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Abstract—The uplink of interference-limited cellular networks  the spatial distribution of mobiles and base stations igitegh
with base stations that have large numbers of antennas and py forming Voronoi cells about the mobiles and distributing
use linear Minimum-Mean-Square Error (MMSE) processing e pase station per Voronoi cell. This approach results in
with power control is analyzed. Simple approximations, whch the t itt in th work bei distributed di
are exact in an asymptotic sense, are provided for the spectr e ran_sml ers 'n € network being ais ”. uted accaain
efficiencies (b/s/Hz) of links in these systems. It is alsodod 0 @ Poisson Point Process (PPP) for which a number of
that when the number of base-station antennas is moderately analytical techniques have been developed recently. laroth
large, and the number of mobiles in the entire network is lar@, works that consider power control, which can be used to
correlations between the transmit powers of mobiles withina manage interference as well as conserve battery life, Monte

given cell do not significantly influence the spectral efficiecy of - .
the system. As a result, mobiles can perform simple power cormol Carlo simulations are used (e.g! [6]) [7]). In [8], the autho

(e.g. fractional power control) that does not depend on otheusers  Proposed a method for analyzing power control on the uplink
in the network, reducing system complexity and improving tre  of cellular networks which is based on approximating the

analytical tractability of such systems. interference as originating from sources in concentrigsin
Index Terms—Massive MIMO, MMSE, power control. about a test base station. These approximations that have be
taken in the literature underscores the difficulty in anilgz
. INTRODUCTION the uplink of power-controlled cellular sytems.

Massive Multiple-Input Multiple-Output (MIMO) has been In systems with many antennas at base stations however,
proposed as a technology to meet the exponential growthasymptotic effects can be utilized to address the compylexit
demand for wireless communications that is forecastechier tthe uplink, without having to make significant approximato
near future. These systems use large antenna arrays at [9&iséhe spatial user and base-station distributions|_In &,
stations to separate signals to/from users spatially, lempdi- considered the uplink of cellular networks with a similaraeb
multaneous, co-channel transmissions (seele.g[ 1], #)le as that used here, except we considered a specific power
it is known that the spatial matched filter performs optimpallcontrol model in which mobiles attempt to invert the effects
when the number of base station antennas is large, it is affdhe path loss between themselves and their respectiee bas
known that there is a significant range of realistic Systeﬁiations. Since the locations of the mobiles were assumied to
parameters for which the linear MMSE receiver can providedependent in that work, the transmit powers of the mobiles
spectral efficiencies equivalent to systems with matcheet-fi were also independent, simplifying analysis. In anothiateel
receivers with approximately an order of magnitude moi&ork [10], we considered the uplink of a cellular networklwit
antennas [3]. Hence, it is interesting to study the perforcea large antenna arrays at Poisson-distributed base statioihs
of systems with the MMSE receiver and moderately |arg@ith a limited number of active mobiles per cell and no power
numbers of base-station antennas. control.

The uplink of massive MIMO systems with MMSE process- N this work, we consider a cellular network with hexagonal
ing has been analyzed before i [3]) [4], and [5]. Howeveg€lls and multiantenna linear MMSE receivers. We assume a
the spatial distribution of users and base stations was r@§neral power control algorithm where mobiles are assigned
considered in these works. Explicitly modeling spatialresel transmit powers as a function of the positions of all mobittes
base station distributions can provide insight into theaf of their respective cells, relative to their base stationsusThe
tangible system parameters such as the density of basmstatfransmit powers of the mobiles in each cell are correlatedeN
and users, and the number of antennas, on data rates. that this correlation increases the Complexity of the emaly

Modeling the spatial distribution of mobiles and base st&s compared to the system with independent transmit powers
tions for uplink channels is known to be challenging as note#e considered in_[9]. Further discussion of this is provided

in [6]. In that work, the complexity associated with modglinin Section 11I-B. We find that when the number of antennas
at the base station is moderately large and the network is

T Sponsored in part by the National Science Foundation (CTIF:21) interference limited, with a large number of mobiles, the
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We denote the cell in which thé th mobile falls asC;.
The average power (averaged over the fast fading) received a
each antenna of the representative base station from aemnobil
transmitting with power?;, from a distance;;, is P;r; “. The
path-loss exponent > 2 is assumed to be a rational number.
The transmit power of the-th mobile is a function of the
location of all mobiles in its cell, relative to the base istat
in that cell. In other words

P, = g({Xj — Cente(CZ-) : Xj S CZ}) < Py, (2)

where Centd(C;) is the location of the base station at the
center of the cellC;. Moreover, we require that the mobiles
either be assigned zero transmit power or a positive transmi
power that is bounded from below byy;. In other words, if

P; > 0, thenP; > Py,. This is a technical requirement that is
reasonable in practical systems as mobiles can be expected t

Fig. 1. lllustration of a cellular network with at mosk = 10 users have a mlm.mum power if they are transmlttmg'

transmitting with non-zero powers. Mobiles are represeritg the dots and (2) describes a general power control algorithm where the

circles are used to highlight the active mobiles. transmit power of a mobile is a function of the positions of
all the mobiles in its cell relative to the location of the bas
station. Additionally, we restrict the total number of mielsi

correlation between the transmit powers of mobiles withifansmitting in each cell tdC by requring that for each,
each cell does not signficantly impact the achievable data

rates. Hence, the transmit power of each mobile does not H] :X; € C; and P; > 0}‘ <K. (3)

need to depend on other mobiles in its cell. This finding has

significant practical implications as it simplifies powentwl This restriction helps to meet quality of service requiratse
computation and reduces the need for base-stations tonassigd to permit channel estimation using orthogonal pilot se-
transmit powers to mobiles in amplitude-reciprocal syste&® quences as has been proposed for massive MIMO systems in

described further in Section 111-B. the literature (e.g. se€l[2]). We assume that the representa
transmitter is always active, i.€% > 0. At a given sampling
[I. SYSTEM MODEL time, the sampled signals at té antennas of the represen-

H H H Nx1
Consider a 2-dimensional network with base stations Imbat@t've base station are represented/ia C as follows.

on a hexagonal grid and where mobiles connect to their dloses n

base stations. Let the density of base stationgbe 1/A., y =71 "gov/Poxo + Y r; > gi/Pii, (4)
whereA. is the area of each cell. We further assume that there i1

is a base station at the origin, with the locations of the base

stations denoted bygy, B1, Bs, - - -. By = o shall be referred where z;, is the transmitted symbol of theth mobile and

.7 ) 3 . ) N 1 . .. . . .
to as the representative base station. Let the cells be endsi € C" " contains i.i.d., zero-mean, unit variance, circularly
by Co,C1,---. Suppose that there is a mobile &b, which symmetric, complex Gaussian random variables denoted by

we call the representative mobile, located at some poirttén tCV (0, 1). Since we focus on the interference-limited regime
cell containing the origin. In the remainder of this work, wavhere the noise power; 0, {4) does not include noise, which
shall analyze the link between the representative tratesmitMeans that our results are applicable to networks with a high
and the representative base station which we shall also ref€nsity of mobiles.
to as the representative link. The asymptotic regime considered here is the limit\gs
Overlaid on the network of base stations is a radis-7 and R — oo, such thatn/N = c¢ and p,, are constant,
circular network centered at the origin as shown in Figu@nd [1) holds. For the remainder of this paper, whenevev
[. In this network,» additional mobiles are at independen®’ £ — oo, it is assumed that the other two quantities go
and identically distributed (i.i.d.) locations. These rited, if {0 infinity as well. Note that while our analysis may provide
active will be co-channel interferers to the represengdiivk. Insight into the scaling behavior of such systems, we use
Let X1, Xo,---, X, represent the positions of the mobilesi,t as a tool to analyze large networks offixed size. We
andr; = |X;| be the distance of théth mobile from the additionally requirdim,, o, Pr(P; > 0)n > N which ensures

origin. The density of potentially active mobiles, satisfies thatasR — oo, with high probability, there would be a larger
number of actively transmitting mobiles in tleatire network

) than antennas at the representative base station. Thisesnsu
n=1pm R (1) that the interference covariance matiik defined below is



invertible with probability 1 for all sufficently large, N, R.  in probability. Further, by applying the bounded-conveicee
n theorem mirroring steps in Appendix E in_|12], we find that
R=Y r “Pgel ®)

=1 lim lim |E [log, (1+ SIR)] —log, (1+ SIR)| — 0. (12)
c—o00 N—o00

We assume tha® andg, are known at the representative base

station. Thus, the results here can be interpreted as bouhigsice, for systems with large antenna arrays at each base
on the performance of real systems which will be subject gation but a much larger number of mobiles in #etire
channel estimation errors which may be significant in certanetwork than the number of antennas, the spectral efficiency

cases when the number of antennas is very large. v and its mean are well approximated as follows
I1l. A SYMPTOTIC SPECTRAL EFFICIENCY B[y ~y ~
A. Main Results 2

Define a normalized version of the SIR at the output of the 1 14 Popec Na . (27 (13)

MMSE receiver, 082 070 —%Qp z [Pﬁ} sin | —
By = N~30SIR 6)

) Po If we now assume thaf, is a random variable, for large
Using the standard formula for the SIR at the output of thg , R but with n > N, we can approximate the CDF of
MMSE receiver, we can write the spectral efficiency as

Ay =NigiR g,. (7) s

With these definitions, conditionech, Py, and denoting ) ~F | @ -1 Na sin 2m
the probability-density function (PDF) of transmit powémngs V)= Ee 972p, E [Pi} a
fr(p), we have the following theorem. "

Theorem 1:Consider the network model from Sectibh I1. (14)
As N,n,R — oo, By — [ in probability whereg is the ] .
non-negative solution to the following equation where Fy(q) is the CDF ofq = Fyr .

Py (mem)s 2
E[P%)3= F csc (2_”)} _ M/ () 1:_ “ﬁx B. Discussion
(6% (6% (0% T
1 0 Note that the spectral efficiency is primarily a function of

ddodr —
/T(L)% Jrlajutdudr 2pmT

TPpm

Proof: Given in AppendixA.
Moreover, sinceP; < Py,
on the LHS of [8) as

(8) the transmit power of the representative mobile @&h¢P =
which means that there is little dependence between the-tran
mit powers of mobiles within a cell which greatly simplifies
we can bound the second terMmpe power control computation. Moreover, in systems which
use full-duplex operation and where uplink and downlink
27 pm B Py (74 I s channels have amplitude reciprocity, mobiles can estirtiete
T/o 1575 /T(L)% fr(z)z=dedr < path losses between themselves and their base stations and
Tom control their transmit powers, without having the knowledg
27 pm 3 Par (74 - 2 of the transmit powers or path-losses of the other mobiles
T/o mPMdT- 9 i their cell. Thus, mobiles can control their transmit powe
without requiring the base station to communicate inforamat
to them which results in a reduction in the protocol overhead
Finally, it is worth noting that Theorem 1 in this work
o o has a very similar form to Theorem 1 inl[9]. However, the
Jim  lim Sy = ﬁb‘in <E) (10)  assumptions used here are quite different which requires a
2 pm B [P“} different proof. In both these works, the main result is a
Additionally, if we assume all mobiles transmit using Gaass consequence of the convergence in probability of the eogiri
codebooks, by the continuous-mapping theorem (é.g. [1diptribution function (e.d.f.) ofV= Pr;7®, fori =1,2,--- ,n.

(3.103)) and removing the normalization of the SIR In [9], it was assumed that the transmit power of a given
. ) mobile was solely a function of the distance between itself
lim lim |log, (1 + SIR) —

5300 N oo and its given base station. Thus, the transmit powers of the
mobiles were not correlated. As a result, the e.d.f. corasrg
log, | 14 Pyrc® Na sin 2m as a direct consequence of the law I_arge numbers. In_ this
2 0T ‘27T2p I [Pﬁ} @ work, the correlation between transmit powers results in a
" more complicated proof of the convergence of the e.d.f. of
(1) ns Pir7% fori=1,2,---  n as given in AppendikA.

a
TPm ) 2 2

wlR

TPm )
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If ¢ - oo aftern, N,R — oo, the integral converges to
zero. Hence, we have
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control. Markers represent simulated results, solid lirgsesent the asymp-
totic predictions and the dashed lines are simulated stdrdkviations of the
spectral efficiency. The maximum number of actively trarisng mobiles in
each cell is limited to the values df indicated in the plot.

Fig. 2. Simulated and asymptotic CDFs of spectral efficieforyN = 8,16,
32 and 64 antennas, arfd = 10 with correlated transmit powers. Mobiles
closer to their base station transmit with power 0.5 and tasbarther away
from their base station transmit with unit power as descrilmeSectio1V.

mobiles transmit with equal power and whenr= 1, mobiles

invert the effects of the path losses between themselves and
We conducted Monte Carlo simulations to verify the acheir respective base stations.

curacy of our asymptotic findings. In all cases, we simulated Figure[3 illustrates the mean spectral efficiency vs. number

1000 realizations of a cellular network according to theeys of antennas wher = 1. Note that since the path-loss is

model, with path-loss exponent = 4, density of mobiles inverted in this model, the spectral efficiency of a givek lis

2

pm = 1 and the density of base statiops = 107" In  approximately equal td(13). The terfi[P~] for this model
all cases, the number of mobiles assigned non-zero transgyh be obtained by elementary calculus using existing teesul
power K is fixed. Thus, we use a high relative density Ofrom [9] and is not included here for brevity. Note here that
mobiles to base-stations to ensure that with high prolibilithe simulated mean spectral efficiencies and the asymptotic
each cell will have K" actively transmitting mobiles (i.e. prediction are extremely close which helps verify the aacyr
mobiles assigned non-zero transmit powers). of the asymptotic results. Moreover, the standard deviatio

In Figure[2 we show simulated spectral efficiencies of an géind variance) of the spectral efficiency decays wtiwhich
hoc power control algorithm which serves mainly to illuséra sypports the conclusion that the spectral efficiency ampres
that correlation between transmit powers does not inﬂuenﬁ:@ asymptote in probabmty since mean square convergence
the spectral efficiency significantly. Mobiles are assigtrede implies convergence in probability.
different transmit powersl, = 0.5, P, = 1 and zero. First, at  Figure3 illustrates simulated CDFs of the spectral efficjen
most K mobiles from each cell are selected to transmit withng its asymtotic approximation froni {14), with = 0.5.
equal probability from the mobiles in each cell. In each,celpq(q) for this model can be computed using straightforward,
half of the mobiles closest to the base station are assigngft tedious calculations by starting from the CDF of the
power P, and the other half are assigne?,. Using order (jistance of a random point in a hexagonal cell to the center
statistics and the PDF ofy which is available in[[9], we of the hexagon, given in [9]. Observe that with increasivig
can compute the CDF of the spectral efficiency usind (14he accuracy of the asymptotic predictions improves, bécgm
This computation is straightforward but tedious and is n@irtually indistinguishable from the simulations when them-
included here for the sake of bre|V|ty The reSUIting CDF i§er of antennas i& = 128. The asymptotic approximation to
illustrated by the solid lines in the figure and the simulateghe CDF of the spectral efficiency fer= 0, 0.25,0.5,0.75, 1
values are represented by the markers. The close agreemgpf N — 64 is plotted in Figuréb. This figure indicates that
between the theoretical prediction and simulations verife for low Outage probab”mesg — 1, ie. path_'oss inversion is
accuracy of [(T4) when there is a high degree of correlatige optimal strategy for fractional power control.
between transmit powers in a given cell.

Figures[3 andl4 illustrate systems which use fractional V. SUMMARY AND CONCLUSIONS
power control (see e.gl][6]). As described in the previous We analyze the uplink spectral efficiency in spatially dis-
paragraph at mosk’ mobiles transmit with non-zero powertributed cellular networks with large numbers of basei@tat
per cell, and any mobile which is less than unit distan@ntennas and power control. Base stations are assumed to use
from its base station is assigned zero power in order to avdfte linear MMSE receiver, and transmit powers of mobiles
unbounded received signal power at base stations. Of thi#hin the same cell are correlated. Simple asymptotic ap-
mobiles selected to transmit, a mobile &t transmits with proximations, which are precise in an asymptotic sense, are
power|X; — Cente(C;)|*¢, wheree € [0,1]. Whene = 0, the provided for the spectral efficiency of a representativé lin

IV. NUMERICAL SIMULATIONS AND RESULTS



» Lemma 1:Consider the quantity

-1
1 1

osl ] N = Ns* (NS\IIST> s (15)
0.6 | wheres € CV*! andS € CV¥*" comprise i.i.d., zero-mean,

) O Sim.N=16 unit-variance entriesy/N = ¢, and® = diag(1)1, ¥2, - - - ¥n, ).

© o4l x Sim. N =32 1 Suppose that as, N — oo, the e.d.f. of(¢1, ¢, - - -1,,) con-
0 Sim. N =64 verges in probability ta7 (x). Additionally, assume that there

0.2l ¥ SmN=1281 1 exists amg such thatvn > ng, Amin (5 SEST) > A, > 0,
— Theory with probability 1, where),.;,(A) denotes the minimum

% . 0 s 0 €igenvalue of any square matrix, and )., is an arbitrary,

Spectral Efficiency (b/s/Hz) strictly positive number. Thenyy — ~ in probability where

) ) ) o ~ equals the unique non-negative real solution4dn
Fig. 4. Simulated and theoretical CDF of the spectral efficyewith frac-

tional power control, where thieth mobile transmits with powerX; —C;| €. * rdH(T)
The markers represent simulated values and the solid lispeesent the I=~c 1+77 (16)
asymptotic approximation. The maximum number of activegnsmitting 0 v
mobiles per cell isk = 10. Comparing[(Ib) to[{7) and5), we observe that
By =1y~ Poy (17)
1 T
f if s = go, the columns ofS are gi,gs,---g, and
0l . Decreasing & | ¥ = diag (Na/2P1T1*O‘7N@/2P2T2*0‘7... ,NO‘/QPRT,:O‘).
Thus to use Lemma]l, we need to show that the e.d.f.
of No/2Py r[® N®/2Pyyry® ... N®/2P, r-® converges in
L 06 probability to a limiting function and find its form. Additie
3 £=0,0.25,0.5,0.75, 1 ally, we need to show that the minimum eigenvalue property
04r ' 1 required in Lemmall is satisfied by this model.
Let H,(z) denote the empirical distribution function of
0.2 Increasing ¢ ' 1 NORPu® NPy ®, - (N2, . The first con-
Z 7” dition is proved in the following lemma.
o . 1 1 Lemma 2:As n, N, R — oo, H,(z) converges in proba-
Spectral Efficiency (b/s/Hz) bility to
_2
Fig. 5. CDF of the spectral efficiency based on the asympégijiroximation H(:z:) -1 Pm T < E[P%]
for ¢ = 0,0.25,0.5,0.75,1 and N = 64. Observe that for low outage c J
probabilities,e = 1 results in the largest spectral efficiency. 2
Pra _2 pmpja
—/ - l1—a = fP(PJ)dPJ (18)
o(mm)® ¢

in such networks. It is also found that when the number of

base-station antennas is moderately large, and the nunibeP®Oof: Given in AppendikiB

mobiles in the entire network is very large, the correlation The minimum eigenvalue condition is satisfied as shown
between the transmit powers of mobiles in the same cell ddBsAppendix[@. Note that[(18) has the same form as the
not effect the spectral efficiency significantly. As a resulforresponding equation inl[9], even though it was assumed
simple power control algorithms with no dependency betweédh [9] that transmit power of the mobiles are independently
transmit powers of mobiles is sufficient in such networkssThdistributed. Following the steps used to prove Theorem 1 in
finding thus helps reduce the complexity of practical systerfdl and the fact thatfp(F;) = 0 for P, > Py , we find that
and simplfies their analysis. In future work, optimal powefy — /3 in probability, wheref is the unique positive real
allocation strategies based on this framework shall becegdl ~Solution to (®).

B. Proof of Lemm&l2

_ Let H,(z) = E[H,(x)]. Following steps used to derive
We thank Dr. Gunnar Peters of Huawei Research for SU(%—B) in [L3], we have that for each> 0

gesting this work, and the reviewers for helpful comments.
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_ 4
A. Proof of Main Result 202 Z Z

RS

Pr (Pir;a < xN_O‘/z,Pjr;a,g xN_O‘/Q)

The main result is proved using Lemma 1 [of[[13] which is J . .
repeated here for convenience. —Pr(Pr;* <aN"%)Pr(Pjr;" <aN"%)). (19)



Let R. denote the radius of the smallest circle containing B — oo, edge effects disappear aé;% — 1, we have
given cell in its interior, and’4 denote the union of all cells N 1 N 1
. . . . ~ 5 NzP\® N2P:\ @
wholly contained inB(0, R), i.e., Ca = Uy.¢,cp.r) Ch: lm Pr (< ( 5 ) .o ( ; ,7) A <
where B(Y, D) denotes a disk of radiu® centered ony'. R—o00 x z
X, and X; are in different cells ifi X; — X;| > 2R.. Let the ) P
TPm ( [

event thatX; and X; are in different cells, and;, X; € C4 Ep
be denoted byA. Note that asR — oo,Pr(A) — 1 as
the probability of X; and X, falling in a cell that is not (s)%
. . . B Thm TPm Pz o
wholly contained in the circular network goes to zero, and _/ (— fp(Pi)dP;
the probability thatX; and X; are separated by a distance 0 z -
less thar2 R, goes to zero a®(R~?) from [14] +/ fp(P,)dP;

Note thatP; may be dependent diX; — Center(C;) |, where (z2-)2
Center(C;) denotes the center of the céll, where recall that 00 z
C; is the cell containingX;. Hence,P;, andr; = |X;| are :/ APm <i) fp(P)dP;
correlated in general. However, we note that siftés only 0 ¢ z )
a function of the mobiles ii€;, for R sufficiently large, +/ ) <1 _ TPm <§) ) Fo(P)P,
Pr(r; < z|P;) < Pr(y < x + 2R.) (20) o(w5m)2 ¢ v
= TPm —2 E[P7)
wherey is a random variable distributed with uniform prob- c g
ability in C4. Recall thatA is the event thatX; and X; are oo Tom (P, 2
in different cells which are wholly contained (0, R). For / P — (;) fp(P;)dP; (23)
R large enough such thaf4| > A, we can write an upper ()

bound which is based oA {20) and assuming thais located Similar to [21), we can write a lower bound as follows.

1
outsideB 07 (w)a) Na/ZP, é N(!/QP. %
( I Pr 7’1-<< ) rj<< -7> VAP Py | >
X

x
1
NQ/QPl_ o
Pr <7’i < < )
x

1
No/2p\ N 2
Tj<< . J) ,Avaij>§ ﬁ<(NjPi)“—2RC> — A,

(24)

+1{<(N%Pi>é+2Rc>2>R2} (21) +1{<(N%;Pi>é2Rc)2Ac>R2}

Comparing[(24) and(21), we note that in the limit/as— oo,
Observing thatP; and P; are indepeendent sinc€; and X; both the upper and lower bounds will co-incide. Thiis] (23)
are in different cells, we can take the expectation of thevaboholds with equality. Moreover, following a similar set oéps,
expression with respect tB; as follows. we can find that

a/2p\ * a/2p, . NEP\*

(oY ) ) (<)
xr xr

Epm Cal— A 5,0\ % ? +/Oo = o (BN ppoyap, (25)
A ¢ {0<<<Nipi> +2RC> <R2} (=3 c x JId

TPm

Q=

Since asR — oo, Pr(A) — 1, by the symmetry betweeX;
and X; and multiplying (2B) and[(25),

“1‘1 o 1 2 (22) a L a 1
{((222) sam ) o} i e (< (22) < (222
R—o0 x x
Next, we take the limit asV,n, R — oo in the manner of 1 1 1 1
Theorem 1, and interchange the order of the expectation andim Pr <rj < (—N2 Pj) ) Pr (ri < (—NzPi) )
.. . R—o0 xT T
limit by the bounded convergence theorem. Noting that as



This implies that C. Minimum Eigenvalue Condition

Letting 7 be the set of mobiles whose transmit power is

. a — I3 — non-zero we have:
lim Pr(N2Pr;® <a,N?Pjr;* <z)—

R—00 1 + N35—1 t
1%1113;0 Pr (Nf Pr;7* < x) Pr (NijTj_o‘ < x) (26) NS‘I’S ~ T Ro ;_Pigigi
+N2! Z Py(r;® — R™%)gg! (32)
Substituting [(2B) into[(119), we have that &— oo, €T
Nz—1 o
= Pu > gl +NFY (7% — R )gig]
— € o T ) )
Pr (|Hn(x) — Hy(z)] > 5) 0. 27) R e
Nzl
I Z(R — Pu)gig]
From the definitions of,,(z) and H, (z), €T
+ Nzt Z(Pz — Pu)(r;® — R™*)gig!, (33)
Lo €T
Hy(x) = — Z 1{N%PFQ<$} (28) where [32) follows from (39) in[13]. The smallest eigenlu
nia T of the matrix in the brackets i (B3) was shown to be bounded

B 1 from below by a positive value\,, with probability 1 for
Hy(z)=E |~ Zl{N%Pﬂfagm} (29) N sufficiently large, in Lemma 3 of [13]. Moreover, since
i=1 P, > Py, for all « € T, the remaining two matrices in the sum
RS T h _a on the RHS of [(3B) are non-negative definite. Thus, by the
T n Z}Pr (N2 Piri ™ s x) (30) Weyl inequality, the smallest eigenvalue of the matrix oa th

Substituting [[2b) and recalling th&r(A) — 1, we have

R— o0
—/I:ﬂM;m)% 1— ﬁ fe(P;)dP;  (31)

The previous expression implies that for eaclthere exists
an Ry, such thatvR > Ry

Hy(z) — |1 - %E[Pj ]

Pa Pm (%) €
- L |1 | fr(P)dP;|| < 5.
o) ? ‘ 2

Pr ( |Ho(@) - [1- 222 2 pipe] —
C
2
()
/ - fr(P)dP; || <e| =0
(i) ? ¢

LHS of (33) is bounded from below by, = P A, with
probability 1 for N sufficiently large.
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