition number of the channel.

Index Terms—Vector Gaussian channel, peak power con-
straint, discrete magnitude, spherical symmetry

I. INTRODUCTION

The capacity of a point-to-point communication syste
subject to peak and average power constraints was invedig
in [1] for the scalar Gaussian channel where it was showh
that the capacity-achieving distribution is unique and h&d
a probability mass function with a finite number of mass
points. In [2], Shamai and Bar-David gave a full account

point real scalar channel is considered in which sufficient
conditions for the additive noise are provided such that the
support of the optimal bounded input has a finite number
of mass points. These sufficient conditions are also useful i
multi-user settings as shown in [7] for the MAC channel under
bounded inputs.

The analysis of the MIMO channel under the peak power
constraints per antenna is a straightforward problem after
changing the vector channel into parallel AWGN channels and
applying the results of [1] of [2]. Recently, the vector Ggian
channel under the peak and average power constraints has be-
come more practical by the new scheme proposed in [8]. More
specifically, this scheme enables multiple antenna trassan
using only one RF chain and the peak power constraint (i.e.,
a peak constraint on the norm of the input vector rather than
on each antenna separately) is the very result of this single
RF chain. The capacity of the vector Gaussian channel under
the peak and average power constraints has been explored in
[Q] and [10]. However, according to_[11], it seems that the
results in the higher dimension settings are not rigorows du
to the usage of the identity theorem for holomorphic funegio
of several complex variables without fulfilling its conditis.

As shown by an example in section IV 0f [11], a holomorphic
I;!imction of several complex variables can be zerdRdn but

apot necessarily zero ofi™. SinceR™ is not an open subset

of C™, the identity theorem cannot be applied. To address this
oblem, the contributions of this paper are as follows.

o For the identity channel matrix, the approach lof [2] is
generalized to the vector Gaussian channel in which the

on the capacity of a quadrature Gaussian channel under the complex extension will be done only on a single variable

aforementioned constraints and proved that the optimaltinp
distribution has a discrete amplitude and a uniform indepen

dent phase. This discreteness in the optimal input digtdbu
was surprisingly shown in_[3] to be true even without

peak power constraint for the Rayleigh-fading channel when
no channel state information (CSI) is assumed either at the

receiver or the transmitter. Following this work, the authim

[4] and [5] investigated the capacity of noncoherent AWGN

and Rician-fading channels, respectively. In [6], a poimt
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which is the amplitude of the input in the spherical

coordinates. The necessary and sufficient conditions for

the optimality of the input distribution are derived and

& it is proved that the magnitude of the capacity-achieving

distribution has a probability mass function over a finite

number of mass points which determines a finite number
of hyper spheres in the spherical coordinates. Further,
the magnitude and the phases of the capacity-achieving

t distribution are mutually independent and the phases
are distributed in a way that the points are uniformly
distributed on each of the hyper spheres.

« Itis shown that if the average power constraint is relaxed,
when the ratio of peak power to the number of dimensions
remains below a certain threshole §.4), the constant
amplitude signaling at the peak power achieves the ca-
pacity.

« Itis also shown that for a fixed SNR, the gap between the
Shannon capacity and the constant amplitude signaling


http://arxiv.org/abs/1410.7189v3

decreases a@(%) for large values of,, wheren denotes the optimization problem only on the magnitude of the input.
the number of dimensions. By writing the mutual information in terms of the differeali

« Finally, the case of the non-identity channel matrix igntropies, we have
considered where we start from the MISO channel and n
show that the support of the optimal input does not neces- I(X;Y) = h(Y) = h(Y|X) = h(Y) - 2 In 2me,
sarily have discrete amplitude. Afterwards, several uppghere the entropies are in nats. Motivated by the spherical
bounds and lower bounds are provided for the generalsymmetry of the white Gaussian noise and the constra¥ts,

by m MIMO channel capacity. The performance of thesgnd X can be written in spherical coordinates as
bounds are evaluated numerically as a function of the
Y = Ra(¥) , X = Pa(®),

condition number of the channel.
The paper is organized as follows. The system model amdhere R and P denote the magnitude of the output and
some preliminaries are provided in secfidn II, respegfivEthe the input, respectively = [Uy, ¥y,..., ¥, ;]7 and® =
main result of the paper is given in sectlod Il for the idgnti [©1,0,,...,0,_1]7 are, respectively, the phase vectors of the
channel. The general case of the non-identity channel mateutput and the input, in whicl;, ©; € [0,7](i € [1 : n—2])
is briefly investigated in sectidn ]V. Numerical results ahd and ¥,,_1,0,,_1 € [0,27). a(¢) = [a1(¢),...,a.(¢)]T is a
conclusion are given in sectiohs V and VI, respectively. Bonunit vector in which

of the calculations are provided in the appendices at the end
of the paper. P PP ax(¢) = cos qbk H 1 sing; kell:n—1] @)
' 15 sin g k=n
[I. SYSTEM MODEL AND PRELIMINARIES As it will become clear later, this change of coordinates

revents the usage of the identity theorem for holomorphic
URctions of several complex variables. The optimizatioobp
lem in (@) is equivalent to

Clup,uq) = sup hY) — gln 2re.
whereX(¢), Y (¢) (¢ R™) denote the input and output of the Fr.e(p.0):P*<up, B(P?)Sua ®)
channel, respectively. denotes the channel use afiw (t)}
is an i.i.d. noise vector process witW (¢) ~ N(0,1,) which

In a discrete-time memoryless vector Gaussian channel,
input-output relationship for the identity channel is givey

Y(t) = X(t) + W(2), @)

The differential entropy of the output is given by

is independent oX(¢) for every transmission. h(Y) = — Ffy(y)In fy(y)dy

The capacity of the channel ifl(1) under the peak and the R
average power constraints is / / / / 2 Fel

v(y(r,¥)) In fy(y(r, ¢))| |ddr
Clup, uq) = sup I(X;Y), (2 ( )
Fx (x):]|X[[2<up, E(|IX]2)<ua n—2 t|mes

where Fx (x) denotes the input cumulative distribution func- Q”f r ) In R, ( w)dwd
tion (CDF) of the input vector, and,, u, are the upper bounds rw
for the peak and the average power, respectively. Throughou t
the paper, any operator that involves a random variablesread ne2 'mois
with the termalmost-surely (e.g. || X||2 < u,)a. = h(R, ) +/ fr(r)Inr"=tdr

It is obvious that Y 0

sup I(X;Y) < sup I(X;Y). + Z /0 o, (i) Insin™ = idy, (6)

Fx (x):[|X|I?<up, E(|X[?)<ua Fx (x): E([|X][?) <min(up,ua)

Therefore, a trivial upper bound for the capacity is given b))where|a ) (= r" T % sin” """ 4;) is the Jacobian of

the transform The conditional pdf aR, ¥ conditioned on
mm(up,ua)> 3)

Clup,uq) < Cq = 3 " 1n (1 + " P, ® is given by
i i . . . . 1 _r24p%22rpaT (®)a(w) n—1
whereCy is achieved by a Gaussian input vector distributed fR,\I'|P,e(TJ/J|P7 0) = (m)ne 2 r

asN (0, 2nlipta)y o
We formulate the optimization problem in the spherical % H sin™ 1 qp;. (7)
domain. The rational behind this change of coordinates é du

to the spherical symmetry of the white Gaussian noise and thg)m, [7), the joint pdf of the magnitude and phases of the
constraints which, as it will be clear, enables us to performﬂput is

1it is obvious that them-dimensional complex AWGN channel can be e

mapped to the channel ifl(1) with = 2m. fR,\P( fR ,¥| P, ol 1/’|Pa H)anP,e(Pa 0),
2More precisely, let) be the sample space of the probability model over

which the random vectdX is defined || X]|2 < up is equivalent to Rw € n—2 t|mes

Q [X()|? < up}=1. 8



in which Fpe(p,f) denotes the joint CDF ofP,®). By given by

integrating [[B) over the phase vector we have L(/mw, p)
- Kn(v,p) = /oyt
fulr) = [ LG (o) © T
0 = / .. / / ﬁe_ 2
0 0 Jo 2m
wherefi — ( )
n—2 times
™ ™ 2m n—2
L(Tv p) = / e / / fR,‘I’|P,@(T7 1/)|p7 o)dwnfl cee dd}l . H Sinn_i_l 1/)id1/)n71 . d1/)1 (14)
0 0 0 i
n—2 times L I _y(p ¥/mv) 20
_ (Ymo)’+p o ET pv
It is obvious that - i { v pv="0 =
r(3)22 "
(15)

n—1 n—2
hMR,¥) <h(R h(¥;) < h(R h(¥;) + In 27, , . , o
( ) (B) + ; () (B)+ ; (V) + In2m wherel,, (.) is the modified bessel function of the first kind and

(10) order«. The calculations are provided in Appendix A. Note
where the first inequality is tight iff the elements othat K, (v, p) is continuous on its domain. The differential
{R,¥y,...,¥,_ 4} are mutually independent, and the seconentropy ofV is
inequality becomes tight if/,,_, is uniformly distributed over _ _

[0,27). From [8) and[(10), h(V) = h(V; Fp)

n_o o = —/ fv(’l);Fp) 1nfv(’l};Fp)d’U
0
MY) <h(R)+ » h(¥;)+ / fr(r)Inr"tdr oo
; 0 —_— / Fr(r)In ff(fl) dr. (16)
n—2 T 0 r
+ Z/ fo, (1) Insin L pdip; +In 27, (11) The differential entropy obU; is given by
i=1 70
For the sake of readability, the following change of vargsbl Su;
s helpt == [ o LBy iepin-a
R . 0 sin" " Y,
V=""0L U :/ sin" i 10ds L i€ [1in—2). (12) (17)
" 0 Rewriting [8), we have
SinceR > 0 and¥; € [0,7](i € [1: n—2]), itis easy to show  c(y,, v,) = sup h(Y) — I 2re
that the two mapping® — V and¥; — U; (defined in [IR)) Fp.o(p,0):P2<uy,B[P?]<uq 2
are invertible. Also, the support set &f; is Sy, = [0, o] n—2
where a; = Y7LC2) (the Gamma function is defined as < sup h(ViFp)+ Y h(U:)
o Fl(T) [9). the pdf of q Fr.o(p,0):P2<u,,E[P?|<u, im1
I'(t) = xt~te~*dz.) From [9), the ofV is
0=l ) - thep +(1—g)1n2ﬂ'—g (18)
= s Fp)= [ Ku(v,p)dFp(p), (13 =
Fo0) = folwiFr) = [ Kulo.p)dFrlp). @3 c e S,
Fp(p):P2<uy,B[P?]<uq P
where the notation Fp in fy(v; Fp) is to emphasize thdt’ 1 n In 2 n 19
has been induced biyp. Not that the integral transform i (113) +(1- 5) nem =5 (19)

is invertible as shown in AppendixID. The kernl, (v, p) is  where [I8) results froni (11)[{16) and{17).1(19) is due to
the fact that sincey, (the support ofU;) is boundedh(U;)
3The reason thaL(r, p) is not a function of the phase vectéris due to is maximized whenU; is uniformly distributed. It is easy
the spherically symmetric distribution of the white Gaasshoise. In other i i i i
words, L(r, p) is the integral of the Gaussian pdf(x, I) over the surface to \t/erllfly .th(;at i tge Tagt?]Ittl;]de End phhasgs Otfhthg_ TPUt .are
of an n-sphere with radius which is invariant to the position ok as long Mutually iInaepenaent wi e phases having the distioisti

as||x|| = p, i.e. as
ly=xii? r2a? On_1 ~U[0,27), fo,(0;) = a; 'sin™ 710, | iec[l:n-2],
Ll = [ oy = S 'Y dy (20)
lyll=r (vV2m) A the magnitude and phases of the output become mutually

which is constant orjx|| = p. (@) implies that in the AWGN channel ifil(1), Independent with the phases having the distributions as

fr(r) is induced only byfp(p) and notfe(0). 1 p—iel .
4The existence offy (v) is guaranteed by the Gaussian distribution of thln—1 ~ U[0,2m) , fo,(¥i) = a; sin" "¢ , i €[1:n-2],
additive noise. (22)




VAT(27E)

where o; = T(E=Ty - In other words, having the input Similar to [1] and [2], we define the marginal entropy
distribution ’ density of V' as
n—2 0; - o0
Fp,@(p,e)z(’;*le(p)H/ a7 tsin" "l 0do  (22) hv(I;FP):—/O Kn(v,2)In fy(v; Fp)dv,  (26)
i i—1 J0
=1

which satisfies

- = v : h(V; Fp) :/ hv (p; Fp)dFp(p).
Frw(r) = 2= F(r) ] / ai ! sin" " gy, 0
=170 (23) (28) is shown to be an invertible transform in Apperidix D and
The above result can be easily checked either by solvi%IS property will become useful later on.
for frw(r,v) in @) or by the fact that the summation
of two independent spherically symmetric random vectors is

results in

I1l. M AIN RESULTS

still spherically symmetril. Also, note that havingl; (i = Let e denote the set of points of increse Fr(p) in the
1,...,n — 2) distributed as in[{21) implies uniforn’; on interval [0, ,/u,]. The main result of the paper is given in the
[0,a;] (i =1,...,n — 2). It can be observed that the inputfollowing theorem.

pdf in (22) makes the inequalities ih_(18) arld](19) tight. Theorem. The supremization in[{24), which is for the
Since the constraint is only on the magnitude of the inpidentity channel matrix, has a unique solution and the ogitim
and fy (v) is induced only byfp(p), it is concluded that input achieving the supremum (and therefore the maximum)
the optimal input distribution must have mutually indepenid has the following distribution in the spherical coordirsmte
phases and magnitude with the phases being distributed as in

n—2 9;
i 0,_ i ,
(20). Therefore, Fre(p.0) = = “F(p) [ / o sin" i 0de, (27)
: T J
Cup, ua) = sup h(V; Fr) L
Fp(p):P?<up, B[P?]<u, whereF}; (p) has a finite number of points of increase (g
n-2 n n has a finite cardinality). Further, the necessary and seffici
+ Z Ina; + (1 - 5) In2m — 5 (24)  condition forF'j(p) to be optimal is the existence o> 0)
i=1 for which

Before proceeding further, it is interesting to check weeth - . . 0
the problem in[{24) boils down to the classical results wher@V(p’FP) S h(V5Fp) + Ap™ —ua) , Vp € [0, /up] (28)
the peak power constraint is relaxed (i#®,,— o). Fromthe  hy (p; Fp) = h(V; Ff) + A(p? —ua) , Vp € €p-. (29)

definition of V, o .
v Note that when the average power constraint is relaxed (i.e.

2 1
BV*] = —=Eln+ P?). ta = Up). A = 0. o
Vn? Proof: The phases of the optimal input distribution have

This can be verified by a change of variable (i¥.= 2~ already been shown to be mutually independent and have

and using the derivative of {I12) (in AppendiX D)" withthe distribution in [(2D) being independent of the magnitude
respect to3. Therefore, wheny, — oo, the problem in[(24) Therefore, it is sufficient to show the optimal distributiof
becomes maximization of the differential entropy over hé t the input magnitude. This is proved by reductio ad absurdum.
distributions having a bounded moment of ordemhich is In other words, it is shown that having an infinite number of
addressed in AppendiX B for an arbitrary moment. Substiguti points of increase results in a contradiction. The detgilendf

m with 2 and A with "% in (@2), the optimal distribution 1S 9iven in Appendi{C. =
for V is obatined and f?om[:(JS), the correspondifig: (o) Remark 1. When the average power constraint is relaxed
(i.e. ug > up), the following input distribution is asymptoti-

has the general Rayleigh distribution as L i
cally (5= — 0) optimal

2
_np~
n%pnfle Zua

fp(p) = ——%—=—), o On— et i
2" Ui T(2) Fio(p.0) = =5 —ulp — i) H/ a; 'sin" " 0do,
i=1 J0
which is the only solution, sinc€(lL3) is an invertible trimmm ! (30)
(see Appendi{ D). Furthermore, it can be verified that thghere u(.) is the unit step function. Further, the resulting
maximum is capacity is given by
n Ug

C(00,uq) = 5 (1 + %), (25) O(up, up) ~ % when % <1.
which coincides with the classical results for the identity 5tar in the numerical results section. we observe that the
channel matrix([12]. density in [3D) remains optimal for the non-vanishing ratio

5The magnitude and the unit vector of a spherically symmetimdom 7 when it is below a certain threshold.

vector are independent and the unit vector is uniformlyrihisted on the unit
ball. It can be verified that this property is equivalent te tkector having the A point Z is said to be a point of increase of a distribution if for any
distribution of [23) in spherical coordinates. open sefl” containingZ, we have P{T"'} > 0.



Proof: Since the density if(30) has spherical symmetrif, ©; is independent ofO,, ..., 0,_1, P), substituting [(3B)
it is sufficient to show that's*(p) = u(p — \/uy,) is optimal in (&) results in

when =2 — 0. From [3), we have 0o pw w2 oem A
lim C(up, uq) < Y (31) frovtr ) %/0 u/o /0 We o
-0 2 n—3 times
'FlJ'gfe CDFF'5*(p) = u(p— /up) induces the following output « (14 rpa” (0)a(v)) H sin™ i1 4)
vy Ty 1(/ T3 YD) AFo, ()0 Fpey1 (0,037 (39)

fv (v Fp*) = Kn(v,/up) = e T = E T
(Vip Y/mv) 2 wheredy ' = (0,03,...,0,_1). If ©; has a zero first Fourier

wy L (32) coeff|C|ent due to the structure aff) (see [#)), we have
When <2 is small, the entropy oV is given by [35) on top

of the next page. I (33), we have approximated the modified /F a’ (9)a(y)dFe, (1) =0
bessel function with the first two terms in its power series 0
expansion as follows Therefore, [(3B) simplifies as
" x? x & 1 24 n2
I,(2) ~ 1+ , = 0. ) & L n=i=l oy dF
@~ e ) 0w ratr) = [ e L[ s vudFrle)

In (34), we use the approximatidn(1+x) ~ = (z < 1) and Which implies that when,, — 0, having©®; independent of
in 39), the higher order term is neglected. Given the inpatl other spherical variables with a zero first Fourier cafit
distribution 3%, the achievable rate with small rati¢p is results in the output distribution il (23) which makes the
given by (see[(24)) inequalities [(IB) and[{19) tight. Finally, fulfilling the $ir
condition (i.e., having a constant magnitude at,) validates
the previous reasoning starting from{32).

The asymptotic optimality of the constant-magnitude sig-
naling in [30) can alternatively be proved by inspecting the

hm h(V; Fp* —l—ZlnozZ 1—— ln2w—g=%7 (36)

where we have used the fact that behavior of the marginal entropy densty (p; Fp) when =2
is sufficiently small. From[(T3)
-2
Zlnai:—lnf‘(g)—i—nz Inm. e*@ o Up
; i Fp) > ———— “ 2 (dF when—= — 0.
fv(v; Fp) F(%)ﬁ*l /o € P(p) "

From [36) and[(31), it is concluded that the pdf In1(30) is

asymptotically optimal for%’ < 1 whenwu, < u,. Note heref

that the distribution in[{30) is not the only asymptoticall);r erelore,

optimal distribution. There are many possible alternatiome - (v Y+ In_1(p3/nv)
v(p; Fp) = — e ———a— n fv(v; Fp)dv

of which, for example, is the binary PAM in each dimension"’ (p/mv)z 1

with the points—,/=z and /2 which can be verified to * v In 1 (p/nv) [(/nv)?
have an achievable rate &f when L < 1. Specifically, in _>/ ¢ (p3/mv)z 1 [ 2
the low peak power regimeuf < 1) a sufficient condition (F(g) %1):|

d

constant= ¢

for the input distribution to be asymptotically optimal is a +1In
g)lloi\év?r.]gérst, |;cjhas a constant magnitude,gt,,. Second, its . r(2)2%-1
1 pendent of P,0,,...,0,_1) and has a zero first — + 1n< 2 ) (40)
Fourier coefficient i.e., 2 C
x It is obvious that[(4D) is a (strictly) convex (strictly) ir@asing
/ ¢’ fo,(0)do = 0. (37) function. Hence, the necessary and sufficient conditio28h
0 and [29) are satisfied if and only if the input has only one poin

The claim is justified by noting that fulfilling the second eonOf i increase at /i, which proves the asymptotic optimality of
dition results in the spherical symmetric output distribatof (30) for == < 1 and Uq > Up. u
(23) as follows. Using the approximatiefi ~ 1+z (z < 1), Remark 2. For a fixed SNR, the gap between Shannon

at small values of.,, (7) can be approximated as capacity and the constant amplitude signaling decreases as
O(2) for large values ofs.

1 — 2407 Proof: By writing the first two terms of the Taylor series
2 (1 +rpa”(h
(v2m) (Lt rpa”(O)a(v)) expansion of the logarithm (i.eln(l+z) =z — -,z < 1),
we have

n—2
x ol H sin™ ;. (38) n U

whenn — oo | §ln(1+—

fR,‘I’|P,(")(T7 ¢|Pa 9) =



lim A(V;Fp*) = lim —/ fv(v; Fp*)In fy (v; Fp*)dv
“2 50 “2 50
. * _vmmsup In 1 (/U /1) | (/00)? + u, In 1 (\/up 3/nv)
= lim e 2 ) —In ] dv
“20.Jp (\/up V/nv)2 2 (\/Up V/nv)2
_n n)ps1
—2+ln(F(2)22 )
© V)2 up 127 y n 2
+ lim < u,— / o— e Iy 1 (Vip Ynv) Vﬁnf)l) In (1 + up(Y0)” Vm’)> dv (33)
TN 0 (\/Up /)2 2n
_n Ny on_q . _ Up Mt Up
=3 +1In (F(2)22 ) + égo {up - (—2 )} (34)
_n npse1) |
—2+ln(F(2)22 )+ z. (35)

From [33), the achievable rate obtained by the constantenwhere in [4B), the(n — 1)-dimensional EPI has been uBed

lope signaling is and [44) is due to the fact that for te — 1)-dimensional
vectorX’, we can write
whenn — I(X;Y) Uy _ Y D) ma
n oo 5 ~ —-— — —. 2
’ ' 2 2n sup h(X') =log L)n_l , m>2
Ficr (/)21 X7 |2 < (n—1I(*F)
This shows that the gap between achievable rate and the (45)
Shannon capacity decreases 1;5( O( )) when n goes Wwhose proof follows the same steps froiml(72) [to] (77) with
to infinity. m )A=0anda= ﬁ ]

While remark 2 shows an asymptotic behavior of the gap, The asymptotic decrease of the gap in remark 2 can be
the following remark provides an analytical lower bound folternatively proved by using the lower bound [nl(44) which

any values of. is provided in AppendikE.
Remark 3. The following lower bound holds for the capac- Remark 4. Whenu, < u,, the following input distribution
ity of constant amplitude signaling. is asymptotically ¢, — 0) optimal
*k Uq Uq
» N Fo(p) = (1= 2)u) + “utp - v
sup I(X;Y) > log | 1+ : 11 ] - 1;_2 , P
Fx (x):[1X[[2=up el(n—-1T(EH) " On—1 / g i
(a1) X - H | a; " sin 0do (46)

Proof: Let X’ and X’ be defined as . .
and the resulting capacity is given by
X' = (X1, Xa, ..., Xy 1,07, Y/ = [m,x@,...,YNl(,‘l(;])T. C(up, up) ~ “7 when u, < 1.
Due to the Markov chaiX’ ++ X + Y « Y’ and the fact Proof: The proof is given in Appendik]F. [ ]
that || X||? = u, implies || X’||> < u,, we can write Remarks 1 and 4 are essential for the initial stage of the
simulation results when either, or v, are assumed to be
sup [(X;Y) > sup I(X';Y") very small at first and afterwards they are increased gradual
Fx (x) Foer (x):]| X2 <y by a step size.
X" =, Remark 5. The fact that the magnitude of the optimal
input distribution has a finite number of mass points remains
unchanged if the average constraint[ih (2) is generalized as

E(9(P)) < ua (47)

-1 2 g x!
log (2"*1h(x)+2ﬂe) in which g(z) is holomorphic on an open subsB{C C)
which includes the non-negative real line (i.R5( C D).
log o2me (43) Proof: The proof is given in Appendix1G. [ |

= sup hY'; Fxr)
For ()21 X/ |12 <uap

-1
log 2me

> sup
Fxr (x'): IIX’||2<u

"Note that the reduction of dimensions fromo n—1 in {@2) is necessary.
The reason is that the usage of the n-dimensional EPI is motiggble for the

[( . 1)F(ﬂ)] =25 constant amplitude vector, since andimensional vector with a fixed norm
eli\n has at mos{n — 1) degrees of freedom (or equivalently at m@st— 1)-
(44) dimensional support).

-1
:n2 log | 1+



generalized to Xnew €qual to the mass point € [—, /i, | hl], /|| h|] with
5 a.s. probability p,. If the average power constraint is relaxed (i.e.,
IP7 € Du, < [0,up). uq > uy), the support of the capacity-achieving distribution of
Proof: Since all the conditions (compactness, continuitf'® MISO channel with the input bounded in a ball becomes
etc.) remain unchanged, the support of the optimal inpﬁtf'”'te number of hyper planes confined in that ball (all

distribution will be some concentric shells having the ma&d these hyperplane have the normal vectgr Note that
points of the magnitude i m the discrete amplitude property is no longer a necessity for
U‘T—"

the optimal input distribution in contrast to the MIMO with
identity channel. In other words, the necessary and sutfticie
condition for the optimality is thaX is located on each of
First, we consider the multiple-input single-output (MISOthese hyperplanes with the corresponding probabilitieerd
channel in which[{ll) changes to is a common characteristic of the optimal input distribatio
_ 1T in both the MIMO (with identity channel) and MISO scenar-
V() =h X))+ W) (48) ios which is the fact that the support of the optimal input
where h(e R"*!) is the deterministic channel vector andlistribution does not include any open set k. Finally,
W ~ N(0,1). Let X,,.,, = h”X. The capacity of this channelif the average power constraint is active (i.e, < uy),
under the peak and average power constraints is given by the support of the optimal input becomes a finite number of
mass points in the direction &f (from (52) and the fact that

Remark 6. The peak power constraint ifl(2) can behe ball || X||? < u,) with probability p; results in having

IV. THE MIMO CASE WITH DETERMINISTIC CHANNEL

Clugsua) = b, I (X;Y) E[|Xnew|?] = ua||h|?) and confined in the ballX|? < u,.
E[||X||2]§;ap7 For the general deterministic MIMO channel, we have
= sup I(X, Xpew;Y) (49) , , ,
Py (%): | X2 <uy, Y'(t) = HX'(t) + W'(t) (53)
E[IX|?]<ua
= sup I(Xpew;Y) + I(X;Y | Xpew) (50) whereH € R"*"* denotes the deterministic channel. By an
Fx (x):]|X |12 <up, D r— SVD (i.e., H = DAN” whereD € R**"r A € R X",
E[”X”z]gua B N c R™t Xnt), we get
= sup I (Xpew;Y)
Fx (02| X |* u, Y'(t) =DTY'(t) = ANTX'(t) + DTW'(t).  (54)
E[IX["]<ua ——— N——
< sup I(Xnew; Y) (51) X/(t) W (t)
Fxpew (1):|Xnew‘§\/%”h”a
E[| Xnew|*]<ua| || Let n = rankH) and Q(¢) be the firstn elements of the

where [@9) is due to the fact thaf,.,, is a function ofX yector_Q'(t) (for Q = Y, X andW). It is obvious that[(54)
and [B0) is a result of the following Markov chal¥ —» IS equivalent to the following

Xnew — Y. (B3) is due to the fact that any input cdf having

the support|X||? < u, and satisfyingf[[| X||?] < u, induces Y (t) = X(t) + N(t) (55)

a cdf for X,., with the support in[—,/u,| h||, /u,|/h]] _ ) o

and satisfyingE[| Xpew|?] < ua|h|?. This could be readily with the noise distributed asN(0,X) where X =

verified by the following convex optimization problem diag{A;*, A2, ..., A%} and \; (i € [1: 7)) is thei™” sin-
. gular value ofH. Therefore, the capacity of the deterministic
mgxh X channel in [[(BB) is the same as the capacity of the additive
St x| <u non-white Gaussian noise channelin](55). It is assumed that
L. < uy,

the condition number oH is not unity, since in that case,
where the maximum is/u,|/h| and it is achieved whex it becomes equivalent to the scenario with identity channel
is matched to the channel (i.ex,= \/u_p”—{‘l”). Further, from matrix discussed in sectidnl Il. From now on, we consider
Cauchy-Shwartz inequality, we have n=2.
Two possible changes of coordinates are as follows. Moti-
vated by the elliptical symmetry of the noisk,andY could
be written in the following elliptical coordinates

B[ Xnewl’] = E[0'X[] < E[|[b]*E[|X]*] < uq|h]?*

where the inequalities change to equality X is in the
direction ofh and E[||X||?] = uq.

The supremization i ($1) is the same problem of finding
the capacity of a scalar Gaussian channel which has b en, using a similar approach as in secfian II, the optirizati
addressed in_[1] where it was shown that the optimal inF;HPobIem becomes '
distribution is a pmf over a finite set of points in the intdrv
defined by the peak power constraint and also it satisfie%,(u Ua) = sup W(V,¥; Fpe) — In2re, (57)
the average power inequality with equality. It is obviouatth P Fro(e):P?aT (6)a(0) <uy, ’
having X located on the hyperplarie’ X = e; (confined in E[P?a” (0)Za(0)]<u.

Y = RE2a(¥) , X = PX2a(0) (56)



whereV = %2. The joint entropy of the output variables is(66) with €po as its points of increase. Let the pljf, be

given by

[e'e) 21
WV, U Fre) — / / oo (9,65 Fpo)PFro(p, ),
0 0

(58)
where the joint marginal entropy density writes as
oo p2m
hV,\I/(pve;FP,@) = _/ / K(’U,’L/J,p,@)
0 JO
x In fyw(v,9; Fpe)dipdv, (59)
in which
00 2w
fratoviFre) = [ [ K(06.0.0) Fro(.0)
0 0 (60)
and 1 )
K(v,1,p,0) = v tpV2vcos(y—0) (61)

21

Alternatively, due to the spherical symmetry of the coristra

defined as

Ipe(p,0) = fp(p)fop(0 —€lp),

wheree is a constant arbitrarily chosen frof®, 27). Let L o
be the corresponding CDF. It can be easily verified that

fV,lI’(an; L%,@) = fV,\I/(Ua Y —€ F;;,@) (67)
and therefore,
h(Va \Ij; L;,G)) = h(Va \Ij; F;,@)'

Since L% o satisfies the constraints and the optimal solution
is unique, it is concluded that

fre(p,0) =1pe(p,0)
which in turn results in

fop(0lp) = fop (6 — ¢lp).

the input and the output could be written in the sphericaince€ € (0,2m) was chosen arbitrarily, we conclude that

coordinates in which

Clup,uq) = sup  h(V,¥; Fpg) — In(2me/|X)).

Fp.o(p,0):P?<up, E[P?]|<uq (62)

(58) to [60) remain unchanged, while the kernel is given b

e % [ma(¢)7pa(9)]T27] [ 2Ua(1,b)fpa(0)]

K(v,1,p,0) =

¥

feip(8lp) = fo(d) = 5=. The problem in the case when
A1 # X2 is that if the elliptical domain is used, (67) remains
true, butL} o does not satisfy the spherical constraints any
more, and if the spherical domain is consideref o satisfies
the constraints, buf (67) does not hold any longer. Theeefor
n what follows, we provide some upper bounds and lower
bounds for the capacity of the deterministic channel.

1) Bounds based on the cubic constraints: For brevity, let

21/ |2

(63)

Using neither of the above coordinates makes the separation
of the magnitude and the phases possible as donE_in (10).

This is due to the different symmetries of the noise (eltipf

and the peak power constraint (spherical). Since the dondit

of compactness, convexity and continuity remain unchanged
we can only proceed up to the point of writing the necessary
and sufficient conditions for the joint cdfpo(p, ) to be

the optimal solution. By using the spherical coordinates,
the necessary and sufficient conditions for the optimal inpu
distribution is given by

;LV,\I/(pa 0; Fpe) < h(V, ¥ F;;,@) + )\(pQ — Ug)

Vpe 0, Tl Vo e 0,2n),  (64)
hvu(p, 0 Fp o) = h(V, U Ff o) + A(p* — ua)
) v(pv 0) € 6}763 (65)

wheree}, o is the set of points of increase i .

To make the problem caused by the different symmetries of
the noise and the constraint more clear, let's assime A\
(i.e., as in the previous section with identity channel.}His
case, we rewrite the optimization problem as

Cup, uq) = sup h(V,¥; Fpo)—In(2me)?).
FP,@(p,ﬂ):P2SuP) E[P2]§ua (66)

It is already known that the optimal solution must have inde-
pendent phase and magnitude with the former being uniformly
distributed on[0, 27). This can alternatively be inferred from
the above necessary and sufficient conditions as follows. Le
frelp,t) = f;(p)f(f)|P(9|p) denote the (unique) solution of

F(a,b) = {Fx(x)|Fx,(z;) = 0 for z; <0,
Fx,(x;) =1 for xf > a;,

/ 22d"Fx (x) < b; ,Vi € [1:n]}

be the set of all CDFs with the cubic constraints defined
by the vectorsa and b, respectively. By strengthening
or weakening the constraints ¢fl (2), we have

sup I(X;Y) < Clup,uq) < sup I(X;Y)
Fx(x)€F1 Fx(X)E]Fg

(68)

as long asF; C {Fx(x)|Fx(x) = 1 for |x||? >

Up, [ IX[?d"Fx(x) < u,} C Fp. One possible
choice for F, is obtained with the enhanced cubic
constraints as follows

Fy = F(upl, ugl)

where 1 is the n-dimensional all-one vector. Also, a
trivial option for ', would be

F, = F(221, Yoy).
n n
Since the noise elements are independent, we have
n
sup  I(X;;Y:) < Clup,uq)
i=1 Fx, (z:):] X2 <22
E[lX:|* <%

< Z sup I(Xi;Y;)
i=1 Fx; (z:):] X ?<up
E[|X;|?|<uaq



2)

3)

which leads to

2 M, Nu,
ch(z_i” 2iay

n n

IN

C(up, ua)

Cs(\tp, Afta),

I

i=1

in whichCs(., .) is the capacity of a scalar AWGN chan-
nel under peak and average power constraints defined
in [1]. The resources could alternatively be allocated
according to the noise covariance mafrixsuch that the
resource of each component is inversely proportional to
its noise variance. Therefore, another possible set for
obtaining a lower bound is

Fi =F(upv, uqv)

2

in which v; = Zki We name this last set of

constraints as modified cubic constraints.

Bounds based on the elliptical constraints: Another

possible set of lower and upper bounds is obtained by

strengthening or weakening the constraintsin (57). By

noting that

min{ ;3 A\, 2%, ..., 0,2} < al'(0)Za(d)
<max{A\ %\ %, ...

’ '

AT
(69)

we get the two following sets of constraints for the lower
and the upper bounds df (57), respectively.

Fy = {Fpe(p,0)|P? <min{)\i, ..., \2}u, ,
E[P?] <min{\?, ..., 2% u,},
|P? < max{\],...,\2}u, ,
E[P?] < max{\?,..., A2 }u,}.

Following the same approach as in the proof of the theo-
rem, it can be verified that with these sets of constraints,
the lower and the upper bounds results from the input
distributions that have finite number of concentric hyper-
ellipsoids as their support.

Bounds based on whitening the noise: Another trivial set
of upper and lower bounds is obtained by whitening the
noise and therefore, making it spherically symmetric. It
is obvious that

FQ = {FP,G(pa 9)

sup  I(X;Y) < Clup,uq)
Z:max{)\;2,...,)\;2}l
< sup  I(X;Y),
S=min{\; %,...,\5 2}
(70)

where the bounds are obtained by distributions that
have finite number of concentric hyper-spheres as their
support as in sectionlIl. It can be easily verified that

the bounds in 2) and 3) are actually the same, although
the former is based on weakening or strengthening the
constraint and the latter is based on whitening the noise.

4) Lower bound based on Entropy Power Inequality (EPI):

The mutual information can be lower bounded as

HXAU=hW)—%m«%dﬂﬂ)

n 2 p(X) i 1n((2ﬁe)"|z|))
> n n
> 1 (e +e

~ 5 In((2me)"5) (72)

where in [71), vector EP[[13] has been used. In order
to get a lower bound for the capacity, we notice that
the maximization ofh(X) under the peak and average

constraints could be written as

sup h(X) = Sup / f ) p
Fx(x)IX|?<up  Fe(p):P?<u,
E(|X|*)<ua E(P?)<u,
n—2
+ Z In; + In 27. (72)
i=1
By the change of variabl& = £~, we have
sup / fe( )dp = sup Ah(T).
FP(Q%:i:p Fr(t):T< @
B(T#)< "
)

It can be verified that optimization theory guarantees a
unique solution for[(73) and the necessary and sufficient
conditions for f to be the optimal pdf is the existence
of a A > 0 for which the following inequality holds for

any fr(t) that has its support inside the interyéJ %]

J

It is obvious that whem,, >
distribution will be uniform. In the case, <
A # 0 and the optimal distribution is given by

n

2
RIEICE

(In f5(8) + =) (f5(8) — fr(t)dt < 0. (74)

nu .
w13 A= 0andthe opntLTaI
n+2’

2 2
Fi(t) = e te o, L,
or equivalently
[b(0) = gl T | pe o, Vip);

since it satisfies (14) with equality. The two degrees of
freedoma, A are uniquely obtained by solving the two
following equations:

w2

PR
Jo treT Mt

ot

Uq

=2 (75)
nn

3o

2
e~ At dt

n
'u.2
D
T R
e dt
0

It can be verified that the left-hand side &f 75) is
a strictly decreasing function ok having the range

-1

(76)
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(0, —*2—] and by continuity, there exists a unique
+2

(n )nn 70
A > 0 that satisfies[{15). Substituting this in (Z6)
gives the value ofi which results in gor
A Q(ﬁ)") 50(
h(X) = +1In ( ). (77)
0= tomp T ey
Substituting [(Z7) in[(7A1), we get the following lower =
bound for the capacity 30
n 2%7-‘— 2 ugqg 20F
Clup,ug) > =1In <7zen< V? 4 2me \"/|E|>
: 2 (af(%))% 10f
1 n
o n((@re)"[2) (78) B B e

n

A visual representation of some of the bounds is shown
in figure 1 forn = 2, A} = 2\3 andu, > wu,. ItiS Fig. 9: The peak power threshold for whickp, remains
obvious that the figures inside the circle (which shows trekpeoptimal versus: (u, > Uup).
power constraint for the 2-dimensional channel) strengthe
constraint and those outside the circle weaken it. In figijag, 1
the two ellipsoids are obtained froin {69). In other words the Figure [8 shows the capacity versus the average power
inner and the outer ellipsoids are given by constraint for a fixed value of the peak power, (= 20).
T . _9 y_9 It is obvious that foru, > u,, the average constraint becomes
a” (0)Fa(f) = min{A; ", Ay} inactive and the capacity fs determined only 4y We have
and already shown that when the peak power is very small (i.e.,
a’(9)Za(h) = max{\?, \;°}, u, < 1) andu, > u,, the optimal input has only one mass

oint atp = . Let Fp, denote the cdf of this optimal
respectively. The inner and outer squares in figure 1(b) Fﬁ)ut Thperefo\r/:_p b P
[—g/%,,/%P and [—,/t,, /tip)?, respectively. The modi-

fied cubic constraint in figulg 1(c) is based on resource alloc fv (v Fp) = K"(l;\/u_P)v
tion according to the channel gains (|)q.2and.)\2)..Channels 1 by (p; Fp,) = —/ Kn(v, p) In(K (v, /up))dv.
and 2 have the peak powerg);%up(: Sup in this example) 0
1 2
Whenu, < 1, the above marginal entropy density is a convex

and increasing function op and satisfies the equality of
(29) (with A = 0) at p = ,/m, and the inequality of[(28)
) ) _at all other points. Asu, increases,Fp, remains optimal
As stated in the Theorem, the magnitude of the optimghtj it violates the necessary and sufficient conditiony. B
input has a finite number of mass points and the phases 8Merving the behavior oky (p, Fip, ), it is concluded that
distributed according td_(20). The algorittfirfor finding the 55 u, increases, the first point to violate the necessary and
numbef, the positions and the probabilities c_)f the optimassn syficient conditions will happen gt = 0. Therefore, the
points is exactly the same as that explainedlih [2]. Wh%ak power thresholm’; for which Fip, remains optimal (when
the average power constraint is relaxed, figlfies Elto 6 show > ., ) is obtained by solving the following equation fof

2 . . .
and ﬁup(: %up in this example), respectively.
1 2

V. NUMERICAL RESULTS

a —

the capacity of the channel ifJ(2) along with the capacity- ~

achieving input distribution for different values of In these hv (0; Fp,) = h(V; Fp,). (79)

figures, black, red and green points have their probatsilitie

the _mtervals[().?, L, [O.3,0.7]_and [0,0.3], re§pectl\_/ely. threshold are obtained for different valuessofas shown in
FigurelT shows the capacity of the four dimensional Chanq‘?g[urelg For example, fon — 4, u! ~ 12.81 which means

versusu, along Wi?h the_optimal input for a.fixed averag§nat when the peak p(;wer is bélolz;il.sl, the support of the

power u, = 10. It is obvious that the capacity saturates ‘%Fptimal input has only one hyper-sphere, and at this thitdsho

Its convenuo-nal value given i {p5). Th|s satufa'uon Shov‘f gets another mass point at zero as already shown in figure
the near-optimal performance of the discrete input for tlﬁ Forn — 20, whenu, < 66, constant amplitude signaling

conventional unbounded scenario. For example, when 4 f optimal which is consistent with figufé 6. From figlile 9, it

By solving [79) numerically, the values of the peak power

and u, = 10, the capacity of the channel with unbounde an be observed that the ratl does not necessarily need

input (i.e.,Cqe = 2.5055), which is achieved by a generalize L A
Rayleigh distributedP, can also be achieved with goods0 be vanishingly small to guarantee the optimality gf, .

approximation (i.e.J(X;Y) = 2.5052) by a pmf having only
three mass points below30.

pecifically, for the ratios of:2 below (approximatelyB.4,
Fp, remains optimal.
It has already been shown that when the number of antennas
8The  codes  for  this  section  are  available  aiS above a certain threshold, constant amplitude signading
hitp://www.ee.ic.ac.uk/bruno.clerckx/Research.html . the peak power (i.e||X|| = ,/u;) becomes optimal. Figufe 110
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Peak power congtraint
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Xy

Modi fied cubic constraint
X

(c) Modified Cubic Constraint

Fig. 1: Weakening or strengthening the peak power constfaim = 2 and \? = 2)3.
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Fig. 2: Capacity vsu, for n =1 (u, > up), and the optimal input mass points.



3 8r :
7.51 c.
0 7+ *
g 2. 6.5F .'
a 6F .
g 5.50 o
] st S
g __4.5f ¢
a1 % 4l .
] ~ 3.5t _,-‘
= 3r .
I 2.5¢ o
3 2F . . (;
So. 1.5f . .
8 1t . . : -
0.5; *
0f L L 0 L - ioide—  ioes el
-10 10 17.78 -10 10 17.78
peak power constraint (dB) SNR (dB)
(a) Capacity (b) Optimal Input Distribution
Fig. 3: Capacity vsu, for n = 2 (u, > up), and the optimal input mass points.
6 9r B
8.5r °
ES 1 7 gi *
5 oL .
9 6.5) S
gar 1 6 .
= 5.5F .
2 — st .
® 3r 1 4.5r *
Ko S
£ 3.5F o
20 1 3F .
b 2.5} e
4] 2F 0
%1’ ] 1.5f ot
8] 1r . .
0.55 b . :
qQ qQ R
-10 0 10 18.45 -10 10 18.45
peak power constraint (dB) SNR (dB)
(a) Capacity (b) Optimal Input Distribution
Fig. 4: Capacity vsu, for n =4 (u, > up), and the optimal input mass points.
10 8r :
7.51 c.
i 7F .
3 gl 6.5F 3
—~ 6
2 7 5.5r
g ST
O __4.5F
35 R
8 3.5- o
£ ab o
o3 2.5¢ XA
RS 2k .
§ 2y 1.5F ot
St i o vt k
0.5f . :
9% 1 17.78 95 10 17.78

compares the achievable rate of the constant amplitudalsigringﬁat the peak power with the capacity of the channel (with

0 0
peak power constraint (dB)

(a) Capacity

SNR (dB)

(b) Optimal Input Distribution

Fig. 5: Capacity vsu, for n = 10 (u, > up), and the optimal input mass points.

9The rate has been obtained by numerical evaluation of

12

o (Wan)2tup In_1(/up V)
sup I(X;Y)=—/ e 2 pzn—pg,lx
Fa (0): 1 X |2 =y 0 (VT /)3

() 4y In g (/up ¥/nv)
Infe 2 2—n1 dv
(v V) B
— g In(2e) + In 2.
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the constraint| X | < u,) and the unbounded Gaussian inputhe condition number. This is intuitively justified by naogin
having an average power af,. As it can be observed, whenthat the elliptical bounds converge to the actual capadity o
the number of antennas is sufficiently large, constant dogdi  the channel when the condition number approaches unity. For
signaling is not only optimal but also it has a performandarge values of the condition number, the lower bound olethin
close to that of the unbounded Gaussian signaling. by modified cubic constraints performs better than the equal
resource allocation at small values of the peak power. Kjinal
Figured 1l anff12 demonstrate the bounds for the determins important to note that although the lower bound obtdine
istic MIMO channel in [§B) for two values of the conditionpy EPI is loose in these two figures, it becomes asymptoyicall

number of the channel. It can be observed that the gaght for large values ofs,. It can be easily verified by the
between the elliptical lower and upper bound increases with
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—+— elliptical upper bound
—+— elliptical lower bound
—=&— cubic lower bound
cubic upper bound
cubic modified
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n =2 (optimal)
[| —&— n =4 (optimal)
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—— n =2 (Gaussian)
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['| —<—n =4 (constant amplitude)
—&— n =4 (Gaussian)
—<F—n =10 (Gaussian)
—+— n =10 (constant amplitude)

nats/channel use
>
nats/channel use

[ 10 20
peak power constraint (dB) up (dB)

Fig. 10: Achievable rate by the constant amplitude siggalirFig. 12: Bounds for the capacity of the deterministic MIMO
at the peak power (i.e|X|| = ,/u,) when the average powerchannel A3 =100\7 = 1).
constraint is relaxed.

was evaluated numerically as a function of the condition

35

L o v number of the channel.
3] O el ower bound ,(/fi The results of the paper could be applied to the MIMO
T cublomodifed A communication systems with only one single RF chain at

the transmitter which is of great interest and necessitage t
peak power constraint. The importance of the results besome
more pronounced in the massive MIMO settings, where it
was shown that the capacity has a closed form solution and
no computer program is needed to find the optimal input
distribution.

nats/channel use

APPENDIXA

% 1 2 DERIVATION OF (15)
u, (dB)

The following lemma is useful in the sequel.
Fig. 11: Bounds for the capacity of the deterministic MIMO | emma 1. Let ¢ andb be two real numbers with, > 0.

channel 43 = 2\} = 1). Also, let N be the set of non-negative integers. Then,

1
.2 _ ,,2\n,—bu
fact that when the average power constraint is relaxed, we/_lln(a\/1 u?)(V1 —u?) e " du

haveA = 0 anda = % in (7). Whenu, — oo the lower nIn-l-%(\/m) i

bound in [78) gets arbitrarily close to(X) in (Z4) which is =27a W, n=g, Vk € Np.
obviously an upper bound for the capacity. This justifies the (80)
asymptotic tightness of the bound resulted from EPI at large

values ofu,. Proof: By using [14, pp. 698],[(80) could be shown for

n = 0. Also, by some manipulation {BO) holds true for=

1,1,3. For generaln, we use induction as follows. Denote
the left-hand side of[ (80) by),.. It is shown that if [8D) is

We have shown that the capacity-achieving distribution @fue for n, it will also be true forn + % In other words, if

the vector Gaussian channel with identity channel matrdeun

VI. CONCLUSION

the peak and average power constraints has a finite number of nInJr% (Va2 +b?) 3
mass points for its amplitude and the points are uniformly @n = V2ma W (n> 5), (81)

distributed on the hyper-spheres determined by the andglitu
mass points. It was shown that when the peak power is tien

only active constraint, constant amplitude signaling atghak et Lngi (3 /a% + b?)
power is optimal when the number of dimensions is above a Qn+% = V2ra™ "z W- (82)

threshold. Finally, some upper and lower bounds were given
for the general deterministic channel and their performmanBy using the recursive identity for the bessel function.{(i.e



Ia(2) = In—a(2) — 22211, 1 (2)), we have

2)n+% e—budu

_%(ax/l —u2)(V1—u2)" e du

1
= / Infg(ax/l —u2)(v/1 — u2)" ey

-1
1 n—3 I,(Va® + b?)
—2(n—§)\/ﬁa W,

where in [88), we have used {81). FromI(81), we have

(83)

15

by W, and assume it is valid for > 2. It can be verified that

T In_y(zsinfsiny)

Wn _ _ si n—1 mcochosd)d
i V2 (zsinfsiny)2 1 " e v
L In q(zsin0v1 —u?) n
— 2 /1 — 42 Eflefzcoseudu
~1 V27r(wsing)z ! ( )
(88)
== (89)
()=
where in [88),u = — cosvy and in [89), we have used lemma

1. This completes the proof df (B7).

APPENDIXB

Proposition. Let X be a non-negative random variable and

m € R*. The following optimization problem

n—1 I,(Va? + b?)
V2ra (Va2 + b2)n : (84) sup h(X), (90)

Fx(z):E[Xm]<A

Qn—

(S

By taking the derivative of{(84) with respect toand using
the identity I/, () = 3(Ia—1(2) + Iat1(2)) for a # 0, we
have

has a unique solution. Further, the maximum is

m | D)
' b G 1 Ty oo 91
n+% —bu 1 m — —_— s
Llln_%(awl—u2)(¢1—u2) e du+ Qi1 I(d) n ) (91)
0 nl In(\/a2+b2)
=2V2r—<a"" T ———= . . . L
a (Va2 +p2)n and is achieved by the following distribution
(85)
m al T ) ooty
Solving for @,,, 1 in (83) and [(8b) results in Fx-(z) = P4 e AT ® (92)
() '

Proof: Let ©2 denote the set of all probability density
functions on the non-negative real line. It can be shown that

w1 0 LV TP
QnJr% - \/%a aa { (\/m)n }

— L1 (Va2 + b2) Q is convex and compact in the Levy metric. Further, the
o (Va2 + b2)nt1’ (86)  following function

where in [86), we have used the identify{ {z(2)} — Int1(r) L(fx(z)) = h(X) — )\(/ a" fx (z)dx — A)
This completes the proof of lemma. [ ] 0

(@I9) is equivalent to is for A > 0, a continuous, weakly differentiable and strictly

concave function offx(x) having the weak derivative at
™ T p2m 1 - n—2 ) fO (.I') as
za' (0)a(v) son—i—1 /. X

. =€ sin Yidp_1...dyy
/0 /0 /0 (v2m) Zl;[l
N——

" Ymes o () = [0 @)+ Aa™) (15 (@) = fx ()
1%71(1)
_ (z)%*l vn > 9. Therefore, the Lagrangian optimization guarantees a @niqu
W ~  solution for [@0) and the necessary and sufficient condition
(87) for fx-(x) to be the optimal solution is the existence of a
A = 0 for which L m)(fx( )) <0 Vfx(z) € Q. It

If 2 = 0, it is obvious that the left-hand side df (87) is thean be verified that foA = F(*27) the distribution in (€2

AT(L
hyper-surface area of an n-sphere with unit radtus%((”—) results inL/; . (fx(x)) =0 Wh|ch satisfies the necessary

divided by (v/27)™ which results in the value shown on theand suff|C|ent cond|t|ons Hence, the pdf [n](92), which has
right-hand side. Therefore, we consider# 0. It is obvious the differential entropy in[{91), is the unique solution [B8J.
that [8T) is valid forn = 2. Denote the left-hand side df (87) [ ]
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APPENDIXC Proof: First, we show the continuity oky (z; Fp). Let

PROOF OF THE THEOREM {zm}5° be a sequence of complex numbers converging to
Let F, denote the space of all cumulative distributiorfo- Since Ky (v, z) is holomorphic (see Proposition 1), it is
functlons satisfying the peak power constraint, i.e. continuous. Therefore,

Fu, = {Fp(p)|Fp(p) =0V¥p <0, Fp(p) =1Vp > J/up}. im K (0, 2m) In fv (v; Fp) = Kn (v, 20) In fv (v; Fp).

The metric spac€lF,,,,dr) is convex and compact ([15].1[3, he k |
Appendix I]) whered;, denotes the Levy metri€ [16] (note thatecause the kernel is continuous afig (v, +00) = 0, it is

the proof of the compactness in [3] relies only on the averaqglo bounded (i. ed0b< Ig (d” P) <f0?1 fokr all Ip € R>o.) o
power constraint). The differential entropyV; Fp) e continuity and boundedness of the kernel guarantees the

R is continuous ([15], [[2, Proposition 3].1[3, Appendlx 1], continuity of fy (v; Fp) given in [I3) by the application of
[6, Proposition 1]) (note that the proof of continuity ini [8] Lebesgue’s dominated convergence theorem. This allows us

more general in the sense that it does not rely on the Schwa{ﬂi'vr'te
properties), strictly concave and weakly differential&s], _ (V2 tuy 1
[2, Proposition 4],[[3, Appendix 11],[I6, Proposition 2]) dn O<e ’ 1"(2)2%71

has the weak derivative @3 given by < min K.(v,p)

. h(V;(1—=CQ)FY + (Fp) — h(V;FD) PE(0, Vi)
h%g(V;FP):éIE% - ¢ - < fv(v; Fp)
Vb < max K,(v,p)
:/ oy (p; FO)dFp(p)—h(V; FS),¥Fp € F,,. pel0,y]
0 o < o ¥ Inq(up /nv)
The average power cor\w/s_tralnt is denoted by = 7(% nv)31
Up
G(Fp) = / P2dFp(p) — uq < 0. < 0o, (96)
0

( )

(x > 0) is a strictly increasing function. Therefore,

In 1 (up {/nv)

It is obvious thatG' : F,, — R is linear and weakly

differentiable having the weak derivative Bf given by ( 2+
v nu Up

: <
G (Fp) = G(Fp) = G(FB) ,¥Fp € B, [ fu v Fp)l < ==+ (g ~myr=1)
Sinceh(V; Fp) _an_dG(Fp) are concave maps fromp o R, < (¢/nv)® +u L 4w, W/mo + m(r(ﬁ)ﬁ_l)
Lagrangian optimizatiori [17] guarantees a unique soluibon 2 2
(24) and the necessary and sufficient conditionfpt to be , (97)
the optimal solution is the existence of\&> 0) such that < (Y/nv) (1+up) +up + 1n(1“(g)2§*1)

Up 2
/r(ﬁv(p; Fpe) — X\p?)dFp(p) < h(V; Fp+) — Mg, (98)
0

VEp € F,,. (93) where in [9Y), we have used the inequality

It can be shown thaf{93) is equivalent f5](28) ahd (29) ([1, I, (x) coshw w20 ¢
Corollary 1]). In order to show the finiteness of the cardigal xv 2T (v+1) 2'T(v 4+ 1)’
of ep+, we extend the marginal entropy density in](26) to the
complex domain i.e.,

(99)

which was proved in[[18]. Froni(98), it can be verified that

hy (z; Fp) = / K, (v,2)In fy(v; Fp)dv , z € C. [hv (zms Fp)|
o (vmesd In 1 (zm /1)
o <[ ) 1A= i (v Fp)do

Proposition 1. The kernelK,, (v, z) is an entire function in (2m ¢/n0)*%

= for everyw. <le ,_|/ _cvm? Iﬂfl(|zm|\/m)|l Fo(v: Fp)ld
Proof: This can be verified by the fact that the real and — (|2m]| ¥/nv)2 1 VAT ERJIEY
imaginary parts ofK (v, z = « + jy) have continuous partial (100)
derivatives and satisfy the Cauchy-Riemann equationstwhic zml2=22 [ (|zm|? + 1)
leads to its holomorphy over the complex plane. As a result,= le =] ( 5 (1 +up) +up
by Cauchy’s theorem, for every rectifiable closed cuvin
¢ ’ e ) (101)
/Kn(v, z)dz = 0. (95) < 00
ol

3 m where in [I0D), we have used the fact that(z)| < I,,(]z|)
Proposition 2. The marginal entropy density, (z; Fp) is  and in [101) the upper bound in_{98) has been used. Since the
an entire function. absolute value of the integrand &%, (z,; Fp) is integrable,
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by Lebesgue’s dominated convergence theorem, we have 1) A = 0. In this case, in which the average power

. constraint is relaxed[{104) results in
lim ﬁv(zm;Fp) = lim K, (v, zm) In fy(v; Fp)dv
" "o fu(v; Fp) = e MViFie), (105)
- /0 nlgnoo K (v, 2m) In fy (v Fp)dv which is a constant and is guaranteed by the invertibility
oo of (28) to be the only solution. The uniform distribution
Z/O K (v, 20) In fv (v; Fp)dv in (I08) cannot be a legitimate pdf faf on the non-

negative real line. This contradiction can be observed in

= hv (20 Fp) an alternative way. By noting that frorh (105) afd](13),
which proves the continuity ofiy (z, Fip). Let 8T denote an if fv(v; Fp) is to be constant (shown by), then
arbitrary triangle in the complex plane. We can write, fr(p) = Cp" L, p>o0,
/ hy (z; Fp)dz = —/ / K, (v,z)1n fy(v; Fp)dvdz which is the only solution forfp(p) by the invertibility
or or /o of (I3). Again, it is not a legitimate pdf fop and
_/ Kn(v,2)dz1n fy (v; Fp)dv obviously violates the peak power constraint.
aT 2) X > 0. In this case[(104) holds iff
(102)
= 2 \/X n _ »no 2
0 (103) fv(v; Fp) = (F(ﬂg e ANV (106)
where [10DR) is allowed by Fubini's theorem, because for a _ _ 2
given rectifiable triangl&T which also holds iff
o (2 )l ol = ([ e T
/8T|V(z, P)|dz < oo, PO = O )"
(I03) is due to the holomorphy of<,(v,z) (see [(9b)). with A = ¢ C(5+1)  tis obvious that fol) < A<l

Therefore, by Morera’s theorem (with weakened hypothesis)  the solution’ in KT_dI7) violates the peak power constraint

it is concluded thathy (z; Fp) is holomorphic on the entire and for\ > 1, no legitimatefp(p) results in[[106). For
complex plane. A= L fp(p) _
2'

: . = §(p) which implies a unit mass point at
Alternatively, the holomorphy of the marginal entropy den- ;10" This, of course, contradicts the first assumption of
sity can be proved as follows. The following integral

Fp. having infinite points of increase and also results
in C(up,uq) =0.
Therefore, the magnitude of the optimal input has a finite
number of mass points. This completes the proof of the

hy (z; Fp) = / K, (v,2)1n fy(v; Fp)dv

is uniformly convergent for alt € K (whereK is a compact

subset ofC) in the sense that fové > 0, there exists some theorem.
real numberL such that

L APPENDIXD

|- Ko(v,2) I fy (v; Fp)do| < 6, TWO INVERTIBLE TRANSFORMS

Ly In this section, we show that the two following integral
for VL., L, satisfying Ly < L, < L. Therefore, by the transforms are invertible (i.e., one-to-one),
differentiation lemma [19]ﬁv(z;Fp) is holomorphic on the o0
complex plane. (] */ Kn(v, p)t(p)dp, (108)

If ep« has infinite number of points, since it is a bounded s

subset of the real lineq [0, ,/u,]), it has an accumulation w(p) :/ K, (v,p)g(v)dv, (109)
point in R by Bolzano-Weierstrass theorern [20]. Hence, 0

according to[(29), the two holomorphic functiohs (z; Fp-) Wheret is allowed to have at most an exponential order and
andh(V; Fp-) + A(2? — u,) become equal on an infinite setg a polynomial with a finite degree, so that the transforms
that has an accumulation point@ Therefore, by the identity exist. The invertibility of [Z0B) and[{109) is equivalent to
theorem for holomorphic functions of one complex variablthe invertibility of (13) and[(26), respectively. The foliing
[19], the two functions are equal on the whole complex plangmma will be helpful in the sequel.

ie. Lemma 2. The kernel function¥,, (v, p) satisfies the two
- ) following equations,
hv(z; Fps) = h(V; Fp«) + A2 —uq) , Vz€C,
. . OOK n—1,-sp e~z (V) 110
which results in /0 n(0,p)p" e P = o (110)
hv (p; Fpe) = h(V; Fp-) + Mp? —ua) , Vpe€R. (104 o — 55
v(p; Fpe) = h(V; Fp+) + Mp” — ta) p (104) / Ko(v, ple (V0 gy — _© TP | (111)
In the following, we show that (104) leads to a contradiction (V2s+1)"
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2
wheres > 0. Let f(n) £ 2e (";1)1“(”7*1)} """, From [43), we can write
Proof: From the properties of probability density func-

tions,

n—1 U
1 _ ly=x|2 Cg > ——1log (1 I >
—————e¢ 22 dy =1. 2
/ » (VZroTym ¥ f(n)
>0l (14
By writing y andx in spherical coordinates (i.ey, = (r,v) -2 & F(n)/)’
andx = (p,0)), and by substituting$ = 51> anda = %, we
get [II2) on top of the next page. in which F'(n) is an upper bound foif(n) and is obtained
By using [1I2) and by change of variablds, (110) andl(11ffpm (115) as
are obtained. ns
In order to show the invertibility of (108), it is sufficient t F(n) =2 (n—1) n—3\ 2 o 3.4
show that the following (n) ¢ 2 v 2e ( 2 )
| Katwpitlordp =0, (113) A O et IR RN E
0 2 2 30
results int(p) = 0. From [1IB), we have
o e The behavior ofF'(n) asn goes to infinity can be obtained
/ / K (v, p)t(p)dpe (V™ dy =0 s > 0. as follows.
’ .O ) ) L . n) . n—3, n-—3
By changing the order of integration, which is allowed herehﬁm In = 1130 In( )
I n—00 n—oon — 1 2e
by Fubini’'s theorem, and by (1111), 9 ( B
n—1) n—3.4
L + lim In Vv ( 8( )
s o TP ] . - n—oomn — 1 2 2
t(p)———=—dp = 1
A (p)( /2S+1)n p 9 S_ 9 +4(n_3)2 n_3+i)6‘|
which results in 2 2 30
/ HW2) gy, — 0, pelo, 1). (114)
0 erefore, =25 goes to zero withn, and from the expansion
vV 2 Therefore, % ith:, and from th i

Again, by extending: to the complex domain, it is easy toof In(1 + =) whenz < 1, we can write
verify that the left-hand side of (11L4) is holomorphic on the

_co_m_plex plane. Sinc(nT this holomorphic fun(_:tion is_ zeroonan n—1 In (1 + Up ) — lim up(n —1)
infinite set (0, %)) which has an accumulation point i@, it n—oo 2 F(n) n—oo  2F(n)
is zero on the whole complex plane and consequently the real - up(n —1) (116)
line by the identity theorem. Therefore, = noo 2(n + 25)’

/OO Me"“dw —0, ueR, where in [1I6), we have used the fact that for< 100, it

0o VT can be verified thath < F(n) < n + 25. The gap between
which results int(p) = 0. The uniqueness of this solutionCc and constant amplitude signaling can be written as
results from the invertibility of Laplace transform (by con u n—1
sidering the non-negative values foy. It is obvious that the lim {Cg— sup I(X;Y)} < lim -2 <1 — —25)
same approach can be carried out to show the invertibility 6f > Fx (x):1X > =up nee n+
the transform[{109). Alternatively, the following properf _ 13y
the kernel function n+ 25
Kn(v,p) = Kn(ﬂ, V) which completes the proof.
could be used in{108) to show the invertibility 6 (109)m
) Y ) APPENDIXF
PROOF OF REMARK3
APPENDIXE
ALTERNATIVE PROOF FOR REMARK2 We have
From [21] and[[22], we hal/8 C(tp, g) < C (00, ug) = gln(l + %)’
n
Tye(g,.3 2 L1
F(a:+1)<\/E(e) 8z + 4z +x+30)r. (115) and
lim C(up, 1q) < -2, (117)

10Tighter bounds for Gamma function can be found[in] [23]. U —0 7
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) T ™ 2m n—2 . 2
/ / .. / / e~ i +ara(9)a(y)n—1 H sin " Y pydipy, 1 dipn o .. dipydr = (\/f)"e‘l. (112)
0 0 0 0 =1 ﬁ

——
n—2 times

The CDFE5*(p) = (1 — %= )u(p) + Z—;u(p — /Tp) induces Multiplying both sides of [(125) by ~le=5" (s > 0) and

the following output pdf v integrating with respect tp gives
Ug Ug o — 557 (Vnw)?
Frw Fp) = (1= 2K, (v,0) + —2 K, (v, /i) _/ 1 e T
P w w, ’ , v ) Sy o
Uy, e~ T\Wzmz > 1 2
ST — [ Dato) + hViFR) — a1
up I'(5)27 0
Ug (VA2 T 1 (\/Up /D) where we have used the transform [in_(110). By a change of
+ uy " ’ (it /n0)E 1 variables aw = £ andz = p?, we have
(Ymm)? 00 z — Tt
Ug, €7 2 u t2 o € EF
=(1=-=22 _ 1 a —/ In fy(—; Fp)t? ™ ————dt
0= | A N re T
T2 (Vi ) | = | Datva) + hviFE) — et e,
(Vap Y/nv) 2! (126)

Whenu, is small, the entropy of/ is given by [I21) on the By substituting [(12B) in[(126), we get

next page. ~ .3 —
The six terms in[(120) are obtained by multiplying the- In fy (—; Fp)t? ! —e—=—dt

terms in the brackets of {I119) in order. In_(121), we have ’° - nN (V2s+1) 3

neglected the last higher order term [A(120) and have used  _ 3 gnI'(§ +m) N [W(V; Fp) = Aua + Ago]L'(3)

the approximationn(1 — z) ~ —z whenz < 1. Therefore, sztm 5% '

t

m=1
n—2 n N u Taking the inverse transform gives the unique solution as
Jim (v, Fp )+Zlnai+(1—§)ln2w—§ =5 (122) 3 o
iz Infy(—;Fp)=>_ cmt™,
n
(@I22) and[(11]7) show the asymptotic optimality of the distri m=0
bution in [48). where the coefficients are obtained from the set of equations
in (IZ17) on the next page.
If there is no solution satisfying (1R27}), (124) does not hold

APPENDIXG which is the desired contradiction. However, in the case of
PROOF OF REMARK4 having a solution for the coefficients ih (127), we have
Since y/z is holomorphic on the complex plane excluding Fv(v; F) = eZm=o em (Ym0 (128)

the non-positive real line (i.e., the domain where the ppialc
branch of the complex logarithm function is holomorphic
g(v/z) has the following power series expansion about 0

)In the casec,, = 0 (m > 1), fy becomes a constant
on the non-negative real line which cannot be a probability

density function. The case,, = 0 (m > 2) does not
oo oo result in a legitimate pdf, either (sele (106) and its follogyi
IVE) =D gmlx =" =D Gma™, (123) discussion.) For the remaining case of having at least one no
m=0 m=0

zeroc,,(m > 3), (128) leads to a contradiction as follows. Let

where its interval of convergence (8, o). Assuming infinite """~ mas {72 7& 0. If Cm > 0, @) Is not integrable
ver the non-negative real line, hence, it is not a pdf. Haxev

number of mass points, with the constraint (4@104} e < 0, 10 Fp(p) can result infy., since from [(5)
m* ) P Vs [}

changes to
- 1y o) = Ofe“E"
v (0 Fp-) = h(V: Fpe) + Alg(p) —ua) , Vp€R (124) fv (i Fp) = Ole 2, (129)
_ while the behavior of the inverse df_(128) is different from
or equivalently (129) asv goes to infinity. Therefore, it is concluded that

0 (128) cannot be resulted by afy(p) due to its behavior at

—/ K(v,p)In fy(v; Fp)dv = Ag(p) + h(V; Fp) — Aug, largew. This implies that the discrete nature of the magnitude

0 of the optimal input distribution does not change when the
Vp e R. (125) average constraint is generalized[{o] (47).
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i B(V; ) = lim — /0 for (w3 F57) In o (03 7)o (118)
i 2
. 0 Uqg e~ S5 Ug _ (V2 tup In 1 (/Up ¥/NV)
= lim (1= —)mrrmm— + —¢ 2 T
ua =0 Jg up I'(5)22 Up (/tp /nv) 2
/nv)? r(z)2s-1 . e 3T(2)25 1wy ( /U, /no
(S (Q)U . (%) : ;(7 vV, (119)
2 -2 ) w-w (v
r(2)2s-
= dim P oMy y g ey (D2 ta ety
Uqg—0 Up Up (1- u—;) Up Uy 2
r(z)2z 1 2
plog (DE2E) v, (120)
Up (1 — u_p) Up — Ug ~—~~
constant
n Ug n,.n_
=5+5+h (F(§)22 ) (121)
oo emP(BHm)E@sHD)™ _ oo Gml(E+m) | [h(ViFp)—AuatAgoll(2)
- Zm:O 2S%+m . = %m:l S?im + . - 55 : (127)
hViFp) == [y fv (v Fp)In fv(v; Ff)dv
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