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Abstract—The uplink of interference-limited cellular networks
with base stations that have large numbers of antennas and
use linear Minimum-Mean-Square Error (MMSE) processing
with power control is analyzed. Simple approximations, which
are exact in an asymptotic sense, are provided for the spectral
efficiencies (b/s/Hz) of links in these systems. It is also found
that when the number of base-station antennas is moderately
large, and the number of mobiles in the entire network is large,
correlations between the transmit powers of mobiles withina
given cell do not significantly influence the spectral efficiency of
the system. As a result, mobiles can perform simple power control
(e.g. fractional power control) that does not depend on other users
in the network, reducing system complexity and improving the
analytical tractability of such systems.

Index Terms—Massive MIMO, MMSE, power control.

I. I NTRODUCTION

Massive Multiple-Input Multiple-Output (MIMO) has been
proposed as a technology to meet the exponential growth in
demand for wireless communications that is forecasted for the
near future. These systems use large antenna arrays at base
stations to separate signals to/from users spatially, enabling si-
multaneous, co-channel transmissions (see e.g. [1], [2]).While
it is known that the spatial matched filter performs optimally
when the number of base station antennas is large, it is also
known that there is a significant range of realistic system
parameters for which the linear MMSE receiver can provide
spectral efficiencies equivalent to systems with matched-filter
receivers with approximately an order of magnitude more
antennas [3]. Hence, it is interesting to study the performance
of systems with the MMSE receiver and moderately large
numbers of base-station antennas.

The uplink of massive MIMO systems with MMSE process-
ing has been analyzed before in [3], [4], and [5]. However,
the spatial distribution of users and base stations was not
considered in these works. Explicitly modeling spatial user and
base station distributions can provide insight into the effects of
tangible system parameters such as the density of base stations
and users, and the number of antennas, on data rates.

Modeling the spatial distribution of mobiles and base sta-
tions for uplink channels is known to be challenging as noted
in [6]. In that work, the complexity associated with modeling
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the spatial distribution of mobiles and base stations is handled
by forming Voronoi cells about the mobiles and distributing
one base station per Voronoi cell. This approach results in
the transmitters in the network being distributed according
to a Poisson Point Process (PPP) for which a number of
analytical techniques have been developed recently. In other
works that consider power control, which can be used to
manage interference as well as conserve battery life, Monte
Carlo simulations are used (e.g. [6], [7]). In [8], the authors
proposed a method for analyzing power control on the uplink
of cellular networks which is based on approximating the
interference as originating from sources in concentric rings
about a test base station. These approximations that have been
taken in the literature underscores the difficulty in analyzing
the uplink of power-controlled cellular sytems.

In systems with many antennas at base stations however,
asymptotic effects can be utilized to address the complexity of
the uplink, without having to make significant approximations
on the spatial user and base-station distributions. In [9],we
considered the uplink of cellular networks with a similar model
as that used here, except we considered a specific power
control model in which mobiles attempt to invert the effects
of the path loss between themselves and their respective base
stations. Since the locations of the mobiles were assumed tobe
independent in that work, the transmit powers of the mobiles
were also independent, simplifying analysis. In another related
work [10], we considered the uplink of a cellular network with
large antenna arrays at Poisson-distributed base stations, but
with a limited number of active mobiles per cell and no power
control.

In this work, we consider a cellular network with hexagonal
cells and multiantenna linear MMSE receivers. We assume a
general power control algorithm where mobiles are assigned
transmit powers as a function of the positions of all mobilesin
their respective cells, relative to their base stations. Thus, the
transmit powers of the mobiles in each cell are correlated. Note
that this correlation increases the complexity of the analysis
as compared to the system with independent transmit powers
we considered in [9]. Further discussion of this is provided
in Section III-B. We find that when the number of antennas
at the base station is moderately large and the network is
interference limited, with a large number of mobiles, the
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Fig. 1. Illustration of a cellular network with at mostK = 10 users
transmitting with non-zero powers. Mobiles are represented by the dots and
circles are used to highlight the active mobiles.

correlation between the transmit powers of mobiles within
each cell does not signficantly impact the achievable data
rates. Hence, the transmit power of each mobile does not
need to depend on other mobiles in its cell. This finding has
significant practical implications as it simplifies power control
computation and reduces the need for base-stations to assign
transmit powers to mobiles in amplitude-reciprocal systems as
described further in Section III-B.

II. SYSTEM MODEL

Consider a 2-dimensional network with base stations located
on a hexagonal grid and where mobiles connect to their closest
base stations. Let the density of base stations beρc = 1/Ac,
whereAc is the area of each cell. We further assume that there
is a base station at the origin, with the locations of the base
stations denoted byB0, B1, B2, · · · . B0 = o shall be referred
to as the representative base station. Let the cells be denoted
by C̄0, C̄1, · · · . Suppose that there is a mobile atX0, which
we call the representative mobile, located at some point in the
cell containing the origin. In the remainder of this work, we
shall analyze the link between the representative transmitter
and the representative base station which we shall also refer
to as the representative link.

Overlaid on the network of base stations is a radius-R
circular network centered at the origin as shown in Figure
1. In this network,n additional mobiles are at independent
and identically distributed (i.i.d.) locations. These mobiles, if
active will be co-channel interferers to the representative link.
Let X1, X2, · · · , Xn represent the positions of the mobiles,
and ri = |Xi| be the distance of thei-th mobile from the
origin. The density of potentially active mobilesρm satisfies

n = π ρmR2. (1)

We denote the cell in which thei th mobile falls asCi.
The average power (averaged over the fast fading) received at
each antenna of the representative base station from a mobile
transmitting with powerPi, from a distanceri, is Pir

−α
i . The

path-loss exponentα > 2 is assumed to be a rational number.
The transmit power of thei-th mobile is a function of the
location of all mobiles in its cell, relative to the base station
in that cell. In other words

Pi = g ({Xj − Center(Ci) : Xj ∈ Ci}) ≤ PM , (2)

where Center(Ci) is the location of the base station at the
center of the cellCi. Moreover, we require that the mobiles
either be assigned zero transmit power or a positive transmit
power that is bounded from below byPℓb. In other words, if
Pi > 0, thenPi > Pℓ b. This is a technical requirement that is
reasonable in practical systems as mobiles can be expected to
have a minimum power if they are transmitting.

(2) describes a general power control algorithm where the
transmit power of a mobile is a function of the positions of
all the mobiles in its cell relative to the location of the base
station. Additionally, we restrict the total number of mobiles
transmitting in each cell toK by requring that for eachi,

∣

∣

{

j : Xj ∈ C̄i andPj > 0
}∣

∣ ≤ K. (3)

This restriction helps to meet quality of service requirements
and to permit channel estimation using orthogonal pilot se-
quences as has been proposed for massive MIMO systems in
the literature (e.g. see [2]). We assume that the representative
transmitter is always active, i.e.P0 > 0. At a given sampling
time, the sampled signals at theN antennas of the represen-
tative base station are represented iny ∈ CN×1 as follows.

y = r
−α

2

0 g0

√

P0x0 +

n
∑

i=1

r
−α

2

i gi

√

Pixi , (4)

wherexi, is the transmitted symbol of thei-th mobile and
gi ∈ CN×1 contains i.i.d., zero-mean, unit variance, circularly
symmetric, complex Gaussian random variables denoted by
CN (0, 1). Since we focus on the interference-limited regime
where the noise power→ 0, (4) does not include noise, which
means that our results are applicable to networks with a high
density of mobiles.

The asymptotic regime considered here is the limit asN ,
n andR → ∞, such thatn/N = c and ρm are constant,
and (1) holds. For the remainder of this paper, whenevern,N
or R → ∞, it is assumed that the other two quantities go
to infinity as well. Note that while our analysis may provide
insight into the scaling behavior of such systems, we use
it as a tool to analyze large networks of afixed size. We
additionally requirelimn→∞ Pr(Pi > 0)n > N which ensures
that asR → ∞, with high probability, there would be a larger
number of actively transmitting mobiles in theentire network
than antennas at the representative base station. This ensures
that the interference covariance matrixR defined below is



invertible with probability 1 for all sufficently largen,N,R.

R =

n
∑

j=1

r−α
j Pjgjg

†
j (5)

We assume thatR andg0 are known at the representative base
station. Thus, the results here can be interpreted as bounds
on the performance of real systems which will be subject to
channel estimation errors which may be significant in certain
cases when the number of antennas is very large.

III. A SYMPTOTIC SPECTRAL EFFICIENCY

A. Main Results

Define a normalized version of the SIR at the output of the
MMSE receiver,

βN = N−α
2

rα0
P0

SIR. (6)

Using the standard formula for the SIR at the output of the
MMSE receiver, we can write

βN = N−α
2 g

†
0R

−1g0 . (7)

With these definitions, conditionedr0, P0, and denoting
the probability-density function (PDF) of transmit powersby
fP (p), we have the following theorem.

Theorem 1:Consider the network model from Section II.
As N,n,R → ∞, βN → β in probability whereβ is the
non-negative solution to the following equation

E[P
2

α ]β
2

α

[

π

α
csc

(

2π

α

)]

−
2πρmβ

α

∫ PM( πρm
c )

α
2

0

τ−
2

α

1 + τβ
×

∫ ∞

τ( c
πρm

)
α
2

fP (x)x
2

α dx dτ =
1

2ρmπ
(8)

Proof: Given in Appendix A.
Moreover, sincePi < PM , we can bound the second term

on the LHS of (8) as

2πρmβ

α

∫ PM (πρm
c )

α
2

0

τ−
2

α

1 + τβ

∫ ∞

τ( c
πρm

)
α
2

fP (x)x
2

α dx dτ ≤

2πρmβ

α

∫ PM (πρm
c )

α
2

0

τ−
2

α

1 + τβ
P

2

α

Mdτ . (9)

If c → ∞ after n,N,R → ∞, the integral converges to
zero. Hence, we have

lim
c→∞

lim
N→∞

βN =





α

2π2ρmE
[

P
2

α

] sin

(

2π

α

)





α
2

(10)

Additionally, if we assume all mobiles transmit using Gaussian
codebooks, by the continuous-mapping theorem (e.g. [11]
(3.103)) and removing the normalization of the SIR

lim
c→∞

lim
N→∞

|log2 (1 + SIR)−

log2






1 + P0r

−α
0





Nα

2π2ρmE
[

P
2

α

] sin

(

2π

α

)





α
2







∣

∣

∣

∣

∣

∣

∣

= 0

(11)

in probability. Further, by applying the bounded-convergence
theorem mirroring steps in Appendix E in [12], we find that

lim
c→∞

lim
N→∞

|E [log2 (1 + SIR)]− log2 (1 + SIR)| → 0. (12)

Hence, for systems with large antenna arrays at each base
station but a much larger number of mobiles in theentire
network than the number of antennas, the spectral efficiency
γ and its mean are well approximated as follows

E[γ] ≈ γ ≈

log2






1 + P0r

−α
0





Nα

2π2ρmE
[

P
2

α

] sin

(

2π

α

)





α
2






(13)

If we now assume thatP0 is a random variable, for large
N,n,R, but with n ≫ N , we can approximate the CDF of
the spectral efficiency as

Fγ(γ) ≈ Fq






(2γ − 1)





Nα

2π2ρmE
[

P
2

α

] sin

(

2π

α

)





−α
2







(14)

whereFq(q) is the CDF ofq = P0r
−α
0 .

B. Discussion

Note that the spectral efficiency is primarily a function of
the transmit power of the representative mobile andE

[

P
2

α

]

which means that there is little dependence between the trans-
mit powers of mobiles within a cell which greatly simplifies
the power control computation. Moreover, in systems which
use full-duplex operation and where uplink and downlink
channels have amplitude reciprocity, mobiles can estimatethe
path losses between themselves and their base stations and
control their transmit powers, without having the knowledge
of the transmit powers or path-losses of the other mobiles
in their cell. Thus, mobiles can control their transmit power
without requiring the base station to communicate information
to them which results in a reduction in the protocol overhead.

Finally, it is worth noting that Theorem 1 in this work
has a very similar form to Theorem 1 in [9]. However, the
assumptions used here are quite different which requires a
different proof. In both these works, the main result is a
consequence of the convergence in probability of the empirical
distribution function (e.d.f.) ofN

α
2 Pir

−α
i , for i = 1, 2, · · · , n.

In [9], it was assumed that the transmit power of a given
mobile was solely a function of the distance between itself
and its given base station. Thus, the transmit powers of the
mobiles were not correlated. As a result, the e.d.f. converges
as a direct consequence of the law large numbers. In this
work, the correlation between transmit powers results in a
more complicated proof of the convergence of the e.d.f. of
N

α
2 Pir

−α
i , for i = 1, 2, · · · , n as given in Appendix A.
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Fig. 2. Simulated and asymptotic CDFs of spectral efficiencyfor N = 8,16,
32 and 64 antennas, andK = 10 with correlated transmit powers. Mobiles
closer to their base station transmit with power 0.5 and mobiles farther away
from their base station transmit with unit power as described in Section IV.

IV. N UMERICAL SIMULATIONS AND RESULTS

We conducted Monte Carlo simulations to verify the ac-
curacy of our asymptotic findings. In all cases, we simulated
1000 realizations of a cellular network according to the system
model, with path-loss exponentα = 4, density of mobiles
ρm = 1 and the density of base stationsρc = 10−4. In
all cases, the number of mobiles assigned non-zero transmit
power K is fixed. Thus, we use a high relative density of
mobiles to base-stations to ensure that with high probability,
each cell will haveK actively transmitting mobiles (i.e.
mobiles assigned non-zero transmit powers).

In Figure 2 we show simulated spectral efficiencies of an ad
hoc power control algorithm which serves mainly to illustrate
that correlation between transmit powers does not influence
the spectral efficiency significantly. Mobiles are assignedthree
different transmit powers,Pℓ = 0.5, Ph = 1 and zero. First, at
mostK mobiles from each cell are selected to transmit with
equal probability from the mobiles in each cell. In each cell,
half of the mobiles closest to the base station are assigned
power Pℓ and the other half are assignedPh. Using order
statistics and the PDF ofr0 which is available in [9], we
can compute the CDF of the spectral efficiency using (14).
This computation is straightforward but tedious and is not
included here for the sake of breivity. The resulting CDF is
illustrated by the solid lines in the figure and the simulated
values are represented by the markers. The close agreement
between the theoretical prediction and simulations verifies the
accuracy of (14) when there is a high degree of correlation
between transmit powers in a given cell.

Figures 3 and 4 illustrate systems which use fractional
power control (see e.g. [6]). As described in the previous
paragraph at mostK mobiles transmit with non-zero power
per cell, and any mobile which is less than unit distance
from its base station is assigned zero power in order to avoid
unbounded received signal power at base stations. Of the
mobiles selected to transmit, a mobile atXi transmits with
power|Xi−Center(Ci)|α ǫ, whereǫ ∈ [0, 1]. Whenǫ = 0, the
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Fig. 3. Simulated mean spectral efficiency with path-loss inversion power
control. Markers represent simulated results, solid linesrepresent the asymp-
totic predictions and the dashed lines are simulated standard deviations of the
spectral efficiency. The maximum number of actively transmitting mobiles in
each cell is limited to the values ofK indicated in the plot.

mobiles transmit with equal power and whenǫ = 1, mobiles
invert the effects of the path losses between themselves and
their respective base stations.

Figure 3 illustrates the mean spectral efficiency vs. number
of antennas whenǫ = 1. Note that since the path-loss is
inverted in this model, the spectral efficiency of a given link is
approximately equal to (13). The termE[P

2

α

i ] for this model
can be obtained by elementary calculus using existing results
from [9] and is not included here for brevity. Note here that
the simulated mean spectral efficiencies and the asymptotic
prediction are extremely close which helps verify the accuracy
of the asymptotic results. Moreover, the standard deviation
(and variance) of the spectral efficiency decays withN which
supports the conclusion that the spectral efficiency approaches
its asymptote in probability since mean square convergence
implies convergence in probability.

Figure 4 illustrates simulated CDFs of the spectral efficiency
and its asymtotic approximation from (14), withǫ = 0.5.
Fq(q) for this model can be computed using straightforward,
but tedious calculations by starting from the CDF of the
distance of a random point in a hexagonal cell to the center
of the hexagon, given in [9]. Observe that with increasingN ,
the accuracy of the asymptotic predictions improves, becoming
virtually indistinguishable from the simulations when thenum-
ber of antennas isN = 128. The asymptotic approximation to
the CDF of the spectral efficiency forǫ = 0, 0.25, 0.5, 0.75, 1
andN = 64 is plotted in Figure 5. This figure indicates that
for low outage probabilities,ǫ = 1, i.e. path-loss inversion is
the optimal strategy for fractional power control.

V. SUMMARY AND CONCLUSIONS

We analyze the uplink spectral efficiency in spatially dis-
tributed cellular networks with large numbers of base-station
antennas and power control. Base stations are assumed to use
the linear MMSE receiver, and transmit powers of mobiles
within the same cell are correlated. Simple asymptotic ap-
proximations, which are precise in an asymptotic sense, are
provided for the spectral efficiency of a representative link
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Fig. 5. CDF of the spectral efficiency based on the asymptoticapproximation
for ǫ = 0, 0.25, 0.5, 0.75, 1 and N = 64. Observe that for low outage
probabilities,ǫ = 1 results in the largest spectral efficiency.

in such networks. It is also found that when the number of
base-station antennas is moderately large, and the number of
mobiles in the entire network is very large, the correlation
between the transmit powers of mobiles in the same cell does
not effect the spectral efficiency significantly. As a result,
simple power control algorithms with no dependency between
transmit powers of mobiles is sufficient in such networks. This
finding thus helps reduce the complexity of practical systems
and simplfies their analysis. In future work, optimal power
allocation strategies based on this framework shall be explored.
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APPENDIX

A. Proof of Main Result

The main result is proved using Lemma 1 of [13] which is
repeated here for convenience.

Lemma 1:Consider the quantity

γN =
1

N
s†
(

1

N
SΨS†

)−1

s (15)

wheres ∈ CN×1 andS ∈ CN×n comprise i.i.d., zero-mean,
unit-variance entries,n/N = c, andΨ = diag(ψ1, ψ2, · · ·ψn).
Suppose that asn,N → ∞, the e.d.f. of(ψ1, ψ2, · · ·ψn) con-
verges in probability toH(x). Additionally, assume that there

exists ann0 such that∀n > n0, λmin

(

1
N SΨS†

)

≥ λℓb > 0,

with probability 1, whereλmin(A) denotes the minimum
eigenvalue of any square matrixA, and λℓb is an arbitrary,
strictly positive number. Then,γN → γ in probability where
γ equals the unique non-negative real solution forγ in

1 = γ c

∫ ∞

0

τdH(τ)

1 + τγ
. (16)

Comparing (15) to (7) and (5), we observe that

βN = r−α
0 P0γ (17)

if s = g0, the columns of S are g1,g2, · · ·gn and
Ψ = diag

(

Nα/2P1 r
−α
1 , Nα/2P2 r

−α
2 , · · · , Nα/2Pn r

−α
n

)

.
Thus to use Lemma 1, we need to show that the e.d.f.
of Nα/2P1 r

−α
1 , Nα/2P2 r

−α
2 , · · · , Nα/2Pn r

−α
n converges in

probability to a limiting function and find its form. Addition-
ally, we need to show that the minimum eigenvalue property
required in Lemma 1 is satisfied by this model.

Let Hn(x) denote the empirical distribution function of
Nα/2P1 r

−α
1 , Nα/2P2 r

−α
2 , · · · , Nα/2Pn r

−α
n . The first con-

dition is proved in the following lemma.
Lemma 2:As n,N,R → ∞, Hn(x) converges in proba-

bility to

H(x) = 1−
ρm x−

2

α

c
E[P

2

α

j ]

−

∫ PM

x( c
πρm

)
α
2



1− x−
2

α

ρmP
2

α

j

c



 fP (Pj)dPj . (18)

Proof: Given in Appendix B
The minimum eigenvalue condition is satisfied as shown

in Appendix C. Note that (18) has the same form as the
corresponding equation in [9], even though it was assumed
in [9] that transmit power of the mobiles are independently
distributed. Following the steps used to prove Theorem 1 in
[9] and the fact thatfP (Pi) = 0 for Pi > PM , we find that
βN → β in probability, whereβ is the unique positive real
solution to (8).

B. Proof of Lemma 2

Let H̄n(x) = E[Hn(x)]. Following steps used to derive
(38) in [13], we have that for eachǫ > 0,

Pr
(

∣

∣Hn(x)− H̄n(x)
∣

∣ ≥
ǫ

2

)

≤

4

ǫ2n2

n
∑

i=1

n
∑

j=1

(

Pr
(

Pi r
−α
i ≤ xN−α/2, Pj r

−α
j ,≤ xN−α/2

)

−Pr
(

Pi r
−α
i ≤ xN−α

2

)

Pr
(

Pj r
−α
j ≤ xN−α

2

))

. (19)



Let Rc denote the radius of the smallest circle containing a
given cell in its interior, andCA denote the union of all cells
wholly contained inB(0, R), i.e., CA =

⋃

k: C̄k⊂B(0,R) C̄k,
whereB(Y,D) denotes a disk of radiusD centered onY .
Xi andXj are in different cells if|Xi −Xj | > 2Rc. Let the
event thatXi andXj are in different cells, andXi, Xj ∈ CA
be denoted byA. Note that asR → ∞,Pr(A) → 1 as
the probability ofXi and Xj falling in a cell that is not
wholly contained in the circular network goes to zero, and
the probability thatXi andXj are separated by a distance
less than2Rc goes to zero asΘ(R−2) from [14]

Note thatPi may be dependent on|Xi−Center(Ci) |, where
Center(Ci) denotes the center of the cellCi, where recall that
Ci is the cell containingXi. Hence,Pi and ri = |Xi| are
correlated in general. However, we note that sincePi is only
a function of the mobiles inCi, for R sufficiently large,

Pr(ri < x|Pi) ≤ Pr(y < x+ 2Rc) (20)

wherey is a random variable distributed with uniform prob-
ability in CA. Recall thatA is the event thatXi andXj are
in different cells which are wholly contained inB(0, R). For
R large enough such that|CA| > Ac we can write an upper
bound which is based on (20) and assuming thatCj is located

outsideB

(

0,
(

Nα/2Pi

x

)
1

α

)

.

Pr

(

ri <

(

Nα/2Pi

x

)

1

α

∣

∣

∣

∣

∣

rj <

(

Nα/2Pj

x

)

1

α

,A, Pi, Pj

)

≤

π

(

(

N
α
2 Pi

x

)
1

α

+ 2Rc

)2

|CA| − Ac
1




0≤





(

N
α
2 Pi
x

) 1

α

+2Rc





2

≤R2







+ 1








(

N
α
2 Pi
x

) 1

α

+2Rc





2

>R2







(21)

Observing thatPi andPj are indepeendent sinceXi andXj

are in different cells, we can take the expectation of the above
expression with respect toPi as follows.
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Next, we take the limit asN,n,R → ∞ in the manner of
Theorem 1, and interchange the order of the expectation and
limit by the bounded convergence theorem. Noting that as

R → ∞, edge effects disappear and|CA|
πR2 → 1, we have
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Similar to (21), we can write a lower bound as follows.
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Comparing (24) and (21), we note that in the limit asR → ∞,
both the upper and lower bounds will co-incide. Thus, (23)
holds with equality. Moreover, following a similar set of steps,
we can find that

lim
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Since asR → ∞, Pr(A) → 1, by the symmetry betweenXi

andXj and multiplying (23) and (25),

lim
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This implies that
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Substituting (26) into (19), we have that asR → ∞,
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From the definitions ofHn(x) andH̄n(x),
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Substituting (25) and recalling thatPr(A) → 1, we have
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The previous expression implies that for eachǫ, there exists
anR0, such that∀R > R0
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When combined with (27), we have the desired result:
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C. Minimum Eigenvalue Condition

Letting T be the set of mobiles whose transmit power is
non-zero we have:

1

N
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N
α
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N
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+N
α
2
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−α
i −R−α)gig

†
i , (33)

where (32) follows from (39) in [13]. The smallest eigenvalue
of the matrix in the brackets in (33) was shown to be bounded
from below by a positive valuẽλℓb with probability 1 for
N sufficiently large, in Lemma 3 of [13]. Moreover, since
Pi ≥ Pℓb for all i ∈ T , the remaining two matrices in the sum
on the RHS of (33) are non-negative definite. Thus, by the
Weyl inequality, the smallest eigenvalue of the matrix on the
LHS of (33) is bounded from below byλℓb = Pℓbλ̃ℓb, with
probability 1 forN sufficiently large.
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